| //===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/X86BaseInfo.h" |
| #include "MCTargetDesc/X86IntelInstPrinter.h" |
| #include "MCTargetDesc/X86MCExpr.h" |
| #include "MCTargetDesc/X86TargetStreamer.h" |
| #include "TargetInfo/X86TargetInfo.h" |
| #include "X86AsmParserCommon.h" |
| #include "X86Operand.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCInstrInfo.h" |
| #include "llvm/MC/MCParser/MCAsmLexer.h" |
| #include "llvm/MC/MCParser/MCAsmParser.h" |
| #include "llvm/MC/MCParser/MCParsedAsmOperand.h" |
| #include "llvm/MC/MCParser/MCTargetAsmParser.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <memory> |
| |
| using namespace llvm; |
| |
| static bool checkScale(unsigned Scale, StringRef &ErrMsg) { |
| if (Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) { |
| ErrMsg = "scale factor in address must be 1, 2, 4 or 8"; |
| return true; |
| } |
| return false; |
| } |
| |
| namespace { |
| |
| static const char OpPrecedence[] = { |
| 0, // IC_OR |
| 1, // IC_XOR |
| 2, // IC_AND |
| 3, // IC_LSHIFT |
| 3, // IC_RSHIFT |
| 4, // IC_PLUS |
| 4, // IC_MINUS |
| 5, // IC_MULTIPLY |
| 5, // IC_DIVIDE |
| 5, // IC_MOD |
| 6, // IC_NOT |
| 7, // IC_NEG |
| 8, // IC_RPAREN |
| 9, // IC_LPAREN |
| 0, // IC_IMM |
| 0 // IC_REGISTER |
| }; |
| |
| class X86AsmParser : public MCTargetAsmParser { |
| ParseInstructionInfo *InstInfo; |
| bool Code16GCC; |
| |
| enum VEXEncoding { |
| VEXEncoding_Default, |
| VEXEncoding_VEX2, |
| VEXEncoding_VEX3, |
| VEXEncoding_EVEX, |
| }; |
| |
| VEXEncoding ForcedVEXEncoding = VEXEncoding_Default; |
| |
| private: |
| SMLoc consumeToken() { |
| MCAsmParser &Parser = getParser(); |
| SMLoc Result = Parser.getTok().getLoc(); |
| Parser.Lex(); |
| return Result; |
| } |
| |
| X86TargetStreamer &getTargetStreamer() { |
| assert(getParser().getStreamer().getTargetStreamer() && |
| "do not have a target streamer"); |
| MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); |
| return static_cast<X86TargetStreamer &>(TS); |
| } |
| |
| unsigned MatchInstruction(const OperandVector &Operands, MCInst &Inst, |
| uint64_t &ErrorInfo, FeatureBitset &MissingFeatures, |
| bool matchingInlineAsm, unsigned VariantID = 0) { |
| // In Code16GCC mode, match as 32-bit. |
| if (Code16GCC) |
| SwitchMode(X86::Mode32Bit); |
| unsigned rv = MatchInstructionImpl(Operands, Inst, ErrorInfo, |
| MissingFeatures, matchingInlineAsm, |
| VariantID); |
| if (Code16GCC) |
| SwitchMode(X86::Mode16Bit); |
| return rv; |
| } |
| |
| enum InfixCalculatorTok { |
| IC_OR = 0, |
| IC_XOR, |
| IC_AND, |
| IC_LSHIFT, |
| IC_RSHIFT, |
| IC_PLUS, |
| IC_MINUS, |
| IC_MULTIPLY, |
| IC_DIVIDE, |
| IC_MOD, |
| IC_NOT, |
| IC_NEG, |
| IC_RPAREN, |
| IC_LPAREN, |
| IC_IMM, |
| IC_REGISTER |
| }; |
| |
| enum IntelOperatorKind { |
| IOK_INVALID = 0, |
| IOK_LENGTH, |
| IOK_SIZE, |
| IOK_TYPE, |
| IOK_OFFSET |
| }; |
| |
| class InfixCalculator { |
| typedef std::pair< InfixCalculatorTok, int64_t > ICToken; |
| SmallVector<InfixCalculatorTok, 4> InfixOperatorStack; |
| SmallVector<ICToken, 4> PostfixStack; |
| |
| bool isUnaryOperator(const InfixCalculatorTok Op) { |
| return Op == IC_NEG || Op == IC_NOT; |
| } |
| |
| public: |
| int64_t popOperand() { |
| assert (!PostfixStack.empty() && "Poped an empty stack!"); |
| ICToken Op = PostfixStack.pop_back_val(); |
| if (!(Op.first == IC_IMM || Op.first == IC_REGISTER)) |
| return -1; // The invalid Scale value will be caught later by checkScale |
| return Op.second; |
| } |
| void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) { |
| assert ((Op == IC_IMM || Op == IC_REGISTER) && |
| "Unexpected operand!"); |
| PostfixStack.push_back(std::make_pair(Op, Val)); |
| } |
| |
| void popOperator() { InfixOperatorStack.pop_back(); } |
| void pushOperator(InfixCalculatorTok Op) { |
| // Push the new operator if the stack is empty. |
| if (InfixOperatorStack.empty()) { |
| InfixOperatorStack.push_back(Op); |
| return; |
| } |
| |
| // Push the new operator if it has a higher precedence than the operator |
| // on the top of the stack or the operator on the top of the stack is a |
| // left parentheses. |
| unsigned Idx = InfixOperatorStack.size() - 1; |
| InfixCalculatorTok StackOp = InfixOperatorStack[Idx]; |
| if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) { |
| InfixOperatorStack.push_back(Op); |
| return; |
| } |
| |
| // The operator on the top of the stack has higher precedence than the |
| // new operator. |
| unsigned ParenCount = 0; |
| while (1) { |
| // Nothing to process. |
| if (InfixOperatorStack.empty()) |
| break; |
| |
| Idx = InfixOperatorStack.size() - 1; |
| StackOp = InfixOperatorStack[Idx]; |
| if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount)) |
| break; |
| |
| // If we have an even parentheses count and we see a left parentheses, |
| // then stop processing. |
| if (!ParenCount && StackOp == IC_LPAREN) |
| break; |
| |
| if (StackOp == IC_RPAREN) { |
| ++ParenCount; |
| InfixOperatorStack.pop_back(); |
| } else if (StackOp == IC_LPAREN) { |
| --ParenCount; |
| InfixOperatorStack.pop_back(); |
| } else { |
| InfixOperatorStack.pop_back(); |
| PostfixStack.push_back(std::make_pair(StackOp, 0)); |
| } |
| } |
| // Push the new operator. |
| InfixOperatorStack.push_back(Op); |
| } |
| |
| int64_t execute() { |
| // Push any remaining operators onto the postfix stack. |
| while (!InfixOperatorStack.empty()) { |
| InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val(); |
| if (StackOp != IC_LPAREN && StackOp != IC_RPAREN) |
| PostfixStack.push_back(std::make_pair(StackOp, 0)); |
| } |
| |
| if (PostfixStack.empty()) |
| return 0; |
| |
| SmallVector<ICToken, 16> OperandStack; |
| for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) { |
| ICToken Op = PostfixStack[i]; |
| if (Op.first == IC_IMM || Op.first == IC_REGISTER) { |
| OperandStack.push_back(Op); |
| } else if (isUnaryOperator(Op.first)) { |
| assert (OperandStack.size() > 0 && "Too few operands."); |
| ICToken Operand = OperandStack.pop_back_val(); |
| assert (Operand.first == IC_IMM && |
| "Unary operation with a register!"); |
| switch (Op.first) { |
| default: |
| report_fatal_error("Unexpected operator!"); |
| break; |
| case IC_NEG: |
| OperandStack.push_back(std::make_pair(IC_IMM, -Operand.second)); |
| break; |
| case IC_NOT: |
| OperandStack.push_back(std::make_pair(IC_IMM, ~Operand.second)); |
| break; |
| } |
| } else { |
| assert (OperandStack.size() > 1 && "Too few operands."); |
| int64_t Val; |
| ICToken Op2 = OperandStack.pop_back_val(); |
| ICToken Op1 = OperandStack.pop_back_val(); |
| switch (Op.first) { |
| default: |
| report_fatal_error("Unexpected operator!"); |
| break; |
| case IC_PLUS: |
| Val = Op1.second + Op2.second; |
| OperandStack.push_back(std::make_pair(IC_IMM, Val)); |
| break; |
| case IC_MINUS: |
| Val = Op1.second - Op2.second; |
| OperandStack.push_back(std::make_pair(IC_IMM, Val)); |
| break; |
| case IC_MULTIPLY: |
| assert (Op1.first == IC_IMM && Op2.first == IC_IMM && |
| "Multiply operation with an immediate and a register!"); |
| Val = Op1.second * Op2.second; |
| OperandStack.push_back(std::make_pair(IC_IMM, Val)); |
| break; |
| case IC_DIVIDE: |
| assert (Op1.first == IC_IMM && Op2.first == IC_IMM && |
| "Divide operation with an immediate and a register!"); |
| assert (Op2.second != 0 && "Division by zero!"); |
| Val = Op1.second / Op2.second; |
| OperandStack.push_back(std::make_pair(IC_IMM, Val)); |
| break; |
| case IC_MOD: |
| assert (Op1.first == IC_IMM && Op2.first == IC_IMM && |
| "Modulo operation with an immediate and a register!"); |
| Val = Op1.second % Op2.second; |
| OperandStack.push_back(std::make_pair(IC_IMM, Val)); |
| break; |
| case IC_OR: |
| assert (Op1.first == IC_IMM && Op2.first == IC_IMM && |
| "Or operation with an immediate and a register!"); |
| Val = Op1.second | Op2.second; |
| OperandStack.push_back(std::make_pair(IC_IMM, Val)); |
| break; |
| case IC_XOR: |
| assert(Op1.first == IC_IMM && Op2.first == IC_IMM && |
| "Xor operation with an immediate and a register!"); |
| Val = Op1.second ^ Op2.second; |
| OperandStack.push_back(std::make_pair(IC_IMM, Val)); |
| break; |
| case IC_AND: |
| assert (Op1.first == IC_IMM && Op2.first == IC_IMM && |
| "And operation with an immediate and a register!"); |
| Val = Op1.second & Op2.second; |
| OperandStack.push_back(std::make_pair(IC_IMM, Val)); |
| break; |
| case IC_LSHIFT: |
| assert (Op1.first == IC_IMM && Op2.first == IC_IMM && |
| "Left shift operation with an immediate and a register!"); |
| Val = Op1.second << Op2.second; |
| OperandStack.push_back(std::make_pair(IC_IMM, Val)); |
| break; |
| case IC_RSHIFT: |
| assert (Op1.first == IC_IMM && Op2.first == IC_IMM && |
| "Right shift operation with an immediate and a register!"); |
| Val = Op1.second >> Op2.second; |
| OperandStack.push_back(std::make_pair(IC_IMM, Val)); |
| break; |
| } |
| } |
| } |
| assert (OperandStack.size() == 1 && "Expected a single result."); |
| return OperandStack.pop_back_val().second; |
| } |
| }; |
| |
| enum IntelExprState { |
| IES_INIT, |
| IES_OR, |
| IES_XOR, |
| IES_AND, |
| IES_LSHIFT, |
| IES_RSHIFT, |
| IES_PLUS, |
| IES_MINUS, |
| IES_NOT, |
| IES_MULTIPLY, |
| IES_DIVIDE, |
| IES_MOD, |
| IES_LBRAC, |
| IES_RBRAC, |
| IES_LPAREN, |
| IES_RPAREN, |
| IES_REGISTER, |
| IES_INTEGER, |
| IES_IDENTIFIER, |
| IES_ERROR |
| }; |
| |
| class IntelExprStateMachine { |
| IntelExprState State, PrevState; |
| unsigned BaseReg, IndexReg, TmpReg, Scale; |
| int64_t Imm; |
| const MCExpr *Sym; |
| StringRef SymName; |
| InfixCalculator IC; |
| InlineAsmIdentifierInfo Info; |
| short BracCount; |
| bool MemExpr; |
| |
| public: |
| IntelExprStateMachine() |
| : State(IES_INIT), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), |
| TmpReg(0), Scale(0), Imm(0), Sym(nullptr), BracCount(0), |
| MemExpr(false) {} |
| |
| void addImm(int64_t imm) { Imm += imm; } |
| short getBracCount() { return BracCount; } |
| bool isMemExpr() { return MemExpr; } |
| unsigned getBaseReg() { return BaseReg; } |
| unsigned getIndexReg() { return IndexReg; } |
| unsigned getScale() { return Scale; } |
| const MCExpr *getSym() { return Sym; } |
| StringRef getSymName() { return SymName; } |
| int64_t getImm() { return Imm + IC.execute(); } |
| bool isValidEndState() { |
| return State == IES_RBRAC || State == IES_INTEGER; |
| } |
| bool hadError() { return State == IES_ERROR; } |
| InlineAsmIdentifierInfo &getIdentifierInfo() { return Info; } |
| |
| void onOr() { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_INTEGER: |
| case IES_RPAREN: |
| case IES_REGISTER: |
| State = IES_OR; |
| IC.pushOperator(IC_OR); |
| break; |
| } |
| PrevState = CurrState; |
| } |
| void onXor() { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_INTEGER: |
| case IES_RPAREN: |
| case IES_REGISTER: |
| State = IES_XOR; |
| IC.pushOperator(IC_XOR); |
| break; |
| } |
| PrevState = CurrState; |
| } |
| void onAnd() { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_INTEGER: |
| case IES_RPAREN: |
| case IES_REGISTER: |
| State = IES_AND; |
| IC.pushOperator(IC_AND); |
| break; |
| } |
| PrevState = CurrState; |
| } |
| void onLShift() { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_INTEGER: |
| case IES_RPAREN: |
| case IES_REGISTER: |
| State = IES_LSHIFT; |
| IC.pushOperator(IC_LSHIFT); |
| break; |
| } |
| PrevState = CurrState; |
| } |
| void onRShift() { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_INTEGER: |
| case IES_RPAREN: |
| case IES_REGISTER: |
| State = IES_RSHIFT; |
| IC.pushOperator(IC_RSHIFT); |
| break; |
| } |
| PrevState = CurrState; |
| } |
| bool onPlus(StringRef &ErrMsg) { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_INTEGER: |
| case IES_RPAREN: |
| case IES_REGISTER: |
| State = IES_PLUS; |
| IC.pushOperator(IC_PLUS); |
| if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) { |
| // If we already have a BaseReg, then assume this is the IndexReg with |
| // no explicit scale. |
| if (!BaseReg) { |
| BaseReg = TmpReg; |
| } else { |
| if (IndexReg) { |
| ErrMsg = "BaseReg/IndexReg already set!"; |
| return true; |
| } |
| IndexReg = TmpReg; |
| Scale = 0; |
| } |
| } |
| break; |
| } |
| PrevState = CurrState; |
| return false; |
| } |
| bool onMinus(StringRef &ErrMsg) { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_OR: |
| case IES_XOR: |
| case IES_AND: |
| case IES_LSHIFT: |
| case IES_RSHIFT: |
| case IES_PLUS: |
| case IES_NOT: |
| case IES_MULTIPLY: |
| case IES_DIVIDE: |
| case IES_MOD: |
| case IES_LPAREN: |
| case IES_RPAREN: |
| case IES_LBRAC: |
| case IES_RBRAC: |
| case IES_INTEGER: |
| case IES_REGISTER: |
| case IES_INIT: |
| State = IES_MINUS; |
| // push minus operator if it is not a negate operator |
| if (CurrState == IES_REGISTER || CurrState == IES_RPAREN || |
| CurrState == IES_INTEGER || CurrState == IES_RBRAC) |
| IC.pushOperator(IC_MINUS); |
| else if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) { |
| // We have negate operator for Scale: it's illegal |
| ErrMsg = "Scale can't be negative"; |
| return true; |
| } else |
| IC.pushOperator(IC_NEG); |
| if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) { |
| // If we already have a BaseReg, then assume this is the IndexReg with |
| // no explicit scale. |
| if (!BaseReg) { |
| BaseReg = TmpReg; |
| } else { |
| if (IndexReg) { |
| ErrMsg = "BaseReg/IndexReg already set!"; |
| return true; |
| } |
| IndexReg = TmpReg; |
| Scale = 0; |
| } |
| } |
| break; |
| } |
| PrevState = CurrState; |
| return false; |
| } |
| void onNot() { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_OR: |
| case IES_XOR: |
| case IES_AND: |
| case IES_LSHIFT: |
| case IES_RSHIFT: |
| case IES_PLUS: |
| case IES_MINUS: |
| case IES_NOT: |
| case IES_MULTIPLY: |
| case IES_DIVIDE: |
| case IES_MOD: |
| case IES_LPAREN: |
| case IES_LBRAC: |
| case IES_INIT: |
| State = IES_NOT; |
| IC.pushOperator(IC_NOT); |
| break; |
| } |
| PrevState = CurrState; |
| } |
| |
| bool onRegister(unsigned Reg, StringRef &ErrMsg) { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_PLUS: |
| case IES_LPAREN: |
| case IES_LBRAC: |
| State = IES_REGISTER; |
| TmpReg = Reg; |
| IC.pushOperand(IC_REGISTER); |
| break; |
| case IES_MULTIPLY: |
| // Index Register - Scale * Register |
| if (PrevState == IES_INTEGER) { |
| if (IndexReg) { |
| ErrMsg = "BaseReg/IndexReg already set!"; |
| return true; |
| } |
| State = IES_REGISTER; |
| IndexReg = Reg; |
| // Get the scale and replace the 'Scale * Register' with '0'. |
| Scale = IC.popOperand(); |
| if (checkScale(Scale, ErrMsg)) |
| return true; |
| IC.pushOperand(IC_IMM); |
| IC.popOperator(); |
| } else { |
| State = IES_ERROR; |
| } |
| break; |
| } |
| PrevState = CurrState; |
| return false; |
| } |
| bool onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName, |
| const InlineAsmIdentifierInfo &IDInfo, |
| bool ParsingInlineAsm, StringRef &ErrMsg) { |
| // InlineAsm: Treat an enum value as an integer |
| if (ParsingInlineAsm) |
| if (IDInfo.isKind(InlineAsmIdentifierInfo::IK_EnumVal)) |
| return onInteger(IDInfo.Enum.EnumVal, ErrMsg); |
| // Treat a symbolic constant like an integer |
| if (auto *CE = dyn_cast<MCConstantExpr>(SymRef)) |
| return onInteger(CE->getValue(), ErrMsg); |
| PrevState = State; |
| bool HasSymbol = Sym != nullptr; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_PLUS: |
| case IES_MINUS: |
| case IES_NOT: |
| case IES_INIT: |
| case IES_LBRAC: |
| MemExpr = true; |
| State = IES_INTEGER; |
| Sym = SymRef; |
| SymName = SymRefName; |
| IC.pushOperand(IC_IMM); |
| if (ParsingInlineAsm) |
| Info = IDInfo; |
| break; |
| } |
| if (HasSymbol) |
| ErrMsg = "cannot use more than one symbol in memory operand"; |
| return HasSymbol; |
| } |
| bool onInteger(int64_t TmpInt, StringRef &ErrMsg) { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_PLUS: |
| case IES_MINUS: |
| case IES_NOT: |
| case IES_OR: |
| case IES_XOR: |
| case IES_AND: |
| case IES_LSHIFT: |
| case IES_RSHIFT: |
| case IES_DIVIDE: |
| case IES_MOD: |
| case IES_MULTIPLY: |
| case IES_LPAREN: |
| case IES_INIT: |
| case IES_LBRAC: |
| State = IES_INTEGER; |
| if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) { |
| // Index Register - Register * Scale |
| if (IndexReg) { |
| ErrMsg = "BaseReg/IndexReg already set!"; |
| return true; |
| } |
| IndexReg = TmpReg; |
| Scale = TmpInt; |
| if (checkScale(Scale, ErrMsg)) |
| return true; |
| // Get the scale and replace the 'Register * Scale' with '0'. |
| IC.popOperator(); |
| } else { |
| IC.pushOperand(IC_IMM, TmpInt); |
| } |
| break; |
| } |
| PrevState = CurrState; |
| return false; |
| } |
| void onStar() { |
| PrevState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_INTEGER: |
| case IES_REGISTER: |
| case IES_RPAREN: |
| State = IES_MULTIPLY; |
| IC.pushOperator(IC_MULTIPLY); |
| break; |
| } |
| } |
| void onDivide() { |
| PrevState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_INTEGER: |
| case IES_RPAREN: |
| State = IES_DIVIDE; |
| IC.pushOperator(IC_DIVIDE); |
| break; |
| } |
| } |
| void onMod() { |
| PrevState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_INTEGER: |
| case IES_RPAREN: |
| State = IES_MOD; |
| IC.pushOperator(IC_MOD); |
| break; |
| } |
| } |
| bool onLBrac() { |
| if (BracCount) |
| return true; |
| PrevState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_RBRAC: |
| case IES_INTEGER: |
| case IES_RPAREN: |
| State = IES_PLUS; |
| IC.pushOperator(IC_PLUS); |
| break; |
| case IES_INIT: |
| assert(!BracCount && "BracCount should be zero on parsing's start"); |
| State = IES_LBRAC; |
| break; |
| } |
| MemExpr = true; |
| BracCount++; |
| return false; |
| } |
| bool onRBrac() { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_INTEGER: |
| case IES_REGISTER: |
| case IES_RPAREN: |
| if (BracCount-- != 1) |
| return true; |
| State = IES_RBRAC; |
| if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) { |
| // If we already have a BaseReg, then assume this is the IndexReg with |
| // no explicit scale. |
| if (!BaseReg) { |
| BaseReg = TmpReg; |
| } else { |
| assert (!IndexReg && "BaseReg/IndexReg already set!"); |
| IndexReg = TmpReg; |
| Scale = 0; |
| } |
| } |
| break; |
| } |
| PrevState = CurrState; |
| return false; |
| } |
| void onLParen() { |
| IntelExprState CurrState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_PLUS: |
| case IES_MINUS: |
| case IES_NOT: |
| case IES_OR: |
| case IES_XOR: |
| case IES_AND: |
| case IES_LSHIFT: |
| case IES_RSHIFT: |
| case IES_MULTIPLY: |
| case IES_DIVIDE: |
| case IES_MOD: |
| case IES_LPAREN: |
| case IES_INIT: |
| case IES_LBRAC: |
| State = IES_LPAREN; |
| IC.pushOperator(IC_LPAREN); |
| break; |
| } |
| PrevState = CurrState; |
| } |
| void onRParen() { |
| PrevState = State; |
| switch (State) { |
| default: |
| State = IES_ERROR; |
| break; |
| case IES_INTEGER: |
| case IES_REGISTER: |
| case IES_RPAREN: |
| State = IES_RPAREN; |
| IC.pushOperator(IC_RPAREN); |
| break; |
| } |
| } |
| }; |
| |
| bool Error(SMLoc L, const Twine &Msg, SMRange Range = None, |
| bool MatchingInlineAsm = false) { |
| MCAsmParser &Parser = getParser(); |
| if (MatchingInlineAsm) { |
| if (!getLexer().isAtStartOfStatement()) |
| Parser.eatToEndOfStatement(); |
| return false; |
| } |
| return Parser.Error(L, Msg, Range); |
| } |
| |
| std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg, SMRange R = SMRange()) { |
| Error(Loc, Msg, R); |
| return nullptr; |
| } |
| |
| std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc); |
| std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc); |
| bool IsSIReg(unsigned Reg); |
| unsigned GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, bool IsSIReg); |
| void |
| AddDefaultSrcDestOperands(OperandVector &Operands, |
| std::unique_ptr<llvm::MCParsedAsmOperand> &&Src, |
| std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst); |
| bool VerifyAndAdjustOperands(OperandVector &OrigOperands, |
| OperandVector &FinalOperands); |
| std::unique_ptr<X86Operand> ParseOperand(); |
| std::unique_ptr<X86Operand> ParseATTOperand(); |
| std::unique_ptr<X86Operand> ParseIntelOperand(); |
| std::unique_ptr<X86Operand> ParseIntelOffsetOfOperator(); |
| bool ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End); |
| unsigned IdentifyIntelInlineAsmOperator(StringRef Name); |
| unsigned ParseIntelInlineAsmOperator(unsigned OpKind); |
| std::unique_ptr<X86Operand> ParseRoundingModeOp(SMLoc Start); |
| bool ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM); |
| void RewriteIntelExpression(IntelExprStateMachine &SM, SMLoc Start, |
| SMLoc End); |
| bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End); |
| bool ParseIntelInlineAsmIdentifier(const MCExpr *&Val, StringRef &Identifier, |
| InlineAsmIdentifierInfo &Info, |
| bool IsUnevaluatedOperand, SMLoc &End); |
| |
| std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg, |
| const MCExpr *&Disp, |
| const SMLoc &StartLoc, |
| SMLoc &EndLoc); |
| |
| X86::CondCode ParseConditionCode(StringRef CCode); |
| |
| bool ParseIntelMemoryOperandSize(unsigned &Size); |
| std::unique_ptr<X86Operand> |
| CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, |
| unsigned IndexReg, unsigned Scale, SMLoc Start, |
| SMLoc End, unsigned Size, StringRef Identifier, |
| const InlineAsmIdentifierInfo &Info); |
| |
| bool parseDirectiveEven(SMLoc L); |
| bool ParseDirectiveCode(StringRef IDVal, SMLoc L); |
| |
| /// CodeView FPO data directives. |
| bool parseDirectiveFPOProc(SMLoc L); |
| bool parseDirectiveFPOSetFrame(SMLoc L); |
| bool parseDirectiveFPOPushReg(SMLoc L); |
| bool parseDirectiveFPOStackAlloc(SMLoc L); |
| bool parseDirectiveFPOStackAlign(SMLoc L); |
| bool parseDirectiveFPOEndPrologue(SMLoc L); |
| bool parseDirectiveFPOEndProc(SMLoc L); |
| bool parseDirectiveFPOData(SMLoc L); |
| |
| unsigned checkTargetMatchPredicate(MCInst &Inst) override; |
| |
| bool validateInstruction(MCInst &Inst, const OperandVector &Ops); |
| bool processInstruction(MCInst &Inst, const OperandVector &Ops); |
| |
| /// Wrapper around MCStreamer::EmitInstruction(). Possibly adds |
| /// instrumentation around Inst. |
| void EmitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out); |
| |
| bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
| OperandVector &Operands, MCStreamer &Out, |
| uint64_t &ErrorInfo, |
| bool MatchingInlineAsm) override; |
| |
| void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands, |
| MCStreamer &Out, bool MatchingInlineAsm); |
| |
| bool ErrorMissingFeature(SMLoc IDLoc, const FeatureBitset &MissingFeatures, |
| bool MatchingInlineAsm); |
| |
| bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode, |
| OperandVector &Operands, MCStreamer &Out, |
| uint64_t &ErrorInfo, |
| bool MatchingInlineAsm); |
| |
| bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode, |
| OperandVector &Operands, MCStreamer &Out, |
| uint64_t &ErrorInfo, |
| bool MatchingInlineAsm); |
| |
| bool OmitRegisterFromClobberLists(unsigned RegNo) override; |
| |
| /// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z}) |
| /// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required. |
| /// return false if no parsing errors occurred, true otherwise. |
| bool HandleAVX512Operand(OperandVector &Operands, |
| const MCParsedAsmOperand &Op); |
| |
| bool ParseZ(std::unique_ptr<X86Operand> &Z, const SMLoc &StartLoc); |
| |
| bool is64BitMode() const { |
| // FIXME: Can tablegen auto-generate this? |
| return getSTI().getFeatureBits()[X86::Mode64Bit]; |
| } |
| bool is32BitMode() const { |
| // FIXME: Can tablegen auto-generate this? |
| return getSTI().getFeatureBits()[X86::Mode32Bit]; |
| } |
| bool is16BitMode() const { |
| // FIXME: Can tablegen auto-generate this? |
| return getSTI().getFeatureBits()[X86::Mode16Bit]; |
| } |
| void SwitchMode(unsigned mode) { |
| MCSubtargetInfo &STI = copySTI(); |
| FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit}); |
| FeatureBitset OldMode = STI.getFeatureBits() & AllModes; |
| FeatureBitset FB = ComputeAvailableFeatures( |
| STI.ToggleFeature(OldMode.flip(mode))); |
| setAvailableFeatures(FB); |
| |
| assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes)); |
| } |
| |
| unsigned getPointerWidth() { |
| if (is16BitMode()) return 16; |
| if (is32BitMode()) return 32; |
| if (is64BitMode()) return 64; |
| llvm_unreachable("invalid mode"); |
| } |
| |
| bool isParsingIntelSyntax() { |
| return getParser().getAssemblerDialect(); |
| } |
| |
| /// @name Auto-generated Matcher Functions |
| /// { |
| |
| #define GET_ASSEMBLER_HEADER |
| #include "X86GenAsmMatcher.inc" |
| |
| /// } |
| |
| public: |
| enum X86MatchResultTy { |
| Match_Unsupported = FIRST_TARGET_MATCH_RESULT_TY, |
| }; |
| |
| X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser, |
| const MCInstrInfo &mii, const MCTargetOptions &Options) |
| : MCTargetAsmParser(Options, sti, mii), InstInfo(nullptr), |
| Code16GCC(false) { |
| |
| Parser.addAliasForDirective(".word", ".2byte"); |
| |
| // Initialize the set of available features. |
| setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); |
| } |
| |
| bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; |
| |
| bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) override; |
| |
| bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, |
| SMLoc NameLoc, OperandVector &Operands) override; |
| |
| bool ParseDirective(AsmToken DirectiveID) override; |
| }; |
| } // end anonymous namespace |
| |
| /// @name Auto-generated Match Functions |
| /// { |
| |
| static unsigned MatchRegisterName(StringRef Name); |
| |
| /// } |
| |
| static bool CheckBaseRegAndIndexRegAndScale(unsigned BaseReg, unsigned IndexReg, |
| unsigned Scale, bool Is64BitMode, |
| StringRef &ErrMsg) { |
| // If we have both a base register and an index register make sure they are |
| // both 64-bit or 32-bit registers. |
| // To support VSIB, IndexReg can be 128-bit or 256-bit registers. |
| |
| if (BaseReg != 0 && |
| !(BaseReg == X86::RIP || BaseReg == X86::EIP || |
| X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) || |
| X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) || |
| X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg))) { |
| ErrMsg = "invalid base+index expression"; |
| return true; |
| } |
| |
| if (IndexReg != 0 && |
| !(IndexReg == X86::EIZ || IndexReg == X86::RIZ || |
| X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg))) { |
| ErrMsg = "invalid base+index expression"; |
| return true; |
| } |
| |
| if (((BaseReg == X86::RIP || BaseReg == X86::EIP) && IndexReg != 0) || |
| IndexReg == X86::EIP || IndexReg == X86::RIP || |
| IndexReg == X86::ESP || IndexReg == X86::RSP) { |
| ErrMsg = "invalid base+index expression"; |
| return true; |
| } |
| |
| // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed, |
| // and then only in non-64-bit modes. |
| if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) && |
| (Is64BitMode || (BaseReg != X86::BX && BaseReg != X86::BP && |
| BaseReg != X86::SI && BaseReg != X86::DI))) { |
| ErrMsg = "invalid 16-bit base register"; |
| return true; |
| } |
| |
| if (BaseReg == 0 && |
| X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) { |
| ErrMsg = "16-bit memory operand may not include only index register"; |
| return true; |
| } |
| |
| if (BaseReg != 0 && IndexReg != 0) { |
| if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) && |
| (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) || |
| IndexReg == X86::EIZ)) { |
| ErrMsg = "base register is 64-bit, but index register is not"; |
| return true; |
| } |
| if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) && |
| (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) || |
| IndexReg == X86::RIZ)) { |
| ErrMsg = "base register is 32-bit, but index register is not"; |
| return true; |
| } |
| if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) { |
| if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) { |
| ErrMsg = "base register is 16-bit, but index register is not"; |
| return true; |
| } |
| if ((BaseReg != X86::BX && BaseReg != X86::BP) || |
| (IndexReg != X86::SI && IndexReg != X86::DI)) { |
| ErrMsg = "invalid 16-bit base/index register combination"; |
| return true; |
| } |
| } |
| } |
| |
| // RIP/EIP-relative addressing is only supported in 64-bit mode. |
| if (!Is64BitMode && BaseReg != 0 && |
| (BaseReg == X86::RIP || BaseReg == X86::EIP)) { |
| ErrMsg = "IP-relative addressing requires 64-bit mode"; |
| return true; |
| } |
| |
| return checkScale(Scale, ErrMsg); |
| } |
| |
| bool X86AsmParser::ParseRegister(unsigned &RegNo, |
| SMLoc &StartLoc, SMLoc &EndLoc) { |
| MCAsmParser &Parser = getParser(); |
| RegNo = 0; |
| const AsmToken &PercentTok = Parser.getTok(); |
| StartLoc = PercentTok.getLoc(); |
| |
| // If we encounter a %, ignore it. This code handles registers with and |
| // without the prefix, unprefixed registers can occur in cfi directives. |
| if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent)) |
| Parser.Lex(); // Eat percent token. |
| |
| const AsmToken &Tok = Parser.getTok(); |
| EndLoc = Tok.getEndLoc(); |
| |
| if (Tok.isNot(AsmToken::Identifier)) { |
| if (isParsingIntelSyntax()) return true; |
| return Error(StartLoc, "invalid register name", |
| SMRange(StartLoc, EndLoc)); |
| } |
| |
| RegNo = MatchRegisterName(Tok.getString()); |
| |
| // If the match failed, try the register name as lowercase. |
| if (RegNo == 0) |
| RegNo = MatchRegisterName(Tok.getString().lower()); |
| |
| // The "flags" register cannot be referenced directly. |
| // Treat it as an identifier instead. |
| if (isParsingInlineAsm() && isParsingIntelSyntax() && RegNo == X86::EFLAGS) |
| RegNo = 0; |
| |
| if (!is64BitMode()) { |
| // FIXME: This should be done using Requires<Not64BitMode> and |
| // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also |
| // checked. |
| // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a |
| // REX prefix. |
| if (RegNo == X86::RIZ || RegNo == X86::RIP || |
| X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) || |
| X86II::isX86_64NonExtLowByteReg(RegNo) || |
| X86II::isX86_64ExtendedReg(RegNo)) { |
| StringRef RegName = Tok.getString(); |
| Parser.Lex(); // Eat register name. |
| return Error(StartLoc, |
| "register %" + RegName + " is only available in 64-bit mode", |
| SMRange(StartLoc, EndLoc)); |
| } |
| } |
| |
| // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens. |
| if (RegNo == X86::ST0) { |
| Parser.Lex(); // Eat 'st' |
| |
| // Check to see if we have '(4)' after %st. |
| if (getLexer().isNot(AsmToken::LParen)) |
| return false; |
| // Lex the paren. |
| getParser().Lex(); |
| |
| const AsmToken &IntTok = Parser.getTok(); |
| if (IntTok.isNot(AsmToken::Integer)) |
| return Error(IntTok.getLoc(), "expected stack index"); |
| switch (IntTok.getIntVal()) { |
| case 0: RegNo = X86::ST0; break; |
| case 1: RegNo = X86::ST1; break; |
| case 2: RegNo = X86::ST2; break; |
| case 3: RegNo = X86::ST3; break; |
| case 4: RegNo = X86::ST4; break; |
| case 5: RegNo = X86::ST5; break; |
| case 6: RegNo = X86::ST6; break; |
| case 7: RegNo = X86::ST7; break; |
| default: return Error(IntTok.getLoc(), "invalid stack index"); |
| } |
| |
| if (getParser().Lex().isNot(AsmToken::RParen)) |
| return Error(Parser.getTok().getLoc(), "expected ')'"); |
| |
| EndLoc = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat ')' |
| return false; |
| } |
| |
| EndLoc = Parser.getTok().getEndLoc(); |
| |
| // If this is "db[0-15]", match it as an alias |
| // for dr[0-15]. |
| if (RegNo == 0 && Tok.getString().startswith("db")) { |
| if (Tok.getString().size() == 3) { |
| switch (Tok.getString()[2]) { |
| case '0': RegNo = X86::DR0; break; |
| case '1': RegNo = X86::DR1; break; |
| case '2': RegNo = X86::DR2; break; |
| case '3': RegNo = X86::DR3; break; |
| case '4': RegNo = X86::DR4; break; |
| case '5': RegNo = X86::DR5; break; |
| case '6': RegNo = X86::DR6; break; |
| case '7': RegNo = X86::DR7; break; |
| case '8': RegNo = X86::DR8; break; |
| case '9': RegNo = X86::DR9; break; |
| } |
| } else if (Tok.getString().size() == 4 && Tok.getString()[2] == '1') { |
| switch (Tok.getString()[3]) { |
| case '0': RegNo = X86::DR10; break; |
| case '1': RegNo = X86::DR11; break; |
| case '2': RegNo = X86::DR12; break; |
| case '3': RegNo = X86::DR13; break; |
| case '4': RegNo = X86::DR14; break; |
| case '5': RegNo = X86::DR15; break; |
| } |
| } |
| |
| if (RegNo != 0) { |
| EndLoc = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat it. |
| return false; |
| } |
| } |
| |
| if (RegNo == 0) { |
| if (isParsingIntelSyntax()) return true; |
| return Error(StartLoc, "invalid register name", |
| SMRange(StartLoc, EndLoc)); |
| } |
| |
| Parser.Lex(); // Eat identifier token. |
| return false; |
| } |
| |
| std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) { |
| bool Parse32 = is32BitMode() || Code16GCC; |
| unsigned Basereg = is64BitMode() ? X86::RSI : (Parse32 ? X86::ESI : X86::SI); |
| const MCExpr *Disp = MCConstantExpr::create(0, getContext()); |
| return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp, |
| /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1, |
| Loc, Loc, 0); |
| } |
| |
| std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) { |
| bool Parse32 = is32BitMode() || Code16GCC; |
| unsigned Basereg = is64BitMode() ? X86::RDI : (Parse32 ? X86::EDI : X86::DI); |
| const MCExpr *Disp = MCConstantExpr::create(0, getContext()); |
| return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp, |
| /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1, |
| Loc, Loc, 0); |
| } |
| |
| bool X86AsmParser::IsSIReg(unsigned Reg) { |
| switch (Reg) { |
| default: llvm_unreachable("Only (R|E)SI and (R|E)DI are expected!"); |
| case X86::RSI: |
| case X86::ESI: |
| case X86::SI: |
| return true; |
| case X86::RDI: |
| case X86::EDI: |
| case X86::DI: |
| return false; |
| } |
| } |
| |
| unsigned X86AsmParser::GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, |
| bool IsSIReg) { |
| switch (RegClassID) { |
| default: llvm_unreachable("Unexpected register class"); |
| case X86::GR64RegClassID: |
| return IsSIReg ? X86::RSI : X86::RDI; |
| case X86::GR32RegClassID: |
| return IsSIReg ? X86::ESI : X86::EDI; |
| case X86::GR16RegClassID: |
| return IsSIReg ? X86::SI : X86::DI; |
| } |
| } |
| |
| void X86AsmParser::AddDefaultSrcDestOperands( |
| OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src, |
| std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) { |
| if (isParsingIntelSyntax()) { |
| Operands.push_back(std::move(Dst)); |
| Operands.push_back(std::move(Src)); |
| } |
| else { |
| Operands.push_back(std::move(Src)); |
| Operands.push_back(std::move(Dst)); |
| } |
| } |
| |
| bool X86AsmParser::VerifyAndAdjustOperands(OperandVector &OrigOperands, |
| OperandVector &FinalOperands) { |
| |
| if (OrigOperands.size() > 1) { |
| // Check if sizes match, OrigOperands also contains the instruction name |
| assert(OrigOperands.size() == FinalOperands.size() + 1 && |
| "Operand size mismatch"); |
| |
| SmallVector<std::pair<SMLoc, std::string>, 2> Warnings; |
| // Verify types match |
| int RegClassID = -1; |
| for (unsigned int i = 0; i < FinalOperands.size(); ++i) { |
| X86Operand &OrigOp = static_cast<X86Operand &>(*OrigOperands[i + 1]); |
| X86Operand &FinalOp = static_cast<X86Operand &>(*FinalOperands[i]); |
| |
| if (FinalOp.isReg() && |
| (!OrigOp.isReg() || FinalOp.getReg() != OrigOp.getReg())) |
| // Return false and let a normal complaint about bogus operands happen |
| return false; |
| |
| if (FinalOp.isMem()) { |
| |
| if (!OrigOp.isMem()) |
| // Return false and let a normal complaint about bogus operands happen |
| return false; |
| |
| unsigned OrigReg = OrigOp.Mem.BaseReg; |
| unsigned FinalReg = FinalOp.Mem.BaseReg; |
| |
| // If we've already encounterd a register class, make sure all register |
| // bases are of the same register class |
| if (RegClassID != -1 && |
| !X86MCRegisterClasses[RegClassID].contains(OrigReg)) { |
| return Error(OrigOp.getStartLoc(), |
| "mismatching source and destination index registers"); |
| } |
| |
| if (X86MCRegisterClasses[X86::GR64RegClassID].contains(OrigReg)) |
| RegClassID = X86::GR64RegClassID; |
| else if (X86MCRegisterClasses[X86::GR32RegClassID].contains(OrigReg)) |
| RegClassID = X86::GR32RegClassID; |
| else if (X86MCRegisterClasses[X86::GR16RegClassID].contains(OrigReg)) |
| RegClassID = X86::GR16RegClassID; |
| else |
| // Unexpected register class type |
| // Return false and let a normal complaint about bogus operands happen |
| return false; |
| |
| bool IsSI = IsSIReg(FinalReg); |
| FinalReg = GetSIDIForRegClass(RegClassID, FinalReg, IsSI); |
| |
| if (FinalReg != OrigReg) { |
| std::string RegName = IsSI ? "ES:(R|E)SI" : "ES:(R|E)DI"; |
| Warnings.push_back(std::make_pair( |
| OrigOp.getStartLoc(), |
| "memory operand is only for determining the size, " + RegName + |
| " will be used for the location")); |
| } |
| |
| FinalOp.Mem.Size = OrigOp.Mem.Size; |
| FinalOp.Mem.SegReg = OrigOp.Mem.SegReg; |
| FinalOp.Mem.BaseReg = FinalReg; |
| } |
| } |
| |
| // Produce warnings only if all the operands passed the adjustment - prevent |
| // legal cases like "movsd (%rax), %xmm0" mistakenly produce warnings |
| for (auto &WarningMsg : Warnings) { |
| Warning(WarningMsg.first, WarningMsg.second); |
| } |
| |
| // Remove old operands |
| for (unsigned int i = 0; i < FinalOperands.size(); ++i) |
| OrigOperands.pop_back(); |
| } |
| // OrigOperands.append(FinalOperands.begin(), FinalOperands.end()); |
| for (unsigned int i = 0; i < FinalOperands.size(); ++i) |
| OrigOperands.push_back(std::move(FinalOperands[i])); |
| |
| return false; |
| } |
| |
| std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() { |
| if (isParsingIntelSyntax()) |
| return ParseIntelOperand(); |
| return ParseATTOperand(); |
| } |
| |
| std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm( |
| unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg, |
| unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier, |
| const InlineAsmIdentifierInfo &Info) { |
| // If we found a decl other than a VarDecl, then assume it is a FuncDecl or |
| // some other label reference. |
| if (Info.isKind(InlineAsmIdentifierInfo::IK_Label)) { |
| // Insert an explicit size if the user didn't have one. |
| if (!Size) { |
| Size = getPointerWidth(); |
| InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start, |
| /*Len=*/0, Size); |
| } |
| // Create an absolute memory reference in order to match against |
| // instructions taking a PC relative operand. |
| return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size, |
| Identifier, Info.Label.Decl); |
| } |
| // We either have a direct symbol reference, or an offset from a symbol. The |
| // parser always puts the symbol on the LHS, so look there for size |
| // calculation purposes. |
| unsigned FrontendSize = 0; |
| void *Decl = nullptr; |
| bool IsGlobalLV = false; |
| if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) { |
| // Size is in terms of bits in this context. |
| FrontendSize = Info.Var.Type * 8; |
| Decl = Info.Var.Decl; |
| IsGlobalLV = Info.Var.IsGlobalLV; |
| } |
| // It is widely common for MS InlineAsm to use a global variable and one/two |
| // registers in a mmory expression, and though unaccessible via rip/eip. |
| if (IsGlobalLV && (BaseReg || IndexReg)) { |
| return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End); |
| // Otherwise, we set the base register to a non-zero value |
| // if we don't know the actual value at this time. This is necessary to |
| // get the matching correct in some cases. |
| } else { |
| BaseReg = BaseReg ? BaseReg : 1; |
| return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg, |
| IndexReg, Scale, Start, End, Size, Identifier, |
| Decl, FrontendSize); |
| } |
| } |
| |
| // Some binary bitwise operators have a named synonymous |
| // Query a candidate string for being such a named operator |
| // and if so - invoke the appropriate handler |
| bool X86AsmParser::ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM) { |
| // A named operator should be either lower or upper case, but not a mix |
| if (Name.compare(Name.lower()) && Name.compare(Name.upper())) |
| return false; |
| if (Name.equals_lower("not")) |
| SM.onNot(); |
| else if (Name.equals_lower("or")) |
| SM.onOr(); |
| else if (Name.equals_lower("shl")) |
| SM.onLShift(); |
| else if (Name.equals_lower("shr")) |
| SM.onRShift(); |
| else if (Name.equals_lower("xor")) |
| SM.onXor(); |
| else if (Name.equals_lower("and")) |
| SM.onAnd(); |
| else if (Name.equals_lower("mod")) |
| SM.onMod(); |
| else |
| return false; |
| return true; |
| } |
| |
| bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| StringRef ErrMsg; |
| |
| AsmToken::TokenKind PrevTK = AsmToken::Error; |
| bool Done = false; |
| while (!Done) { |
| bool UpdateLocLex = true; |
| AsmToken::TokenKind TK = getLexer().getKind(); |
| |
| switch (TK) { |
| default: |
| if ((Done = SM.isValidEndState())) |
| break; |
| return Error(Tok.getLoc(), "unknown token in expression"); |
| case AsmToken::EndOfStatement: |
| Done = true; |
| break; |
| case AsmToken::Real: |
| // DotOperator: [ebx].0 |
| UpdateLocLex = false; |
| if (ParseIntelDotOperator(SM, End)) |
| return true; |
| break; |
| case AsmToken::At: |
| case AsmToken::String: |
| case AsmToken::Identifier: { |
| SMLoc IdentLoc = Tok.getLoc(); |
| StringRef Identifier = Tok.getString(); |
| UpdateLocLex = false; |
| // Register |
| unsigned Reg; |
| if (Tok.is(AsmToken::Identifier) && !ParseRegister(Reg, IdentLoc, End)) { |
| if (SM.onRegister(Reg, ErrMsg)) |
| return Error(Tok.getLoc(), ErrMsg); |
| break; |
| } |
| // Operator synonymous ("not", "or" etc.) |
| if ((UpdateLocLex = ParseIntelNamedOperator(Identifier, SM))) |
| break; |
| // Symbol reference, when parsing assembly content |
| InlineAsmIdentifierInfo Info; |
| const MCExpr *Val; |
| if (!isParsingInlineAsm()) { |
| if (getParser().parsePrimaryExpr(Val, End)) { |
| return Error(Tok.getLoc(), "Unexpected identifier!"); |
| } else if (SM.onIdentifierExpr(Val, Identifier, Info, false, ErrMsg)) { |
| return Error(IdentLoc, ErrMsg); |
| } else |
| break; |
| } |
| // MS InlineAsm operators (TYPE/LENGTH/SIZE) |
| if (unsigned OpKind = IdentifyIntelInlineAsmOperator(Identifier)) { |
| if (OpKind == IOK_OFFSET) |
| return Error(IdentLoc, "Dealing OFFSET operator as part of" |
| "a compound immediate expression is yet to be supported"); |
| if (int64_t Val = ParseIntelInlineAsmOperator(OpKind)) { |
| if (SM.onInteger(Val, ErrMsg)) |
| return Error(IdentLoc, ErrMsg); |
| } else |
| return true; |
| break; |
| } |
| // MS Dot Operator expression |
| if (Identifier.count('.') && PrevTK == AsmToken::RBrac) { |
| if (ParseIntelDotOperator(SM, End)) |
| return true; |
| break; |
| } |
| // MS InlineAsm identifier |
| // Call parseIdentifier() to combine @ with the identifier behind it. |
| if (TK == AsmToken::At && Parser.parseIdentifier(Identifier)) |
| return Error(IdentLoc, "expected identifier"); |
| if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, false, End)) |
| return true; |
| else if (SM.onIdentifierExpr(Val, Identifier, Info, true, ErrMsg)) |
| return Error(IdentLoc, ErrMsg); |
| break; |
| } |
| case AsmToken::Integer: { |
| // Look for 'b' or 'f' following an Integer as a directional label |
| SMLoc Loc = getTok().getLoc(); |
| int64_t IntVal = getTok().getIntVal(); |
| End = consumeToken(); |
| UpdateLocLex = false; |
| if (getLexer().getKind() == AsmToken::Identifier) { |
| StringRef IDVal = getTok().getString(); |
| if (IDVal == "f" || IDVal == "b") { |
| MCSymbol *Sym = |
| getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b"); |
| MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; |
| const MCExpr *Val = |
| MCSymbolRefExpr::create(Sym, Variant, getContext()); |
| if (IDVal == "b" && Sym->isUndefined()) |
| return Error(Loc, "invalid reference to undefined symbol"); |
| StringRef Identifier = Sym->getName(); |
| InlineAsmIdentifierInfo Info; |
| if (SM.onIdentifierExpr(Val, Identifier, Info, |
| isParsingInlineAsm(), ErrMsg)) |
| return Error(Loc, ErrMsg); |
| End = consumeToken(); |
| } else { |
| if (SM.onInteger(IntVal, ErrMsg)) |
| return Error(Loc, ErrMsg); |
| } |
| } else { |
| if (SM.onInteger(IntVal, ErrMsg)) |
| return Error(Loc, ErrMsg); |
| } |
| break; |
| } |
| case AsmToken::Plus: |
| if (SM.onPlus(ErrMsg)) |
| return Error(getTok().getLoc(), ErrMsg); |
| break; |
| case AsmToken::Minus: |
| if (SM.onMinus(ErrMsg)) |
| return Error(getTok().getLoc(), ErrMsg); |
| break; |
| case AsmToken::Tilde: SM.onNot(); break; |
| case AsmToken::Star: SM.onStar(); break; |
| case AsmToken::Slash: SM.onDivide(); break; |
| case AsmToken::Percent: SM.onMod(); break; |
| case AsmToken::Pipe: SM.onOr(); break; |
| case AsmToken::Caret: SM.onXor(); break; |
| case AsmToken::Amp: SM.onAnd(); break; |
| case AsmToken::LessLess: |
| SM.onLShift(); break; |
| case AsmToken::GreaterGreater: |
| SM.onRShift(); break; |
| case AsmToken::LBrac: |
| if (SM.onLBrac()) |
| return Error(Tok.getLoc(), "unexpected bracket encountered"); |
| break; |
| case AsmToken::RBrac: |
| if (SM.onRBrac()) |
| return Error(Tok.getLoc(), "unexpected bracket encountered"); |
| break; |
| case AsmToken::LParen: SM.onLParen(); break; |
| case AsmToken::RParen: SM.onRParen(); break; |
| } |
| if (SM.hadError()) |
| return Error(Tok.getLoc(), "unknown token in expression"); |
| |
| if (!Done && UpdateLocLex) |
| End = consumeToken(); |
| |
| PrevTK = TK; |
| } |
| return false; |
| } |
| |
| void X86AsmParser::RewriteIntelExpression(IntelExprStateMachine &SM, |
| SMLoc Start, SMLoc End) { |
| SMLoc Loc = Start; |
| unsigned ExprLen = End.getPointer() - Start.getPointer(); |
| // Skip everything before a symbol displacement (if we have one) |
| if (SM.getSym()) { |
| StringRef SymName = SM.getSymName(); |
| if (unsigned Len = SymName.data() - Start.getPointer()) |
| InstInfo->AsmRewrites->emplace_back(AOK_Skip, Start, Len); |
| Loc = SMLoc::getFromPointer(SymName.data() + SymName.size()); |
| ExprLen = End.getPointer() - (SymName.data() + SymName.size()); |
| // If we have only a symbol than there's no need for complex rewrite, |
| // simply skip everything after it |
| if (!(SM.getBaseReg() || SM.getIndexReg() || SM.getImm())) { |
| if (ExprLen) |
| InstInfo->AsmRewrites->emplace_back(AOK_Skip, Loc, ExprLen); |
| return; |
| } |
| } |
| // Build an Intel Expression rewrite |
| StringRef BaseRegStr; |
| StringRef IndexRegStr; |
| if (SM.getBaseReg()) |
| BaseRegStr = X86IntelInstPrinter::getRegisterName(SM.getBaseReg()); |
| if (SM.getIndexReg()) |
| IndexRegStr = X86IntelInstPrinter::getRegisterName(SM.getIndexReg()); |
| // Emit it |
| IntelExpr Expr(BaseRegStr, IndexRegStr, SM.getScale(), SM.getImm(), SM.isMemExpr()); |
| InstInfo->AsmRewrites->emplace_back(Loc, ExprLen, Expr); |
| } |
| |
| // Inline assembly may use variable names with namespace alias qualifiers. |
| bool X86AsmParser::ParseIntelInlineAsmIdentifier(const MCExpr *&Val, |
| StringRef &Identifier, |
| InlineAsmIdentifierInfo &Info, |
| bool IsUnevaluatedOperand, |
| SMLoc &End) { |
| MCAsmParser &Parser = getParser(); |
| assert(isParsingInlineAsm() && "Expected to be parsing inline assembly."); |
| Val = nullptr; |
| |
| StringRef LineBuf(Identifier.data()); |
| SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand); |
| |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc Loc = Tok.getLoc(); |
| |
| // Advance the token stream until the end of the current token is |
| // after the end of what the frontend claimed. |
| const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size(); |
| do { |
| End = Tok.getEndLoc(); |
| getLexer().Lex(); |
| } while (End.getPointer() < EndPtr); |
| Identifier = LineBuf; |
| |
| // The frontend should end parsing on an assembler token boundary, unless it |
| // failed parsing. |
| assert((End.getPointer() == EndPtr || |
| Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) && |
| "frontend claimed part of a token?"); |
| |
| // If the identifier lookup was unsuccessful, assume that we are dealing with |
| // a label. |
| if (Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) { |
| StringRef InternalName = |
| SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(), |
| Loc, false); |
| assert(InternalName.size() && "We should have an internal name here."); |
| // Push a rewrite for replacing the identifier name with the internal name. |
| InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(), |
| InternalName); |
| } else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal)) |
| return false; |
| // Create the symbol reference. |
| MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier); |
| MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; |
| Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext()); |
| return false; |
| } |
| |
| //ParseRoundingModeOp - Parse AVX-512 rounding mode operand |
| std::unique_ptr<X86Operand> |
| X86AsmParser::ParseRoundingModeOp(SMLoc Start) { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| // Eat "{" and mark the current place. |
| const SMLoc consumedToken = consumeToken(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return ErrorOperand(Tok.getLoc(), "Expected an identifier after {"); |
| if (Tok.getIdentifier().startswith("r")){ |
| int rndMode = StringSwitch<int>(Tok.getIdentifier()) |
| .Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT) |
| .Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF) |
| .Case("ru", X86::STATIC_ROUNDING::TO_POS_INF) |
| .Case("rz", X86::STATIC_ROUNDING::TO_ZERO) |
| .Default(-1); |
| if (-1 == rndMode) |
| return ErrorOperand(Tok.getLoc(), "Invalid rounding mode."); |
| Parser.Lex(); // Eat "r*" of r*-sae |
| if (!getLexer().is(AsmToken::Minus)) |
| return ErrorOperand(Tok.getLoc(), "Expected - at this point"); |
| Parser.Lex(); // Eat "-" |
| Parser.Lex(); // Eat the sae |
| if (!getLexer().is(AsmToken::RCurly)) |
| return ErrorOperand(Tok.getLoc(), "Expected } at this point"); |
| SMLoc End = Tok.getEndLoc(); |
| Parser.Lex(); // Eat "}" |
| const MCExpr *RndModeOp = |
| MCConstantExpr::create(rndMode, Parser.getContext()); |
| return X86Operand::CreateImm(RndModeOp, Start, End); |
| } |
| if(Tok.getIdentifier().equals("sae")){ |
| Parser.Lex(); // Eat the sae |
| if (!getLexer().is(AsmToken::RCurly)) |
| return ErrorOperand(Tok.getLoc(), "Expected } at this point"); |
| Parser.Lex(); // Eat "}" |
| return X86Operand::CreateToken("{sae}", consumedToken); |
| } |
| return ErrorOperand(Tok.getLoc(), "unknown token in expression"); |
| } |
| |
| /// Parse the '.' operator. |
| bool X86AsmParser::ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End) { |
| const AsmToken &Tok = getTok(); |
| unsigned Offset; |
| |
| // Drop the optional '.'. |
| StringRef DotDispStr = Tok.getString(); |
| if (DotDispStr.startswith(".")) |
| DotDispStr = DotDispStr.drop_front(1); |
| |
| // .Imm gets lexed as a real. |
| if (Tok.is(AsmToken::Real)) { |
| APInt DotDisp; |
| DotDispStr.getAsInteger(10, DotDisp); |
| Offset = DotDisp.getZExtValue(); |
| } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) { |
| std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.'); |
| if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second, |
| Offset)) |
| return Error(Tok.getLoc(), "Unable to lookup field reference!"); |
| } else |
| return Error(Tok.getLoc(), "Unexpected token type!"); |
| |
| // Eat the DotExpression and update End |
| End = SMLoc::getFromPointer(DotDispStr.data()); |
| const char *DotExprEndLoc = DotDispStr.data() + DotDispStr.size(); |
| while (Tok.getLoc().getPointer() < DotExprEndLoc) |
| Lex(); |
| SM.addImm(Offset); |
| return false; |
| } |
| |
| /// Parse the 'offset' operator. This operator is used to specify the |
| /// location rather then the content of a variable. |
| std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc OffsetOfLoc = Tok.getLoc(); |
| Parser.Lex(); // Eat offset. |
| |
| const MCExpr *Val; |
| InlineAsmIdentifierInfo Info; |
| SMLoc Start = Tok.getLoc(), End; |
| StringRef Identifier = Tok.getString(); |
| if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, |
| /*Unevaluated=*/false, End)) |
| return nullptr; |
| |
| void *Decl = nullptr; |
| // FIXME: MS evaluates "offset <Constant>" to the underlying integral |
| if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal)) |
| return ErrorOperand(Start, "offset operator cannot yet handle constants"); |
| else if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) |
| Decl = Info.Var.Decl; |
| // Don't emit the offset operator. |
| InstInfo->AsmRewrites->emplace_back(AOK_Skip, OffsetOfLoc, 7); |
| |
| // The offset operator will have an 'r' constraint, thus we need to create |
| // register operand to ensure proper matching. Just pick a GPR based on |
| // the size of a pointer. |
| bool Parse32 = is32BitMode() || Code16GCC; |
| unsigned RegNo = is64BitMode() ? X86::RBX : (Parse32 ? X86::EBX : X86::BX); |
| |
| return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true, |
| OffsetOfLoc, Identifier, Decl); |
| } |
| |
| // Query a candidate string for being an Intel assembly operator |
| // Report back its kind, or IOK_INVALID if does not evaluated as a known one |
| unsigned X86AsmParser::IdentifyIntelInlineAsmOperator(StringRef Name) { |
| return StringSwitch<unsigned>(Name) |
| .Cases("TYPE","type",IOK_TYPE) |
| .Cases("SIZE","size",IOK_SIZE) |
| .Cases("LENGTH","length",IOK_LENGTH) |
| .Cases("OFFSET","offset",IOK_OFFSET) |
| .Default(IOK_INVALID); |
| } |
| |
| /// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator |
| /// returns the number of elements in an array. It returns the value 1 for |
| /// non-array variables. The SIZE operator returns the size of a C or C++ |
| /// variable. A variable's size is the product of its LENGTH and TYPE. The |
| /// TYPE operator returns the size of a C or C++ type or variable. If the |
| /// variable is an array, TYPE returns the size of a single element. |
| unsigned X86AsmParser::ParseIntelInlineAsmOperator(unsigned OpKind) { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| Parser.Lex(); // Eat operator. |
| |
| const MCExpr *Val = nullptr; |
| InlineAsmIdentifierInfo Info; |
| SMLoc Start = Tok.getLoc(), End; |
| StringRef Identifier = Tok.getString(); |
| if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, |
| /*Unevaluated=*/true, End)) |
| return 0; |
| |
| if (!Info.isKind(InlineAsmIdentifierInfo::IK_Var)) { |
| Error(Start, "unable to lookup expression"); |
| return 0; |
| } |
| |
| unsigned CVal = 0; |
| switch(OpKind) { |
| default: llvm_unreachable("Unexpected operand kind!"); |
| case IOK_LENGTH: CVal = Info.Var.Length; break; |
| case IOK_SIZE: CVal = Info.Var.Size; break; |
| case IOK_TYPE: CVal = Info.Var.Type; break; |
| } |
| |
| return CVal; |
| } |
| |
| bool X86AsmParser::ParseIntelMemoryOperandSize(unsigned &Size) { |
| Size = StringSwitch<unsigned>(getTok().getString()) |
| .Cases("BYTE", "byte", 8) |
| .Cases("WORD", "word", 16) |
| .Cases("DWORD", "dword", 32) |
| .Cases("FLOAT", "float", 32) |
| .Cases("LONG", "long", 32) |
| .Cases("FWORD", "fword", 48) |
| .Cases("DOUBLE", "double", 64) |
| .Cases("QWORD", "qword", 64) |
| .Cases("MMWORD","mmword", 64) |
| .Cases("XWORD", "xword", 80) |
| .Cases("TBYTE", "tbyte", 80) |
| .Cases("XMMWORD", "xmmword", 128) |
| .Cases("YMMWORD", "ymmword", 256) |
| .Cases("ZMMWORD", "zmmword", 512) |
| .Default(0); |
| if (Size) { |
| const AsmToken &Tok = Lex(); // Eat operand size (e.g., byte, word). |
| if (!(Tok.getString().equals("PTR") || Tok.getString().equals("ptr"))) |
| return Error(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!"); |
| Lex(); // Eat ptr. |
| } |
| return false; |
| } |
| |
| std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc Start, End; |
| |
| // FIXME: Offset operator |
| // Should be handled as part of immediate expression, as other operators |
| // Currently, only supported as a stand-alone operand |
| if (isParsingInlineAsm()) |
| if (IdentifyIntelInlineAsmOperator(Tok.getString()) == IOK_OFFSET) |
| return ParseIntelOffsetOfOperator(); |
| |
| // Parse optional Size directive. |
| unsigned Size; |
| if (ParseIntelMemoryOperandSize(Size)) |
| return nullptr; |
| bool PtrInOperand = bool(Size); |
| |
| Start = Tok.getLoc(); |
| |
| // Rounding mode operand. |
| if (getLexer().is(AsmToken::LCurly)) |
| return ParseRoundingModeOp(Start); |
| |
| // Register operand. |
| unsigned RegNo = 0; |
| if (Tok.is(AsmToken::Identifier) && !ParseRegister(RegNo, Start, End)) { |
| if (RegNo == X86::RIP) |
| return ErrorOperand(Start, "rip can only be used as a base register"); |
| // A Register followed by ':' is considered a segment override |
| if (Tok.isNot(AsmToken::Colon)) |
| return !PtrInOperand ? X86Operand::CreateReg(RegNo, Start, End) : |
| ErrorOperand(Start, "expected memory operand after 'ptr', " |
| "found register operand instead"); |
| // An alleged segment override. check if we have a valid segment register |
| if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo)) |
| return ErrorOperand(Start, "invalid segment register"); |
| // Eat ':' and update Start location |
| Start = Lex().getLoc(); |
| } |
| |
| // Immediates and Memory |
| IntelExprStateMachine SM; |
| if (ParseIntelExpression(SM, End)) |
| return nullptr; |
| |
| if (isParsingInlineAsm()) |
| RewriteIntelExpression(SM, Start, Tok.getLoc()); |
| |
| int64_t Imm = SM.getImm(); |
| const MCExpr *Disp = SM.getSym(); |
| const MCExpr *ImmDisp = MCConstantExpr::create(Imm, getContext()); |
| if (Disp && Imm) |
| Disp = MCBinaryExpr::createAdd(Disp, ImmDisp, getContext()); |
| if (!Disp) |
| Disp = ImmDisp; |
| |
| // RegNo != 0 specifies a valid segment register, |
| // and we are parsing a segment override |
| if (!SM.isMemExpr() && !RegNo) |
| return X86Operand::CreateImm(Disp, Start, End); |
| |
| StringRef ErrMsg; |
| unsigned BaseReg = SM.getBaseReg(); |
| unsigned IndexReg = SM.getIndexReg(); |
| unsigned Scale = SM.getScale(); |
| |
| if (Scale == 0 && BaseReg != X86::ESP && BaseReg != X86::RSP && |
| (IndexReg == X86::ESP || IndexReg == X86::RSP)) |
| std::swap(BaseReg, IndexReg); |
| |
| // If BaseReg is a vector register and IndexReg is not, swap them unless |
| // Scale was specified in which case it would be an error. |
| if (Scale == 0 && |
| !(X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) || |
| X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg)) && |
| (X86MCRegisterClasses[X86::VR128XRegClassID].contains(BaseReg) || |
| X86MCRegisterClasses[X86::VR256XRegClassID].contains(BaseReg) || |
| X86MCRegisterClasses[X86::VR512RegClassID].contains(BaseReg))) |
| std::swap(BaseReg, IndexReg); |
| |
| if (Scale != 0 && |
| X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) |
| return ErrorOperand(Start, "16-bit addresses cannot have a scale"); |
| |
| // If there was no explicit scale specified, change it to 1. |
| if (Scale == 0) |
| Scale = 1; |
| |
| // If this is a 16-bit addressing mode with the base and index in the wrong |
| // order, swap them so CheckBaseRegAndIndexRegAndScale doesn't fail. It is |
| // shared with att syntax where order matters. |
| if ((BaseReg == X86::SI || BaseReg == X86::DI) && |
| (IndexReg == X86::BX || IndexReg == X86::BP)) |
| std::swap(BaseReg, IndexReg); |
| |
| if ((BaseReg || IndexReg) && |
| CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(), |
| ErrMsg)) |
| return ErrorOperand(Start, ErrMsg); |
| if (isParsingInlineAsm()) |
| return CreateMemForInlineAsm(RegNo, Disp, BaseReg, IndexReg, |
| Scale, Start, End, Size, SM.getSymName(), |
| SM.getIdentifierInfo()); |
| if (!(BaseReg || IndexReg || RegNo)) |
| return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size); |
| return X86Operand::CreateMem(getPointerWidth(), RegNo, Disp, |
| BaseReg, IndexReg, Scale, Start, End, Size); |
| } |
| |
| std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() { |
| MCAsmParser &Parser = getParser(); |
| switch (getLexer().getKind()) { |
| case AsmToken::Dollar: { |
| // $42 or $ID -> immediate. |
| SMLoc Start = Parser.getTok().getLoc(), End; |
| Parser.Lex(); |
| const MCExpr *Val; |
| // This is an immediate, so we should not parse a register. Do a precheck |
| // for '%' to supercede intra-register parse errors. |
| SMLoc L = Parser.getTok().getLoc(); |
| if (check(getLexer().is(AsmToken::Percent), L, |
| "expected immediate expression") || |
| getParser().parseExpression(Val, End) || |
| check(isa<X86MCExpr>(Val), L, "expected immediate expression")) |
| return nullptr; |
| return X86Operand::CreateImm(Val, Start, End); |
| } |
| case AsmToken::LCurly: { |
| SMLoc Start = Parser.getTok().getLoc(); |
| return ParseRoundingModeOp(Start); |
| } |
| default: { |
| // This a memory operand or a register. We have some parsing complications |
| // as a '(' may be part of an immediate expression or the addressing mode |
| // block. This is complicated by the fact that an assembler-level variable |
| // may refer either to a register or an immediate expression. |
| |
| SMLoc Loc = Parser.getTok().getLoc(), EndLoc; |
| const MCExpr *Expr = nullptr; |
| unsigned Reg = 0; |
| if (getLexer().isNot(AsmToken::LParen)) { |
| // No '(' so this is either a displacement expression or a register. |
| if (Parser.parseExpression(Expr, EndLoc)) |
| return nullptr; |
| if (auto *RE = dyn_cast<X86MCExpr>(Expr)) { |
| // Segment Register. Reset Expr and copy value to register. |
| Expr = nullptr; |
| Reg = RE->getRegNo(); |
| |
| // Sanity check register. |
| if (Reg == X86::EIZ || Reg == X86::RIZ) |
| return ErrorOperand( |
| Loc, "%eiz and %riz can only be used as index registers", |
| SMRange(Loc, EndLoc)); |
| if (Reg == X86::RIP) |
| return ErrorOperand(Loc, "%rip can only be used as a base register", |
| SMRange(Loc, EndLoc)); |
| // Return register that are not segment prefixes immediately. |
| if (!Parser.parseOptionalToken(AsmToken::Colon)) |
| return X86Operand::CreateReg(Reg, Loc, EndLoc); |
| if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(Reg)) |
| return ErrorOperand(Loc, "invalid segment register"); |
| } |
| } |
| // This is a Memory operand. |
| return ParseMemOperand(Reg, Expr, Loc, EndLoc); |
| } |
| } |
| } |
| |
| // X86::COND_INVALID if not a recognized condition code or alternate mnemonic, |
| // otherwise the EFLAGS Condition Code enumerator. |
| X86::CondCode X86AsmParser::ParseConditionCode(StringRef CC) { |
| return StringSwitch<X86::CondCode>(CC) |
| .Case("o", X86::COND_O) // Overflow |
| .Case("no", X86::COND_NO) // No Overflow |
| .Cases("b", "nae", X86::COND_B) // Below/Neither Above nor Equal |
| .Cases("ae", "nb", X86::COND_AE) // Above or Equal/Not Below |
| .Cases("e", "z", X86::COND_E) // Equal/Zero |
| .Cases("ne", "nz", X86::COND_NE) // Not Equal/Not Zero |
| .Cases("be", "na", X86::COND_BE) // Below or Equal/Not Above |
| .Cases("a", "nbe", X86::COND_A) // Above/Neither Below nor Equal |
| .Case("s", X86::COND_S) // Sign |
| .Case("ns", X86::COND_NS) // No Sign |
| .Cases("p", "pe", X86::COND_P) // Parity/Parity Even |
| .Cases("np", "po", X86::COND_NP) // No Parity/Parity Odd |
| .Cases("l", "nge", X86::COND_L) // Less/Neither Greater nor Equal |
| .Cases("ge", "nl", X86::COND_GE) // Greater or Equal/Not Less |
| .Cases("le", "ng", X86::COND_LE) // Less or Equal/Not Greater |
| .Cases("g", "nle", X86::COND_G) // Greater/Neither Less nor Equal |
| .Default(X86::COND_INVALID); |
| } |
| |
| // true on failure, false otherwise |
| // If no {z} mark was found - Parser doesn't advance |
| bool X86AsmParser::ParseZ(std::unique_ptr<X86Operand> &Z, |
| const SMLoc &StartLoc) { |
| MCAsmParser &Parser = getParser(); |
| // Assuming we are just pass the '{' mark, quering the next token |
| // Searched for {z}, but none was found. Return false, as no parsing error was |
| // encountered |
| if (!(getLexer().is(AsmToken::Identifier) && |
| (getLexer().getTok().getIdentifier() == "z"))) |
| return false; |
| Parser.Lex(); // Eat z |
| // Query and eat the '}' mark |
| if (!getLexer().is(AsmToken::RCurly)) |
| return Error(getLexer().getLoc(), "Expected } at this point"); |
| Parser.Lex(); // Eat '}' |
| // Assign Z with the {z} mark opernad |
| Z = X86Operand::CreateToken("{z}", StartLoc); |
| return false; |
| } |
| |
| // true on failure, false otherwise |
| bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands, |
| const MCParsedAsmOperand &Op) { |
| MCAsmParser &Parser = getParser(); |
| if (getLexer().is(AsmToken::LCurly)) { |
| // Eat "{" and mark the current place. |
| const SMLoc consumedToken = consumeToken(); |
| // Distinguish {1to<NUM>} from {%k<NUM>}. |
| if(getLexer().is(AsmToken::Integer)) { |
| // Parse memory broadcasting ({1to<NUM>}). |
| if (getLexer().getTok().getIntVal() != 1) |
| return TokError("Expected 1to<NUM> at this point"); |
| Parser.Lex(); // Eat "1" of 1to8 |
| if (!getLexer().is(AsmToken::Identifier) || |
| !getLexer().getTok().getIdentifier().startswith("to")) |
| return TokError("Expected 1to<NUM> at this point"); |
| // Recognize only reasonable suffixes. |
| const char *BroadcastPrimitive = |
| StringSwitch<const char*>(getLexer().getTok().getIdentifier()) |
| .Case("to2", "{1to2}") |
| .Case("to4", "{1to4}") |
| .Case("to8", "{1to8}") |
| .Case("to16", "{1to16}") |
| .Default(nullptr); |
| if (!BroadcastPrimitive) |
| return TokError("Invalid memory broadcast primitive."); |
| Parser.Lex(); // Eat "toN" of 1toN |
| if (!getLexer().is(AsmToken::RCurly)) |
| return TokError("Expected } at this point"); |
| Parser.Lex(); // Eat "}" |
| Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive, |
| consumedToken)); |
| // No AVX512 specific primitives can pass |
| // after memory broadcasting, so return. |
| return false; |
| } else { |
| // Parse either {k}{z}, {z}{k}, {k} or {z} |
| // last one have no meaning, but GCC accepts it |
| // Currently, we're just pass a '{' mark |
| std::unique_ptr<X86Operand> Z; |
| if (ParseZ(Z, consumedToken)) |
| return true; |
| // Reaching here means that parsing of the allegadly '{z}' mark yielded |
| // no errors. |
| // Query for the need of further parsing for a {%k<NUM>} mark |
| if (!Z || getLexer().is(AsmToken::LCurly)) { |
| SMLoc StartLoc = Z ? consumeToken() : consumedToken; |
| // Parse an op-mask register mark ({%k<NUM>}), which is now to be |
| // expected |
| unsigned RegNo; |
| SMLoc RegLoc; |
| if (!ParseRegister(RegNo, RegLoc, StartLoc) && |
| X86MCRegisterClasses[X86::VK1RegClassID].contains(RegNo)) { |
| if (RegNo == X86::K0) |
| return Error(RegLoc, "Register k0 can't be used as write mask"); |
| if (!getLexer().is(AsmToken::RCurly)) |
| return Error(getLexer().getLoc(), "Expected } at this point"); |
| Operands.push_back(X86Operand::CreateToken("{", StartLoc)); |
| Operands.push_back( |
| X86Operand::CreateReg(RegNo, StartLoc, StartLoc)); |
| Operands.push_back(X86Operand::CreateToken("}", consumeToken())); |
| } else |
| return Error(getLexer().getLoc(), |
| "Expected an op-mask register at this point"); |
| // {%k<NUM>} mark is found, inquire for {z} |
| if (getLexer().is(AsmToken::LCurly) && !Z) { |
| // Have we've found a parsing error, or found no (expected) {z} mark |
| // - report an error |
| if (ParseZ(Z, consumeToken()) || !Z) |
| return Error(getLexer().getLoc(), |
| "Expected a {z} mark at this point"); |
| |
| } |
| // '{z}' on its own is meaningless, hence should be ignored. |
| // on the contrary - have it been accompanied by a K register, |
| // allow it. |
| if (Z) |
| Operands.push_back(std::move(Z)); |
| } |
| } |
| } |
| return false; |
| } |
| |
| /// ParseMemOperand: 'seg : disp(basereg, indexreg, scale)'. The '%ds:' prefix |
| /// has already been parsed if present. disp may be provided as well. |
| std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg, |
| const MCExpr *&Disp, |
| const SMLoc &StartLoc, |
| SMLoc &EndLoc) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc Loc; |
| // Based on the initial passed values, we may be in any of these cases, we are |
| // in one of these cases (with current position (*)): |
| |
| // 1. seg : * disp (base-index-scale-expr) |
| // 2. seg : *(disp) (base-index-scale-expr) |
| // 3. seg : *(base-index-scale-expr) |
| // 4. disp *(base-index-scale-expr) |
| // 5. *(disp) (base-index-scale-expr) |
| // 6. *(base-index-scale-expr) |
| // 7. disp * |
| // 8. *(disp) |
| |
| // If we do not have an displacement yet, check if we're in cases 4 or 6 by |
| // checking if the first object after the parenthesis is a register (or an |
| // identifier referring to a register) and parse the displacement or default |
| // to 0 as appropriate. |
| auto isAtMemOperand = [this]() { |
| if (this->getLexer().isNot(AsmToken::LParen)) |
| return false; |
| AsmToken Buf[2]; |
| StringRef Id; |
| auto TokCount = this->getLexer().peekTokens(Buf, true); |
| if (TokCount == 0) |
| return false; |
| switch (Buf[0].getKind()) { |
| case AsmToken::Percent: |
| case AsmToken::Comma: |
| return true; |
| // These lower cases are doing a peekIdentifier. |
| case AsmToken::At: |
| case AsmToken::Dollar: |
| if ((TokCount > 1) && |
| (Buf[1].is(AsmToken::Identifier) || Buf[1].is(AsmToken::String)) && |
| (Buf[0].getLoc().getPointer() + 1 == Buf[1].getLoc().getPointer())) |
| Id = StringRef(Buf[0].getLoc().getPointer(), |
| Buf[1].getIdentifier().size() + 1); |
| break; |
| case AsmToken::Identifier: |
| case AsmToken::String: |
| Id = Buf[0].getIdentifier(); |
| break; |
| default: |
| return false; |
| } |
| // We have an ID. Check if it is bound to a register. |
| if (!Id.empty()) { |
| MCSymbol *Sym = this->getContext().getOrCreateSymbol(Id); |
| if (Sym->isVariable()) { |
| auto V = Sym->getVariableValue(/*SetUsed*/ false); |
| return isa<X86MCExpr>(V); |
| } |
| } |
| return false; |
| }; |
| |
| if (!Disp) { |
| // Parse immediate if we're not at a mem operand yet. |
| if (!isAtMemOperand()) { |
| if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(Disp, EndLoc)) |
| return nullptr; |
| assert(!isa<X86MCExpr>(Disp) && "Expected non-register here."); |
| } else { |
| // Disp is implicitly zero if we haven't parsed it yet. |
| Disp = MCConstantExpr::create(0, Parser.getContext()); |
| } |
| } |
| |
| // We are now either at the end of the operand or at the '(' at the start of a |
| // base-index-scale-expr. |
| |
| if (!parseOptionalToken(AsmToken::LParen)) { |
| if (SegReg == 0) |
| return X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc); |
| return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1, |
| StartLoc, EndLoc); |
| } |
| |
| // If we reached here, then eat the '(' and Process |
| // the rest of the memory operand. |
| unsigned BaseReg = 0, IndexReg = 0, Scale = 1; |
| SMLoc BaseLoc = getLexer().getLoc(); |
| const MCExpr *E; |
| StringRef ErrMsg; |
| |
| // Parse BaseReg if one is provided. |
| if (getLexer().isNot(AsmToken::Comma) && getLexer().isNot(AsmToken::RParen)) { |
| if (Parser.parseExpression(E, EndLoc) || |
| check(!isa<X86MCExpr>(E), BaseLoc, "expected register here")) |
| return nullptr; |
| |
| // Sanity check register. |
| BaseReg = cast<X86MCExpr>(E)->getRegNo(); |
| if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) |
| return ErrorOperand(BaseLoc, |
| "eiz and riz can only be used as index registers", |
| SMRange(BaseLoc, EndLoc)); |
| } |
| |
| if (parseOptionalToken(AsmToken::Comma)) { |
| // Following the comma we should have either an index register, or a scale |
| // value. We don't support the later form, but we want to parse it |
| // correctly. |
| // |
| // Even though it would be completely consistent to support syntax like |
| // "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this. |
| if (getLexer().isNot(AsmToken::RParen)) { |
| if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(E, EndLoc)) |
| return nullptr; |
| |
| if (!isa<X86MCExpr>(E)) { |
| // We've parsed an unexpected Scale Value instead of an index |
| // register. Interpret it as an absolute. |
| int64_t ScaleVal; |
| if (!E->evaluateAsAbsolute(ScaleVal, getStreamer().getAssemblerPtr())) |
| return ErrorOperand(Loc, "expected absolute expression"); |
| if (ScaleVal != 1) |
| Warning(Loc, "scale factor without index register is ignored"); |
| Scale = 1; |
| } else { // IndexReg Found. |
| IndexReg = cast<X86MCExpr>(E)->getRegNo(); |
| |
| if (BaseReg == X86::RIP) |
| return ErrorOperand( |
| Loc, "%rip as base register can not have an index register"); |
| if (IndexReg == X86::RIP) |
| return ErrorOperand(Loc, "%rip is not allowed as an index register"); |
| |
| if (parseOptionalToken(AsmToken::Comma)) { |
| // Parse the scale amount: |
| // ::= ',' [scale-expression] |
| |
| // A scale amount without an index is ignored. |
| if (getLexer().isNot(AsmToken::RParen)) { |
| int64_t ScaleVal; |
| if (Parser.parseTokenLoc(Loc) || |
| Parser.parseAbsoluteExpression(ScaleVal)) |
| return ErrorOperand(Loc, "expected scale expression"); |
| Scale = (unsigned)ScaleVal; |
| // Validate the scale amount. |
| if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) && |
| Scale != 1) |
| return ErrorOperand(Loc, |
| "scale factor in 16-bit address must be 1"); |
| if (checkScale(Scale, ErrMsg)) |
| return ErrorOperand(Loc, ErrMsg); |
| } |
| } |
| } |
| } |
| } |
| |
| // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. |
| if (parseToken(AsmToken::RParen, "unexpected token in memory operand")) |
| return nullptr; |
| |
| // This is to support otherwise illegal operand (%dx) found in various |
| // unofficial manuals examples (e.g. "out[s]?[bwl]? %al, (%dx)") and must now |
| // be supported. Mark such DX variants separately fix only in special cases. |
| if (BaseReg == X86::DX && IndexReg == 0 && Scale == 1 && SegReg == 0 && |
| isa<MCConstantExpr>(Disp) && cast<MCConstantExpr>(Disp)->getValue() == 0) |
| return X86Operand::CreateDXReg(BaseLoc, BaseLoc); |
| |
| if (CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(), |
| ErrMsg)) |
| return ErrorOperand(BaseLoc, ErrMsg); |
| |
| if (SegReg || BaseReg || IndexReg) |
| return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg, |
| IndexReg, Scale, StartLoc, EndLoc); |
| return X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc); |
| } |
| |
| // Parse either a standard primary expression or a register. |
| bool X86AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) { |
| MCAsmParser &Parser = getParser(); |
| // See if this is a register first. |
| if (getTok().is(AsmToken::Percent) || |
| (isParsingIntelSyntax() && getTok().is(AsmToken::Identifier) && |
| MatchRegisterName(Parser.getTok().getString()))) { |
| SMLoc StartLoc = Parser.getTok().getLoc(); |
| unsigned RegNo; |
| if (ParseRegister(RegNo, StartLoc, EndLoc)) |
| return true; |
| Res = X86MCExpr::create(RegNo, Parser.getContext()); |
| return false; |
| } |
| return Parser.parsePrimaryExpr(Res, EndLoc); |
| } |
| |
| bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, |
| SMLoc NameLoc, OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| InstInfo = &Info; |
| |
| // Reset the forced VEX encoding. |
| ForcedVEXEncoding = VEXEncoding_Default; |
| |
| // Parse pseudo prefixes. |
| while (1) { |
| if (Name == "{") { |
| if (getLexer().isNot(AsmToken::Identifier)) |
| return Error(Parser.getTok().getLoc(), "Unexpected token after '{'"); |
| std::string Prefix = Parser.getTok().getString().lower(); |
| Parser.Lex(); // Eat identifier. |
| if (getLexer().isNot(AsmToken::RCurly)) |
| return Error(Parser.getTok().getLoc(), "Expected '}'"); |
| Parser.Lex(); // Eat curly. |
| |
| if (Prefix == "vex2") |
| ForcedVEXEncoding = VEXEncoding_VEX2; |
| else if (Prefix == "vex3") |
| ForcedVEXEncoding = VEXEncoding_VEX3; |
| else if (Prefix == "evex") |
| ForcedVEXEncoding = VEXEncoding_EVEX; |
| else |
| return Error(NameLoc, "unknown prefix"); |
| |
| NameLoc = Parser.getTok().getLoc(); |
| if (getLexer().is(AsmToken::LCurly)) { |
| Parser.Lex(); |
| Name = "{"; |
| } else { |
| if (getLexer().isNot(AsmToken::Identifier)) |
| return Error(Parser.getTok().getLoc(), "Expected identifier"); |
| // FIXME: The mnemonic won't match correctly if its not in lower case. |
| Name = Parser.getTok().getString(); |
| Parser.Lex(); |
| } |
| continue; |
| } |
| |
| break; |
| } |
| |
| StringRef PatchedName = Name; |
| |
| // Hack to skip "short" following Jcc. |
| if (isParsingIntelSyntax() && |
| (PatchedName == "jmp" || PatchedName == "jc" || PatchedName == "jnc" || |
| PatchedName == "jcxz" || PatchedName == "jexcz" || |
| (PatchedName.startswith("j") && |
| ParseConditionCode(PatchedName.substr(1)) != X86::COND_INVALID))) { |
| StringRef NextTok = Parser.getTok().getString(); |
| if (NextTok == "short") { |
| SMLoc NameEndLoc = |
| NameLoc.getFromPointer(NameLoc.getPointer() + Name.size()); |
| // Eat the short keyword. |
| Parser.Lex(); |
| // MS and GAS ignore the short keyword; they both determine the jmp type |
| // based on the distance of the label. (NASM does emit different code with |
| // and without "short," though.) |
| InstInfo->AsmRewrites->emplace_back(AOK_Skip, NameEndLoc, |
| NextTok.size() + 1); |
| } |
| } |
| |
| // FIXME: Hack to recognize setneb as setne. |
| if (PatchedName.startswith("set") && PatchedName.endswith("b") && |
| PatchedName != "setb" && PatchedName != "setnb") |
| PatchedName = PatchedName.substr(0, Name.size()-1); |
| |
| unsigned ComparisonPredicate = ~0U; |
| |
| // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}. |
| if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) && |
| (PatchedName.endswith("ss") || PatchedName.endswith("sd") || |
| PatchedName.endswith("ps") || PatchedName.endswith("pd"))) { |
| bool IsVCMP = PatchedName[0] == 'v'; |
| unsigned CCIdx = IsVCMP ? 4 : 3; |
| unsigned CC = StringSwitch<unsigned>( |
| PatchedName.slice(CCIdx, PatchedName.size() - 2)) |
| .Case("eq", 0x00) |
| .Case("eq_oq", 0x00) |
| .Case("lt", 0x01) |
| .Case("lt_os", 0x01) |
| .Case("le", 0x02) |
| .Case("le_os", 0x02) |
| .Case("unord", 0x03) |
| .Case("unord_q", 0x03) |
| .Case("neq", 0x04) |
| .Case("neq_uq", 0x04) |
| .Case("nlt", 0x05) |
| .Case("nlt_us", 0x05) |
| .Case("nle", 0x06) |
| .Case("nle_us", 0x06) |
| .Case("ord", 0x07) |
| .Case("ord_q", 0x07) |
| /* AVX only from here */ |
| .Case("eq_uq", 0x08) |
| .Case("nge", 0x09) |
| .Case("nge_us", 0x09) |
| .Case("ngt", 0x0A) |
| .Case("ngt_us", 0x0A) |
| .Case("false", 0x0B) |
| .Case("false_oq", 0x0B) |
| .Case("neq_oq", 0x0C) |
| .Case("ge", 0x0D) |
| .Case("ge_os", 0x0D) |
| .Case("gt", 0x0E) |
| .Case("gt_os", 0x0E) |
| .Case("true", 0x0F) |
| .Case("true_uq", 0x0F) |
| .Case("eq_os", 0x10) |
| .Case("lt_oq", 0x11) |
| .Case("le_oq", 0x12) |
| .Case("unord_s", 0x13) |
| .Case("neq_us", 0x14) |
| .Case("nlt_uq", 0x15) |
| .Case("nle_uq", 0x16) |
| .Case("ord_s", 0x17) |
| .Case("eq_us", 0x18) |
| .Case("nge_uq", 0x19) |
| .Case("ngt_uq", 0x1A) |
| .Case("false_os", 0x1B) |
| .Case("neq_os", 0x1C) |
| .Case("ge_oq", 0x1D) |
| .Case("gt_oq", 0x1E) |
| .Case("true_us", 0x1F) |
| .Default(~0U); |
| if (CC != ~0U && (IsVCMP || CC < 8)) { |
| if (PatchedName.endswith("ss")) |
| PatchedName = IsVCMP ? "vcmpss" : "cmpss"; |
| else if (PatchedName.endswith("sd")) |
| PatchedName = IsVCMP ? "vcmpsd" : "cmpsd"; |
| else if (PatchedName.endswith("ps")) |
| PatchedName = IsVCMP ? "vcmpps" : "cmpps"; |
| else if (PatchedName.endswith("pd")) |
| PatchedName = IsVCMP ? "vcmppd" : "cmppd"; |
| else |
| llvm_unreachable("Unexpected suffix!"); |
| |
| ComparisonPredicate = CC; |
| } |
| } |
| |
| // FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}. |
| if (PatchedName.startswith("vpcmp") && |
| (PatchedName.back() == 'b' || PatchedName.back() == 'w' || |
| PatchedName.back() == 'd' || PatchedName.back() == 'q')) { |
| unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1; |
| unsigned CC = StringSwitch<unsigned>( |
| PatchedName.slice(5, PatchedName.size() - SuffixSize)) |
| .Case("eq", 0x0) // Only allowed on unsigned. Checked below. |
| .Case("lt", 0x1) |
| .Case("le", 0x2) |
| //.Case("false", 0x3) // Not a documented alias. |
| .Case("neq", 0x4) |
| .Case("nlt", 0x5) |
| .Case("nle", 0x6) |
| //.Case("true", 0x7) // Not a documented alias. |
| .Default(~0U); |
| if (CC != ~0U && (CC != 0 || SuffixSize == 2)) { |
| switch (PatchedName.back()) { |
| default: llvm_unreachable("Unexpected character!"); |
| case 'b': PatchedName = SuffixSize == 2 ? "vpcmpub" : "vpcmpb"; break; |
| case 'w': PatchedName = SuffixSize == 2 ? "vpcmpuw" : "vpcmpw"; break; |
| case 'd': PatchedName = SuffixSize == 2 ? "vpcmpud" : "vpcmpd"; break; |
| case 'q': PatchedName = SuffixSize == 2 ? "vpcmpuq" : "vpcmpq"; break; |
| } |
| // Set up the immediate to push into the operands later. |
| ComparisonPredicate = CC; |
| } |
| } |
| |
| // FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}. |
| if (PatchedName.startswith("vpcom") && |
| (PatchedName.back() == 'b' || PatchedName.back() == 'w' || |
| PatchedName.back() == 'd' || PatchedName.back() == 'q')) { |
| unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1; |
| unsigned CC = StringSwitch<unsigned>( |
| PatchedName.slice(5, PatchedName.size() - SuffixSize)) |
| .Case("lt", 0x0) |
| .Case("le", 0x1) |
| .Case("gt", 0x2) |
| .Case("ge", 0x3) |
| .Case("eq", 0x4) |
| .Case("neq", 0x5) |
| .Case("false", 0x6) |
| .Case("true", 0x7) |
| .Default(~0U); |
| if (CC != ~0U) { |
| switch (PatchedName.back()) { |
| default: llvm_unreachable("Unexpected character!"); |
| case 'b': PatchedName = SuffixSize == 2 ? "vpcomub" : "vpcomb"; break; |
| case 'w': PatchedName = SuffixSize == 2 ? "vpcomuw" : "vpcomw"; break; |
| case 'd': PatchedName = SuffixSize == 2 ? "vpcomud" : "vpcomd"; break; |
| case 'q': PatchedName = SuffixSize == 2 ? "vpcomuq" : "vpcomq"; break; |
| } |
| // Set up the immediate to push into the operands later. |
| ComparisonPredicate = CC; |
| } |
| } |
| |
| |
| // Determine whether this is an instruction prefix. |
| // FIXME: |
| // Enhance prefixes integrity robustness. for example, following forms |
| // are currently tolerated: |
| // repz repnz <insn> ; GAS errors for the use of two similar prefixes |
| // lock addq %rax, %rbx ; Destination operand must be of memory type |
| // xacquire <insn> ; xacquire must be accompanied by 'lock' |
| bool isPrefix = StringSwitch<bool>(Name) |
| .Cases("rex64", "data32", "data16", true) |
| .Cases("xacquire", "xrelease", true) |
| .Cases("acquire", "release", isParsingIntelSyntax()) |
| .Default(false); |
| |
| auto isLockRepeatNtPrefix = [](StringRef N) { |
| return StringSwitch<bool>(N) |
| .Cases("lock", "rep", "repe", "repz", "repne", "repnz", "notrack", true) |
| .Default(false); |
| }; |
| |
| bool CurlyAsEndOfStatement = false; |
| |
| unsigned Flags = X86::IP_NO_PREFIX; |
| while (isLockRepeatNtPrefix(Name.lower())) { |
| unsigned Prefix = |
| StringSwitch<unsigned>(Name) |
| .Cases("lock", "lock", X86::IP_HAS_LOCK) |
| .Cases("rep", "repe", "repz", X86::IP_HAS_REPEAT) |
| .Cases("repne", "repnz", X86::IP_HAS_REPEAT_NE) |
| .Cases("notrack", "notrack", X86::IP_HAS_NOTRACK) |
| .Default(X86::IP_NO_PREFIX); // Invalid prefix (impossible) |
| Flags |= Prefix; |
| if (getLexer().is(AsmToken::EndOfStatement)) { |
| // We don't have real instr with the given prefix |
| // let's use the prefix as the instr. |
| // TODO: there could be several prefixes one after another |
| Flags = X86::IP_NO_PREFIX; |
| break; |
| } |
| // FIXME: The mnemonic won't match correctly if its not in lower case. |
| Name = Parser.getTok().getString(); |
| Parser.Lex(); // eat the prefix |
| // Hack: we could have something like "rep # some comment" or |
| // "lock; cmpxchg16b $1" or "lock\0A\09incl" or "lock/incl" |
| while (Name.startswith(";") || Name.startswith("\n") || |
| Name.startswith("#") || Name.startswith("\t") || |
| Name.startswith("/")) { |
| // FIXME: The mnemonic won't match correctly if its not in lower case. |
| Name = Parser.getTok().getString(); |
| Parser.Lex(); // go to next prefix or instr |
| } |
| } |
| |
| if (Flags) |
| PatchedName = Name; |
| |
| // Hacks to handle 'data16' and 'data32' |
| if (PatchedName == "data16" && is16BitMode()) { |
| return Error(NameLoc, "redundant data16 prefix"); |
| } |
| if (PatchedName == "data32") { |
| if (is32BitMode()) |
| return Error(NameLoc, "redundant data32 prefix"); |
| if (is64BitMode()) |
| return Error(NameLoc, "'data32' is not supported in 64-bit mode"); |
| // Hack to 'data16' for the table lookup. |
| PatchedName = "data16"; |
| } |
| |
| Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc)); |
| |
| // Push the immediate if we extracted one from the mnemonic. |
| if (ComparisonPredicate != ~0U && !isParsingIntelSyntax()) { |
| const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate, |
| getParser().getContext()); |
| Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc)); |
| } |
| |
| // This does the actual operand parsing. Don't parse any more if we have a |
| // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we |
| // just want to parse the "lock" as the first instruction and the "incl" as |
| // the next one. |
| if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) { |
| // Parse '*' modifier. |
| if (getLexer().is(AsmToken::Star)) |
| Operands.push_back(X86Operand::CreateToken("*", consumeToken())); |
| |
| // Read the operands. |
| while(1) { |
| if (std::unique_ptr<X86Operand> Op = ParseOperand()) { |
| Operands.push_back(std::move(Op)); |
| if (HandleAVX512Operand(Operands, *Operands.back())) |
| return true; |
| } else { |
| return true; |
| } |
| // check for comma and eat it |
| if (getLexer().is(AsmToken::Comma)) |
| Parser.Lex(); |
| else |
| break; |
| } |
| |
| // In MS inline asm curly braces mark the beginning/end of a block, |
| // therefore they should be interepreted as end of statement |
| CurlyAsEndOfStatement = |
| isParsingIntelSyntax() && isParsingInlineAsm() && |
| (getLexer().is(AsmToken::LCurly) || getLexer().is(AsmToken::RCurly)); |
| if (getLexer().isNot(AsmToken::EndOfStatement) && !CurlyAsEndOfStatement) |
| return TokError("unexpected token in argument list"); |
| } |
| |
| // Push the immediate if we extracted one from the mnemonic. |
| if (ComparisonPredicate != ~0U && isParsingIntelSyntax()) { |
| const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate, |
| getParser().getContext()); |
| Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc)); |
| } |
| |
| // Consume the EndOfStatement or the prefix separator Slash |
| if (getLexer().is(AsmToken::EndOfStatement) || |
| (isPrefix && getLexer().is(AsmToken::Slash))) |
| Parser.Lex(); |
| else if (CurlyAsEndOfStatement) |
| // Add an actual EndOfStatement before the curly brace |
| Info.AsmRewrites->emplace_back(AOK_EndOfStatement, |
| getLexer().getTok().getLoc(), 0); |
| |
| // This is for gas compatibility and cannot be done in td. |
| // Adding "p" for some floating point with no argument. |
| // For example: fsub --> fsubp |
| bool IsFp = |
| Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr"; |
| if (IsFp && Operands.size() == 1) { |
| const char *Repl = StringSwitch<const char *>(Name) |
| .Case("fsub", "fsubp") |
| .Case("fdiv", "fdivp") |
| .Case("fsubr", "fsubrp") |
| .Case("fdivr", "fdivrp"); |
| static_cast<X86Operand &>(*Operands[0]).setTokenValue(Repl); |
| } |
| |
| if ((Name == "mov" || Name == "movw" || Name == "movl") && |
| (Operands.size() == 3)) { |
| X86Operand &Op1 = (X86Operand &)*Operands[1]; |
| X86Operand &Op2 = (X86Operand &)*Operands[2]; |
| SMLoc Loc = Op1.getEndLoc(); |
| // Moving a 32 or 16 bit value into a segment register has the same |
| // behavior. Modify such instructions to always take shorter form. |
| if (Op1.isReg() && Op2.isReg() && |
| X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains( |
| Op2.getReg()) && |
| (X86MCRegisterClasses[X86::GR16RegClassID].contains(Op1.getReg()) || |
| X86MCRegisterClasses[X86::GR32RegClassID].contains(Op1.getReg()))) { |
| // Change instruction name to match new instruction. |
| if (Name != "mov" && Name[3] == (is16BitMode() ? 'l' : 'w')) { |
| Name = is16BitMode() ? "movw" : "movl"; |
| Operands[0] = X86Operand::CreateToken(Name, NameLoc); |
| } |
| // Select the correct equivalent 16-/32-bit source register. |
| unsigned Reg = |
| getX86SubSuperRegisterOrZero(Op1.getReg(), is16BitMode() ? 16 : 32); |
| Operands[1] = X86Operand::CreateReg(Reg, Loc, Loc); |
| } |
| } |
| |
| // This is a terrible hack to handle "out[s]?[bwl]? %al, (%dx)" -> |
| // "outb %al, %dx". Out doesn't take a memory form, but this is a widely |
| // documented form in various unofficial manuals, so a lot of code uses it. |
| if ((Name == "outb" || Name == "outsb" || Name == "outw" || Name == "outsw" || |
| Name == "outl" || Name == "outsl" || Name == "out" || Name == "outs") && |
| Operands.size() == 3) { |
| X86Operand &Op = (X86Operand &)*Operands.back(); |
| if (Op.isDXReg()) |
| Operands.back() = X86Operand::CreateReg(X86::DX, Op.getStartLoc(), |
| Op.getEndLoc()); |
| } |
| // Same hack for "in[s]?[bwl]? (%dx), %al" -> "inb %dx, %al". |
| if ((Name == "inb" || Name == "insb" || Name == "inw" || Name == "insw" || |
| Name == "inl" || Name == "insl" || Name == "in" || Name == "ins") && |
| Operands.size() == 3) { |
| X86Operand &Op = (X86Operand &)*Operands[1]; |
| if (Op.isDXReg()) |
| Operands[1] = X86Operand::CreateReg(X86::DX, Op.getStartLoc(), |
| Op.getEndLoc()); |
| } |
| |
| SmallVector<std::unique_ptr<MCParsedAsmOperand>, 2> TmpOperands; |
| bool HadVerifyError = false; |
| |
| // Append default arguments to "ins[bwld]" |
| if (Name.startswith("ins") && |
| (Operands.size() == 1 || Operands.size() == 3) && |
| (Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd" || |
| Name == "ins")) { |
| |
| AddDefaultSrcDestOperands(TmpOperands, |
| X86Operand::CreateReg(X86::DX, NameLoc, NameLoc), |
| DefaultMemDIOperand(NameLoc)); |
| HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); |
| } |
| |
| // Append default arguments to "outs[bwld]" |
| if (Name.startswith("outs") && |
| (Operands.size() == 1 || Operands.size() == 3) && |
| (Name == "outsb" || Name == "outsw" || Name == "outsl" || |
| Name == "outsd" || Name == "outs")) { |
| AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc), |
| X86Operand::CreateReg(X86::DX, NameLoc, NameLoc)); |
| HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); |
| } |
| |
| // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate |
| // values of $SIREG according to the mode. It would be nice if this |
| // could be achieved with InstAlias in the tables. |
| if (Name.startswith("lods") && |
| (Operands.size() == 1 || Operands.size() == 2) && |
| (Name == "lods" || Name == "lodsb" || Name == "lodsw" || |
| Name == "lodsl" || Name == "lodsd" || Name == "lodsq")) { |
| TmpOperands.push_back(DefaultMemSIOperand(NameLoc)); |
| HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); |
| } |
| |
| // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate |
| // values of $DIREG according to the mode. It would be nice if this |
| // could be achieved with InstAlias in the tables. |
| if (Name.startswith("stos") && |
| (Operands.size() == 1 || Operands.size() == 2) && |
| (Name == "stos" || Name == "stosb" || Name == "stosw" || |
| Name == "stosl" || Name == "stosd" || Name == "stosq")) { |
| TmpOperands.push_back(DefaultMemDIOperand(NameLoc)); |
| HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); |
| } |
| |
| // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate |
| // values of $DIREG according to the mode. It would be nice if this |
| // could be achieved with InstAlias in the tables. |
| if (Name.startswith("scas") && |
| (Operands.size() == 1 || Operands.size() == 2) && |
| (Name == "scas" || Name == "scasb" || Name == "scasw" || |
| Name == "scasl" || Name == "scasd" || Name == "scasq")) { |
| TmpOperands.push_back(DefaultMemDIOperand(NameLoc)); |
| HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); |
| } |
| |
| // Add default SI and DI operands to "cmps[bwlq]". |
| if (Name.startswith("cmps") && |
| (Operands.size() == 1 || Operands.size() == 3) && |
| (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" || |
| Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) { |
| AddDefaultSrcDestOperands(TmpOperands, DefaultMemDIOperand(NameLoc), |
| DefaultMemSIOperand(NameLoc)); |
| HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); |
| } |
| |
| // Add default SI and DI operands to "movs[bwlq]". |
| if (((Name.startswith("movs") && |
| (Name == "movs" || Name == "movsb" || Name == "movsw" || |
| Name == "movsl" || Name == "movsd" || Name == "movsq")) || |
| (Name.startswith("smov") && |
| (Name == "smov" || Name == "smovb" || Name == "smovw" || |
| Name == "smovl" || Name == "smovd" || Name == "smovq"))) && |
| (Operands.size() == 1 || Operands.size() == 3)) { |
| if (Name == "movsd" && Operands.size() == 1 && !isParsingIntelSyntax()) |
| Operands.back() = X86Operand::CreateToken("movsl", NameLoc); |
| AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc), |
| DefaultMemDIOperand(NameLoc)); |
| HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands); |
| } |
| |
| // Check if we encountered an error for one the string insturctions |
| if (HadVerifyError) { |
| return HadVerifyError; |
| } |
| |
| // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to |
| // "shift <op>". |
| if ((Name.startswith("shr") || Name.startswith("sar") || |
| Name.startswith("shl") || Name.startswith("sal") || |
| Name.startswith("rcl") || Name.startswith("rcr") || |
| Name.startswith("rol") || Name.startswith("ror")) && |
| Operands.size() == 3) { |
| if (isParsingIntelSyntax()) { |
| // Intel syntax |
| X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]); |
| if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) && |
| cast<MCConstantExpr>(Op1.getImm())->getValue() == 1) |
| Operands.pop_back(); |
| } else { |
| X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]); |
| if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) && |
| cast<MCConstantExpr>(Op1.getImm())->getValue() == 1) |
| Operands.erase(Operands.begin() + 1); |
| } |
| } |
| |
| // Transforms "int $3" into "int3" as a size optimization. We can't write an |
| // instalias with an immediate operand yet. |
| if (Name == "int" && Operands.size() == 2) { |
| X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]); |
| if (Op1.isImm()) |
| if (auto *CE = dyn_cast<MCConstantExpr>(Op1.getImm())) |
| if (CE->getValue() == 3) { |
| Operands.erase(Operands.begin() + 1); |
| static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3"); |
| } |
| } |
| |
| // Transforms "xlat mem8" into "xlatb" |
| if ((Name == "xlat" || Name == "xlatb") && Operands.size() == 2) { |
| X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]); |
| if (Op1.isMem8()) { |
| Warning(Op1.getStartLoc(), "memory operand is only for determining the " |
| "size, (R|E)BX will be used for the location"); |
| Operands.pop_back(); |
| static_cast<X86Operand &>(*Operands[0]).setTokenValue("xlatb"); |
| } |
| } |
| |
| if (Flags) |
| Operands.push_back(X86Operand::CreatePrefix(Flags, NameLoc, NameLoc)); |
| return false; |
| } |
| |
| bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) { |
| const MCRegisterInfo *MRI = getContext().getRegisterInfo(); |
| |
| switch (Inst.getOpcode()) { |
| default: return false; |
| case X86::VMOVZPQILo2PQIrr: |
| case X86::VMOVAPDrr: |
| case X86::VMOVAPDYrr: |
| case X86::VMOVAPSrr: |
| case X86::VMOVAPSYrr: |
| case X86::VMOVDQArr: |
| case X86::VMOVDQAYrr: |
| case X86::VMOVDQUrr: |
| case X86::VMOVDQUYrr: |
| case X86::VMOVUPDrr: |
| case X86::VMOVUPDYrr: |
| case X86::VMOVUPSrr: |
| case X86::VMOVUPSYrr: { |
| // We can get a smaller encoding by using VEX.R instead of VEX.B if one of |
| // the registers is extended, but other isn't. |
| if (ForcedVEXEncoding == VEXEncoding_VEX3 || |
| MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 || |
| MRI->getEncodingValue(Inst.getOperand(1).getReg()) < 8) |
| return false; |
| |
| unsigned NewOpc; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("Invalid opcode"); |
| case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break; |
| case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break; |
| case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break; |
| case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break; |
| case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break; |
| case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break; |
| case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break; |
| case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break; |
| case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break; |
| case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break; |
| case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break; |
| case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break; |
| case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break; |
| } |
| Inst.setOpcode(NewOpc); |
| return true; |
| } |
| case X86::VMOVSDrr: |
| case X86::VMOVSSrr: { |
| // We can get a smaller encoding by using VEX.R instead of VEX.B if one of |
| // the registers is extended, but other isn't. |
| if (ForcedVEXEncoding == VEXEncoding_VEX3 || |
| MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 || |
| MRI->getEncodingValue(Inst.getOperand(2).getReg()) < 8) |
| return false; |
| |
| unsigned NewOpc; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("Invalid opcode"); |
| case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break; |
| case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break; |
| } |
| Inst.setOpcode(NewOpc); |
| return true; |
| } |
| } |
| } |
| |
| bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) { |
| const MCRegisterInfo *MRI = getContext().getRegisterInfo(); |
| |
| switch (Inst.getOpcode()) { |
| case X86::VGATHERDPDYrm: |
| case X86::VGATHERDPDrm: |
| case X86::VGATHERDPSYrm: |
| case X86::VGATHERDPSrm: |
| case X86::VGATHERQPDYrm: |
| case X86::VGATHERQPDrm: |
| case X86::VGATHERQPSYrm: |
| case X86::VGATHERQPSrm: |
| case X86::VPGATHERDDYrm: |
| case X86::VPGATHERDDrm: |
| case X86::VPGATHERDQYrm: |
| case X86::VPGATHERDQrm: |
| case X86::VPGATHERQDYrm: |
| case X86::VPGATHERQDrm: |
| case X86::VPGATHERQQYrm: |
| case X86::VPGATHERQQrm: { |
| unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg()); |
| unsigned Mask = MRI->getEncodingValue(Inst.getOperand(1).getReg()); |
| unsigned Index = |
| MRI->getEncodingValue(Inst.getOperand(3 + X86::AddrIndexReg).getReg()); |
| if (Dest == Mask || Dest == Index || Mask == Index) |
| return Warning(Ops[0]->getStartLoc(), "mask, index, and destination " |
| "registers should be distinct"); |
| break; |
| } |
| case X86::VGATHERDPDZ128rm: |
| case X86::VGATHERDPDZ256rm: |
| case X86::VGATHERDPDZrm: |
| case X86::VGATHERDPSZ128rm: |
| case X86::VGATHERDPSZ256rm: |
| case X86::VGATHERDPSZrm: |
| case X86::VGATHERQPDZ128rm: |
| case X86::VGATHERQPDZ256rm: |
| case X86::VGATHERQPDZrm: |
| case X86::VGATHERQPSZ128rm: |
| case X86::VGATHERQPSZ256rm: |
| case X86::VGATHERQPSZrm: |
| case X86::VPGATHERDDZ128rm: |
| case X86::VPGATHERDDZ256rm: |
| case X86::VPGATHERDDZrm: |
| case X86::VPGATHERDQZ128rm: |
| case X86::VPGATHERDQZ256rm: |
| case X86::VPGATHERDQZrm: |
| case X86::VPGATHERQDZ128rm: |
| case X86::VPGATHERQDZ256rm: |
| case X86::VPGATHERQDZrm: |
| case X86::VPGATHERQQZ128rm: |
| case X86::VPGATHERQQZ256rm: |
| case X86::VPGATHERQQZrm: { |
| unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg()); |
| unsigned Index = |
| MRI->getEncodingValue(Inst.getOperand(4 + X86::AddrIndexReg).getReg()); |
| if (Dest == Index) |
| return Warning(Ops[0]->getStartLoc(), "index and destination registers " |
| "should be distinct"); |
| break; |
| } |
| case X86::V4FMADDPSrm: |
| case X86::V4FMADDPSrmk: |
| case X86::V4FMADDPSrmkz: |
| case X86::V4FMADDSSrm: |
| case X86::V4FMADDSSrmk: |
| case X86::V4FMADDSSrmkz: |
| case X86::V4FNMADDPSrm: |
| case X86::V4FNMADDPSrmk: |
| case X86::V4FNMADDPSrmkz: |
| case X86::V4FNMADDSSrm: |
| case X86::V4FNMADDSSrmk: |
| case X86::V4FNMADDSSrmkz: |
| case X86::VP4DPWSSDSrm: |
| case X86::VP4DPWSSDSrmk: |
| case X86::VP4DPWSSDSrmkz: |
| case X86::VP4DPWSSDrm: |
| case X86::VP4DPWSSDrmk: |
| case X86::VP4DPWSSDrmkz: { |
| unsigned Src2 = Inst.getOperand(Inst.getNumOperands() - |
| X86::AddrNumOperands - 1).getReg(); |
| unsigned Src2Enc = MRI->getEncodingValue(Src2); |
| if (Src2Enc % 4 != 0) { |
| StringRef RegName = X86IntelInstPrinter::getRegisterName(Src2); |
| unsigned GroupStart = (Src2Enc / 4) * 4; |
| unsigned GroupEnd = GroupStart + 3; |
| return Warning(Ops[0]->getStartLoc(), |
| "source register '" + RegName + "' implicitly denotes '" + |
| RegName.take_front(3) + Twine(GroupStart) + "' to '" + |
| RegName.take_front(3) + Twine(GroupEnd) + |
| "' source group"); |
| } |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| static const char *getSubtargetFeatureName(uint64_t Val); |
| |
| void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands, |
| MCStreamer &Out) { |
| Out.EmitInstruction(Inst, getSTI()); |
| } |
| |
| bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
| OperandVector &Operands, |
| MCStreamer &Out, uint64_t &ErrorInfo, |
| bool MatchingInlineAsm) { |
| if (isParsingIntelSyntax()) |
| return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo, |
| MatchingInlineAsm); |
| return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo, |
| MatchingInlineAsm); |
| } |
| |
| void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, |
| OperandVector &Operands, MCStreamer &Out, |
| bool MatchingInlineAsm) { |
| // FIXME: This should be replaced with a real .td file alias mechanism. |
| // Also, MatchInstructionImpl should actually *do* the EmitInstruction |
| // call. |
| const char *Repl = StringSwitch<const char *>(Op.getToken()) |
| .Case("finit", "fninit") |
| .Case("fsave", "fnsave") |
| .Case("fstcw", "fnstcw") |
| .Case("fstcww", "fnstcw") |
| .Case("fstenv", "fnstenv") |
| .Case("fstsw", "fnstsw") |
| .Case("fstsww", "fnstsw") |
| .Case("fclex", "fnclex") |
| .Default(nullptr); |
| if (Repl) { |
| MCInst Inst; |
| Inst.setOpcode(X86::WAIT); |
| Inst.setLoc(IDLoc); |
| if (!MatchingInlineAsm) |
| EmitInstruction(Inst, Operands, Out); |
| Operands[0] = X86Operand::CreateToken(Repl, IDLoc); |
| } |
| } |
| |
| bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc, |
| const FeatureBitset &MissingFeatures, |
| bool MatchingInlineAsm) { |
| assert(MissingFeatures.any() && "Unknown missing feature!"); |
| SmallString<126> Msg; |
| raw_svector_ostream OS(Msg); |
| OS << "instruction requires:"; |
| for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) { |
| if (MissingFeatures[i]) |
| OS << ' ' << getSubtargetFeatureName(i); |
| } |
| return Error(IDLoc, OS.str(), SMRange(), MatchingInlineAsm); |
| } |
| |
| static unsigned getPrefixes(OperandVector &Operands) { |
| unsigned Result = 0; |
| X86Operand &Prefix = static_cast<X86Operand &>(*Operands.back()); |
| if (Prefix.isPrefix()) { |
| Result = Prefix.getPrefix(); |
| Operands.pop_back(); |
| } |
| return Result; |
| } |
| |
| unsigned X86AsmParser::checkTargetMatchPredicate(MCInst &Inst) { |
| unsigned Opc = Inst.getOpcode(); |
| const MCInstrDesc &MCID = MII.get(Opc); |
| |
| if (ForcedVEXEncoding == VEXEncoding_EVEX && |
| (MCID.TSFlags & X86II::EncodingMask) != X86II::EVEX) |
| return Match_Unsupported; |
| |
| if ((ForcedVEXEncoding == VEXEncoding_VEX2 || |
| ForcedVEXEncoding == VEXEncoding_VEX3) && |
| (MCID.TSFlags & X86II::EncodingMask) != X86II::VEX) |
| return Match_Unsupported; |
| |
| // These instructions match ambiguously with their VEX encoded counterparts |
| // and appear first in the matching table. Reject them unless we're forcing |
| // EVEX encoding. |
| // FIXME: We really need a way to break the ambiguity. |
| switch (Opc) { |
| case X86::VCVTSD2SIZrm_Int: |
| case X86::VCVTSD2SI64Zrm_Int: |
| case X86::VCVTSS2SIZrm_Int: |
| case X86::VCVTSS2SI64Zrm_Int: |
| case X86::VCVTTSD2SIZrm: case X86::VCVTTSD2SIZrm_Int: |
| case X86::VCVTTSD2SI64Zrm: case X86::VCVTTSD2SI64Zrm_Int: |
| case X86::VCVTTSS2SIZrm: case X86::VCVTTSS2SIZrm_Int: |
| case X86::VCVTTSS2SI64Zrm: case X86::VCVTTSS2SI64Zrm_Int: |
| if (ForcedVEXEncoding != VEXEncoding_EVEX) |
| return Match_Unsupported; |
| } |
| |
| return Match_Success; |
| } |
| |
| bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode, |
| OperandVector &Operands, |
| MCStreamer &Out, |
| uint64_t &ErrorInfo, |
| bool MatchingInlineAsm) { |
| assert(!Operands.empty() && "Unexpect empty operand list!"); |
| assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!"); |
| SMRange EmptyRange = None; |
| |
| // First, handle aliases that expand to multiple instructions. |
| MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands, |
| Out, MatchingInlineAsm); |
| X86Operand &Op = static_cast<X86Operand &>(*Operands[0]); |
| unsigned Prefixes = getPrefixes(Operands); |
| |
| MCInst Inst; |
| |
| // If VEX3 encoding is forced, we need to pass the USE_VEX3 flag to the |
| // encoder. |
| if (ForcedVEXEncoding == VEXEncoding_VEX3) |
| Prefixes |= X86::IP_USE_VEX3; |
| |
| if (Prefixes) |
| Inst.setFlags(Prefixes); |
| |
| // First, try a direct match. |
| FeatureBitset MissingFeatures; |
| unsigned OriginalError = MatchInstruction(Operands, Inst, ErrorInfo, |
| MissingFeatures, MatchingInlineAsm, |
| isParsingIntelSyntax()); |
| switch (OriginalError) { |
| default: llvm_unreachable("Unexpected match result!"); |
| case Match_Success: |
| if (!MatchingInlineAsm && validateInstruction(Inst, Operands)) |
| return true; |
| // Some instructions need post-processing to, for example, tweak which |
| // encoding is selected. Loop on it while changes happen so the |
| // individual transformations can chain off each other. |
| if (!MatchingInlineAsm) |
| while (processInstruction(Inst, Operands)) |
| ; |
| |
| Inst.setLoc(IDLoc); |
| if (!MatchingInlineAsm) |
| EmitInstruction(Inst, Operands, Out); |
| Opcode = Inst.getOpcode(); |
| return false; |
| case Match_MissingFeature: |
| return ErrorMissingFeature(IDLoc, MissingFeatures, MatchingInlineAsm); |
| case Match_InvalidOperand: |
| case Match_MnemonicFail: |
| case Match_Unsupported: |
| break; |
| } |
| if (Op.getToken().empty()) { |
| Error(IDLoc, "instruction must have size higher than 0", EmptyRange, |
| MatchingInlineAsm); |
| return true; |
| } |
| |
| // FIXME: Ideally, we would only attempt suffix matches for things which are |
| // valid prefixes, and we could just infer the right unambiguous |
| // type. However, that requires substantially more matcher support than the |
| // following hack. |
| |
| // Change the operand to point to a temporary token. |
| StringRef Base = Op.getToken(); |
| SmallString<16> Tmp; |
| Tmp += Base; |
| Tmp += ' '; |
| Op.setTokenValue(Tmp); |
| |
| // If this instruction starts with an 'f', then it is a floating point stack |
| // instruction. These come in up to three forms for 32-bit, 64-bit, and |
| // 80-bit floating point, which use the suffixes s,l,t respectively. |
| // |
| // Otherwise, we assume that this may be an integer instruction, which comes |
| // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively. |
| const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0"; |
| |
| // Check for the various suffix matches. |
| uint64_t ErrorInfoIgnore; |
| FeatureBitset ErrorInfoMissingFeatures; // Init suppresses compiler warnings. |
| unsigned Match[4]; |
| |
| for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) { |
| Tmp.back() = Suffixes[I]; |
| Match[I] = MatchInstruction(Operands, Inst, ErrorInfoIgnore, |
| MissingFeatures, MatchingInlineAsm, |
| isParsingIntelSyntax()); |
| // If this returned as a missing feature failure, remember that. |
| if (Match[I] == Match_MissingFeature) |
| ErrorInfoMissingFeatures = MissingFeatures; |
| } |
| |
| // Restore the old token. |
| Op.setTokenValue(Base); |
| |
| // If exactly one matched, then we treat that as a successful match (and the |
| // instruction will already have been filled in correctly, since the failing |
| // matches won't have modified it). |
| unsigned NumSuccessfulMatches = |
| std::count(std::begin(Match), std::end(Match), Match_Success); |
| if (NumSuccessfulMatches == 1) { |
| Inst.setLoc(IDLoc); |
| if (!MatchingInlineAsm) |
| EmitInstruction(Inst, Operands, Out); |
| Opcode = Inst.getOpcode(); |
| return false; |
| } |
| |
| // Otherwise, the match failed, try to produce a decent error message. |
| |
| // If we had multiple suffix matches, then identify this as an ambiguous |
| // match. |
| if (NumSuccessfulMatches > 1) { |
| char MatchChars[4]; |
| unsigned NumMatches = 0; |
| for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) |
| if (Match[I] == Match_Success) |
| MatchChars[NumMatches++] = Suffixes[I]; |
| |
| SmallString<126> Msg; |
| raw_svector_ostream OS(Msg); |
| OS << "ambiguous instructions require an explicit suffix (could be "; |
| for (unsigned i = 0; i != NumMatches; ++i) { |
| if (i != 0) |
| OS << ", "; |
| if (i + 1 == NumMatches) |
| OS << "or "; |
| OS << "'" << Base << MatchChars[i] << "'"; |
| } |
| OS << ")"; |
| Error(IDLoc, OS.str(), EmptyRange, MatchingInlineAsm); |
| return true; |
| } |
| |
| // Okay, we know that none of the variants matched successfully. |
| |
| // If all of the instructions reported an invalid mnemonic, then the original |
| // mnemonic was invalid. |
| if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) { |
| if (OriginalError == Match_MnemonicFail) |
| return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'", |
| Op.getLocRange(), MatchingInlineAsm); |
| |
| if (OriginalError == Match_Unsupported) |
| return Error(IDLoc, "unsupported instruction", EmptyRange, |
| MatchingInlineAsm); |
| |
| assert(OriginalError == Match_InvalidOperand && "Unexpected error"); |
| // Recover location info for the operand if we know which was the problem. |
| if (ErrorInfo != ~0ULL) { |
| if (ErrorInfo >= Operands.size()) |
| return Error(IDLoc, "too few operands for instruction", EmptyRange, |
| MatchingInlineAsm); |
| |
| X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo]; |
| if (Operand.getStartLoc().isValid()) { |
| SMRange OperandRange = Operand.getLocRange(); |
| return Error(Operand.getStartLoc(), "invalid operand for instruction", |
| OperandRange, MatchingInlineAsm); |
| } |
| } |
| |
| return Error(IDLoc, "invalid operand for instruction", EmptyRange, |
| MatchingInlineAsm); |
| } |
| |
| // If one instruction matched as unsupported, report this as unsupported. |
| if (std::count(std::begin(Match), std::end(Match), |
| Match_Unsupported) == 1) { |
| return Error(IDLoc, "unsupported instruction", EmptyRange, |
| MatchingInlineAsm); |
| } |
| |
| // If one instruction matched with a missing feature, report this as a |
| // missing feature. |
| if (std::count(std::begin(Match), std::end(Match), |
| Match_MissingFeature) == 1) { |
| ErrorInfo = Match_MissingFeature; |
| return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures, |
| MatchingInlineAsm); |
| } |
| |
| // If one instruction matched with an invalid operand, report this as an |
| // operand failure. |
| if (std::count(std::begin(Match), std::end(Match), |
| Match_InvalidOperand) == 1) { |
| return Error(IDLoc, "invalid operand for instruction", EmptyRange, |
| MatchingInlineAsm); |
| } |
| |
| // If all of these were an outright failure, report it in a useless way. |
| Error(IDLoc, "unknown use of instruction mnemonic without a size suffix", |
| EmptyRange, MatchingInlineAsm); |
| return true; |
| } |
| |
| bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode, |
| OperandVector &Operands, |
| MCStreamer &Out, |
| uint64_t &ErrorInfo, |
| bool MatchingInlineAsm) { |
| assert(!Operands.empty() && "Unexpect empty operand list!"); |
| assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!"); |
| StringRef Mnemonic = (static_cast<X86Operand &>(*Operands[0])).getToken(); |
| SMRange EmptyRange = None; |
| StringRef Base = (static_cast<X86Operand &>(*Operands[0])).getToken(); |
| unsigned Prefixes = getPrefixes(Operands); |
| |
| // First, handle aliases that expand to multiple instructions. |
| MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands, Out, MatchingInlineAsm); |
| X86Operand &Op = static_cast<X86Operand &>(*Operands[0]); |
| |
| MCInst Inst; |
| |
| // If VEX3 encoding is forced, we need to pass the USE_VEX3 flag to the |
| // encoder. |
| if (ForcedVEXEncoding == VEXEncoding_VEX3) |
| Prefixes |= X86::IP_USE_VEX3; |
| |
| if (Prefixes) |
| Inst.setFlags(Prefixes); |
| |
| // Find one unsized memory operand, if present. |
| X86Operand *UnsizedMemOp = nullptr; |
| for (const auto &Op : Operands) { |
| X86Operand *X86Op = static_cast<X86Operand *>(Op.get()); |
| if (X86Op->isMemUnsized()) { |
| UnsizedMemOp = X86Op; |
| // Have we found an unqualified memory operand, |
| // break. IA allows only one memory operand. |
| break; |
| } |
| } |
| |
| // Allow some instructions to have implicitly pointer-sized operands. This is |
| // compatible with gas. |
| if (UnsizedMemOp) { |
| static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"}; |
| for (const char *Instr : PtrSizedInstrs) { |
| if (Mnemonic == Instr) { |
| UnsizedMemOp->Mem.Size = getPointerWidth(); |
| break; |
| } |
| } |
| } |
| |
| SmallVector<unsigned, 8> Match; |
| FeatureBitset ErrorInfoMissingFeatures; |
| FeatureBitset MissingFeatures; |
| |
| // If unsized push has immediate operand we should default the default pointer |
| // size for the size. |
| if (Mnemonic == "push" && Operands.size() == 2) { |
| auto *X86Op = static_cast<X86Operand *>(Operands[1].get()); |
| if (X86Op->isImm()) { |
| // If it's not a constant fall through and let remainder take care of it. |
| const auto *CE = dyn_cast<MCConstantExpr>(X86Op->getImm()); |
| unsigned Size = getPointerWidth(); |
| if (CE && |
| (isIntN(Size, CE->getValue()) || isUIntN(Size, CE->getValue()))) { |
| SmallString<16> Tmp; |
| Tmp += Base; |
| Tmp += (is64BitMode()) |
| ? "q" |
| : (is32BitMode()) ? "l" : (is16BitMode()) ? "w" : " "; |
| Op.setTokenValue(Tmp); |
| // Do match in ATT mode to allow explicit suffix usage. |
| Match.push_back(MatchInstruction(Operands, Inst, ErrorInfo, |
| MissingFeatures, MatchingInlineAsm, |
| false /*isParsingIntelSyntax()*/)); |
| Op.setTokenValue(Base); |
| } |
| } |
| } |
| |
| // If an unsized memory operand is present, try to match with each memory |
| // operand size. In Intel assembly, the size is not part of the instruction |
| // mnemonic. |
| if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) { |
| static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512}; |
| for (unsigned Size : MopSizes) { |
| UnsizedMemOp->Mem.Size = Size; |
| uint64_t ErrorInfoIgnore; |
| unsigned LastOpcode = Inst.getOpcode(); |
| unsigned M = MatchInstruction(Operands, Inst, ErrorInfoIgnore, |
| MissingFeatures, MatchingInlineAsm, |
| isParsingIntelSyntax()); |
| if (Match.empty() || LastOpcode != Inst.getOpcode()) |
| Match.push_back(M); |
| |
| // If this returned as a missing feature failure, remember that. |
| if (Match.back() == Match_MissingFeature) |
| ErrorInfoMissingFeatures = MissingFeatures; |
| } |
| |
| // Restore the size of the unsized memory operand if we modified it. |
| UnsizedMemOp->Mem.Size = 0; |
| } |
| |
| // If we haven't matched anything yet, this is not a basic integer or FPU |
| // operation. There shouldn't be any ambiguity in our mnemonic table, so try |
| // matching with the unsized operand. |
| if (Match.empty()) { |
| Match.push_back(MatchInstruction( |
| Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm, |
| isParsingIntelSyntax())); |
| // If this returned as a missing feature failure, remember that. |
| if (Match.back() == Match_MissingFeature) |
| ErrorInfoMissingFeatures = MissingFeatures; |
| } |
| |
| // Restore the size of the unsized memory operand if we modified it. |
| if (UnsizedMemOp) |
| UnsizedMemOp->Mem.Size = 0; |
| |
| // If it's a bad mnemonic, all results will be the same. |
| if (Match.back() == Match_MnemonicFail) { |
| return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'", |
| Op.getLocRange(), MatchingInlineAsm); |
| } |
| |
| unsigned NumSuccessfulMatches = |
| std::count(std::begin(Match), std::end(Match), Match_Success); |
| |
| // If matching was ambiguous and we had size information from the frontend, |
| // try again with that. This handles cases like "movxz eax, m8/m16". |
| if (UnsizedMemOp && NumSuccessfulMatches > 1 && |
| UnsizedMemOp->getMemFrontendSize()) { |
| UnsizedMemOp->Mem.Size = UnsizedMemOp->getMemFrontendSize(); |
| unsigned M = MatchInstruction( |
| Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm, |
| isParsingIntelSyntax()); |
| if (M == Match_Success) |
| NumSuccessfulMatches = 1; |
| |
| // Add a rewrite that encodes the size information we used from the |
| // frontend. |
| InstInfo->AsmRewrites->emplace_back( |
| AOK_SizeDirective, UnsizedMemOp->getStartLoc(), |
| /*Len=*/0, UnsizedMemOp->getMemFrontendSize()); |
| } |
| |
| // If exactly one matched, then we treat that as a successful match (and the |
| // instruction will already have been filled in correctly, since the failing |
| // matches won't have modified it). |
| if (NumSuccessfulMatches == 1) { |
| if (!MatchingInlineAsm && validateInstruction(Inst, Operands)) |
| return true; |
| // Some instructions need post-processing to, for example, tweak which |
| // encoding is selected. Loop on it while changes happen so the individual |
| // transformations can chain off each other. |
| if (!MatchingInlineAsm) |
| while (processInstruction(Inst, Operands)) |
| ; |
| Inst.setLoc(IDLoc); |
| if (!MatchingInlineAsm) |
| EmitInstruction(Inst, Operands, Out); |
| Opcode = Inst.getOpcode(); |
| return false; |
| } else if (NumSuccessfulMatches > 1) { |
| assert(UnsizedMemOp && |
| "multiple matches only possible with unsized memory operands"); |
| return Error(UnsizedMemOp->getStartLoc(), |
| "ambiguous operand size for instruction '" + Mnemonic + "\'", |
| UnsizedMemOp->getLocRange()); |
| } |
| |
| // If one instruction matched as unsupported, report this as unsupported. |
| if (std::count(std::begin(Match), std::end(Match), |
| Match_Unsupported) == 1) { |
| return Error(IDLoc, "unsupported instruction", EmptyRange, |
| MatchingInlineAsm); |
| } |
| |
| // If one instruction matched with a missing feature, report this as a |
| // missing feature. |
| if (std::count(std::begin(Match), std::end(Match), |
| Match_MissingFeature) == 1) { |
| ErrorInfo = Match_MissingFeature; |
| return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures, |
| MatchingInlineAsm); |
| } |
| |
| // If one instruction matched with an invalid operand, report this as an |
| // operand failure. |
| if (std::count(std::begin(Match), std::end(Match), |
| Match_InvalidOperand) == 1) { |
| return Error(IDLoc, "invalid operand for instruction", EmptyRange, |
| MatchingInlineAsm); |
| } |
| |
| // If all of these were an outright failure, report it in a useless way. |
| return Error(IDLoc, "unknown instruction mnemonic", EmptyRange, |
| MatchingInlineAsm); |
| } |
| |
| bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) { |
| return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo); |
| } |
| |
| bool X86AsmParser::ParseDirective(AsmToken DirectiveID) { |
| MCAsmParser &Parser = getParser(); |
| StringRef IDVal = DirectiveID.getIdentifier(); |
| if (IDVal.startswith(".code")) |
| return ParseDirectiveCode(IDVal, DirectiveID.getLoc()); |
| else if (IDVal.startswith(".att_syntax")) { |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| if (Parser.getTok().getString() == "prefix") |
| Parser.Lex(); |
| else if (Parser.getTok().getString() == "noprefix") |
| return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not " |
| "supported: registers must have a " |
| "'%' prefix in .att_syntax"); |
| } |
| getParser().setAssemblerDialect(0); |
| return false; |
| } else if (IDVal.startswith(".intel_syntax")) { |
| getParser().setAssemblerDialect(1); |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| if (Parser.getTok().getString() == "noprefix") |
| Parser.Lex(); |
| else if (Parser.getTok().getString() == "prefix") |
| return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not " |
| "supported: registers must not have " |
| "a '%' prefix in .intel_syntax"); |
| } |
| return false; |
| } else if (IDVal == ".even") |
| return parseDirectiveEven(DirectiveID.getLoc()); |
| else if (IDVal == ".cv_fpo_proc") |
| return parseDirectiveFPOProc(DirectiveID.getLoc()); |
| else if (IDVal == ".cv_fpo_setframe") |
| return parseDirectiveFPOSetFrame(DirectiveID.getLoc()); |
| else if (IDVal == ".cv_fpo_pushreg") |
| return parseDirectiveFPOPushReg(DirectiveID.getLoc()); |
| else if (IDVal == ".cv_fpo_stackalloc") |
| return parseDirectiveFPOStackAlloc(DirectiveID.getLoc()); |
| else if (IDVal == ".cv_fpo_stackalign") |
| return parseDirectiveFPOStackAlign(DirectiveID.getLoc()); |
| else if (IDVal == ".cv_fpo_endprologue") |
| return parseDirectiveFPOEndPrologue(DirectiveID.getLoc()); |
| else if (IDVal == ".cv_fpo_endproc") |
| return parseDirectiveFPOEndProc(DirectiveID.getLoc()); |
| |
| return true; |
| } |
| |
| /// parseDirectiveEven |
| /// ::= .even |
| bool X86AsmParser::parseDirectiveEven(SMLoc L) { |
| if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) |
| return false; |
| |
| const MCSection *Section = getStreamer().getCurrentSectionOnly(); |
| if (!Section) { |
| getStreamer().InitSections(false); |
| Section = getStreamer().getCurrentSectionOnly(); |
| } |
| if (Section->UseCodeAlign()) |
| getStreamer().EmitCodeAlignment(2, 0); |
| else |
| getStreamer().EmitValueToAlignment(2, 0, 1, 0); |
| return false; |
| } |
| |
| /// ParseDirectiveCode |
| /// ::= .code16 | .code32 | .code64 |
| bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| Code16GCC = false; |
| if (IDVal == ".code16") { |
| Parser.Lex(); |
| if (!is16BitMode()) { |
| SwitchMode(X86::Mode16Bit); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); |
| } |
| } else if (IDVal == ".code16gcc") { |
| // .code16gcc parses as if in 32-bit mode, but emits code in 16-bit mode. |
| Parser.Lex(); |
| Code16GCC = true; |
| if (!is16BitMode()) { |
| SwitchMode(X86::Mode16Bit); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); |
| } |
| } else if (IDVal == ".code32") { |
| Parser.Lex(); |
| if (!is32BitMode()) { |
| SwitchMode(X86::Mode32Bit); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); |
| } |
| } else if (IDVal == ".code64") { |
| Parser.Lex(); |
| if (!is64BitMode()) { |
| SwitchMode(X86::Mode64Bit); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64); |
| } |
| } else { |
| Error(L, "unknown directive " + IDVal); |
| return false; |
| } |
| |
| return false; |
| } |
| |
| // .cv_fpo_proc foo |
| bool X86AsmParser::parseDirectiveFPOProc(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| StringRef ProcName; |
| int64_t ParamsSize; |
| if (Parser.parseIdentifier(ProcName)) |
| return Parser.TokError("expected symbol name"); |
| if (Parser.parseIntToken(ParamsSize, "expected parameter byte count")) |
| return true; |
| if (!isUIntN(32, ParamsSize)) |
| return Parser.TokError("parameters size out of range"); |
| if (Parser.parseEOL("unexpected tokens")) |
| return addErrorSuffix(" in '.cv_fpo_proc' directive"); |
| MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName); |
| return getTargetStreamer().emitFPOProc(ProcSym, ParamsSize, L); |
| } |
| |
| // .cv_fpo_setframe ebp |
| bool X86AsmParser::parseDirectiveFPOSetFrame(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| unsigned Reg; |
| SMLoc DummyLoc; |
| if (ParseRegister(Reg, DummyLoc, DummyLoc) || |
| Parser.parseEOL("unexpected tokens")) |
| return addErrorSuffix(" in '.cv_fpo_setframe' directive"); |
| return getTargetStreamer().emitFPOSetFrame(Reg, L); |
| } |
| |
| // .cv_fpo_pushreg ebx |
| bool X86AsmParser::parseDirectiveFPOPushReg(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| unsigned Reg; |
| SMLoc DummyLoc; |
| if (ParseRegister(Reg, DummyLoc, DummyLoc) || |
| Parser.parseEOL("unexpected tokens")) |
| return addErrorSuffix(" in '.cv_fpo_pushreg' directive"); |
| return getTargetStreamer().emitFPOPushReg(Reg, L); |
| } |
| |
| // .cv_fpo_stackalloc 20 |
| bool X86AsmParser::parseDirectiveFPOStackAlloc(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| int64_t Offset; |
| if (Parser.parseIntToken(Offset, "expected offset") || |
| Parser.parseEOL("unexpected tokens")) |
| return addErrorSuffix(" in '.cv_fpo_stackalloc' directive"); |
| return getTargetStreamer().emitFPOStackAlloc(Offset, L); |
| } |
| |
| // .cv_fpo_stackalign 8 |
| bool X86AsmParser::parseDirectiveFPOStackAlign(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| int64_t Offset; |
| if (Parser.parseIntToken(Offset, "expected offset") || |
| Parser.parseEOL("unexpected tokens")) |
| return addErrorSuffix(" in '.cv_fpo_stackalign' directive"); |
| return getTargetStreamer().emitFPOStackAlign(Offset, L); |
| } |
| |
| // .cv_fpo_endprologue |
| bool X86AsmParser::parseDirectiveFPOEndPrologue(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| if (Parser.parseEOL("unexpected tokens")) |
| return addErrorSuffix(" in '.cv_fpo_endprologue' directive"); |
| return getTargetStreamer().emitFPOEndPrologue(L); |
| } |
| |
| // .cv_fpo_endproc |
| bool X86AsmParser::parseDirectiveFPOEndProc(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| if (Parser.parseEOL("unexpected tokens")) |
| return addErrorSuffix(" in '.cv_fpo_endproc' directive"); |
| return getTargetStreamer().emitFPOEndProc(L); |
| } |
| |
| // Force static initialization. |
| extern "C" void LLVMInitializeX86AsmParser() { |
| RegisterMCAsmParser<X86AsmParser> X(getTheX86_32Target()); |
| RegisterMCAsmParser<X86AsmParser> Y(getTheX86_64Target()); |
| } |
| |
| #define GET_REGISTER_MATCHER |
| #define GET_MATCHER_IMPLEMENTATION |
| #define GET_SUBTARGET_FEATURE_NAME |
| #include "X86GenAsmMatcher.inc" |