| //===- AddressSanitizer.cpp - memory error detector -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of AddressSanitizer, an address sanity checker. |
| // Details of the algorithm: |
| // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/BinaryFormat/MachO.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Comdat.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DIBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iomanip> |
| #include <limits> |
| #include <memory> |
| #include <sstream> |
| #include <string> |
| #include <tuple> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "asan" |
| |
| static const uint64_t kDefaultShadowScale = 3; |
| static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; |
| static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; |
| static const uint64_t kDynamicShadowSentinel = |
| std::numeric_limits<uint64_t>::max(); |
| static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. |
| static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; |
| static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; |
| static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; |
| static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; |
| static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; |
| static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; |
| static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; |
| static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; |
| static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; |
| static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; |
| static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; |
| static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; |
| static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; |
| static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; |
| static const uint64_t kEmscriptenShadowOffset = 0; |
| |
| static const uint64_t kMyriadShadowScale = 5; |
| static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; |
| static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; |
| static const uint64_t kMyriadTagShift = 29; |
| static const uint64_t kMyriadDDRTag = 4; |
| static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; |
| |
| // The shadow memory space is dynamically allocated. |
| static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; |
| |
| static const size_t kMinStackMallocSize = 1 << 6; // 64B |
| static const size_t kMaxStackMallocSize = 1 << 16; // 64K |
| static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; |
| static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; |
| |
| static const char *const kAsanModuleCtorName = "asan.module_ctor"; |
| static const char *const kAsanModuleDtorName = "asan.module_dtor"; |
| static const uint64_t kAsanCtorAndDtorPriority = 1; |
| static const char *const kAsanReportErrorTemplate = "__asan_report_"; |
| static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; |
| static const char *const kAsanUnregisterGlobalsName = |
| "__asan_unregister_globals"; |
| static const char *const kAsanRegisterImageGlobalsName = |
| "__asan_register_image_globals"; |
| static const char *const kAsanUnregisterImageGlobalsName = |
| "__asan_unregister_image_globals"; |
| static const char *const kAsanRegisterElfGlobalsName = |
| "__asan_register_elf_globals"; |
| static const char *const kAsanUnregisterElfGlobalsName = |
| "__asan_unregister_elf_globals"; |
| static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; |
| static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; |
| static const char *const kAsanInitName = "__asan_init"; |
| static const char *const kAsanVersionCheckNamePrefix = |
| "__asan_version_mismatch_check_v"; |
| static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; |
| static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; |
| static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; |
| static const int kMaxAsanStackMallocSizeClass = 10; |
| static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; |
| static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; |
| static const char *const kAsanGenPrefix = "___asan_gen_"; |
| static const char *const kODRGenPrefix = "__odr_asan_gen_"; |
| static const char *const kSanCovGenPrefix = "__sancov_gen_"; |
| static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_"; |
| static const char *const kAsanPoisonStackMemoryName = |
| "__asan_poison_stack_memory"; |
| static const char *const kAsanUnpoisonStackMemoryName = |
| "__asan_unpoison_stack_memory"; |
| |
| // ASan version script has __asan_* wildcard. Triple underscore prevents a |
| // linker (gold) warning about attempting to export a local symbol. |
| static const char *const kAsanGlobalsRegisteredFlagName = |
| "___asan_globals_registered"; |
| |
| static const char *const kAsanOptionDetectUseAfterReturn = |
| "__asan_option_detect_stack_use_after_return"; |
| |
| static const char *const kAsanShadowMemoryDynamicAddress = |
| "__asan_shadow_memory_dynamic_address"; |
| |
| static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; |
| static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; |
| |
| // Accesses sizes are powers of two: 1, 2, 4, 8, 16. |
| static const size_t kNumberOfAccessSizes = 5; |
| |
| static const unsigned kAllocaRzSize = 32; |
| |
| // Command-line flags. |
| |
| static cl::opt<bool> ClEnableKasan( |
| "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClRecover( |
| "asan-recover", |
| cl::desc("Enable recovery mode (continue-after-error)."), |
| cl::Hidden, cl::init(false)); |
| |
| // This flag may need to be replaced with -f[no-]asan-reads. |
| static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", |
| cl::desc("instrument read instructions"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClInstrumentWrites( |
| "asan-instrument-writes", cl::desc("instrument write instructions"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClInstrumentAtomics( |
| "asan-instrument-atomics", |
| cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClAlwaysSlowPath( |
| "asan-always-slow-path", |
| cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> ClForceDynamicShadow( |
| "asan-force-dynamic-shadow", |
| cl::desc("Load shadow address into a local variable for each function"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> |
| ClWithIfunc("asan-with-ifunc", |
| cl::desc("Access dynamic shadow through an ifunc global on " |
| "platforms that support this"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClWithIfuncSuppressRemat( |
| "asan-with-ifunc-suppress-remat", |
| cl::desc("Suppress rematerialization of dynamic shadow address by passing " |
| "it through inline asm in prologue."), |
| cl::Hidden, cl::init(true)); |
| |
| // This flag limits the number of instructions to be instrumented |
| // in any given BB. Normally, this should be set to unlimited (INT_MAX), |
| // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary |
| // set it to 10000. |
| static cl::opt<int> ClMaxInsnsToInstrumentPerBB( |
| "asan-max-ins-per-bb", cl::init(10000), |
| cl::desc("maximal number of instructions to instrument in any given BB"), |
| cl::Hidden); |
| |
| // This flag may need to be replaced with -f[no]asan-stack. |
| static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), |
| cl::Hidden, cl::init(true)); |
| static cl::opt<uint32_t> ClMaxInlinePoisoningSize( |
| "asan-max-inline-poisoning-size", |
| cl::desc( |
| "Inline shadow poisoning for blocks up to the given size in bytes."), |
| cl::Hidden, cl::init(64)); |
| |
| static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", |
| cl::desc("Check stack-use-after-return"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", |
| cl::desc("Create redzones for byval " |
| "arguments (extra copy " |
| "required)"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", |
| cl::desc("Check stack-use-after-scope"), |
| cl::Hidden, cl::init(false)); |
| |
| // This flag may need to be replaced with -f[no]asan-globals. |
| static cl::opt<bool> ClGlobals("asan-globals", |
| cl::desc("Handle global objects"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClInitializers("asan-initialization-order", |
| cl::desc("Handle C++ initializer order"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClInvalidPointerPairs( |
| "asan-detect-invalid-pointer-pair", |
| cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> ClInvalidPointerCmp( |
| "asan-detect-invalid-pointer-cmp", |
| cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> ClInvalidPointerSub( |
| "asan-detect-invalid-pointer-sub", |
| cl::desc("Instrument - operations with pointer operands"), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<unsigned> ClRealignStack( |
| "asan-realign-stack", |
| cl::desc("Realign stack to the value of this flag (power of two)"), |
| cl::Hidden, cl::init(32)); |
| |
| static cl::opt<int> ClInstrumentationWithCallsThreshold( |
| "asan-instrumentation-with-call-threshold", |
| cl::desc( |
| "If the function being instrumented contains more than " |
| "this number of memory accesses, use callbacks instead of " |
| "inline checks (-1 means never use callbacks)."), |
| cl::Hidden, cl::init(7000)); |
| |
| static cl::opt<std::string> ClMemoryAccessCallbackPrefix( |
| "asan-memory-access-callback-prefix", |
| cl::desc("Prefix for memory access callbacks"), cl::Hidden, |
| cl::init("__asan_")); |
| |
| static cl::opt<bool> |
| ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", |
| cl::desc("instrument dynamic allocas"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClSkipPromotableAllocas( |
| "asan-skip-promotable-allocas", |
| cl::desc("Do not instrument promotable allocas"), cl::Hidden, |
| cl::init(true)); |
| |
| // These flags allow to change the shadow mapping. |
| // The shadow mapping looks like |
| // Shadow = (Mem >> scale) + offset |
| |
| static cl::opt<int> ClMappingScale("asan-mapping-scale", |
| cl::desc("scale of asan shadow mapping"), |
| cl::Hidden, cl::init(0)); |
| |
| static cl::opt<uint64_t> |
| ClMappingOffset("asan-mapping-offset", |
| cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), |
| cl::Hidden, cl::init(0)); |
| |
| // Optimization flags. Not user visible, used mostly for testing |
| // and benchmarking the tool. |
| |
| static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClOptSameTemp( |
| "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClOptGlobals("asan-opt-globals", |
| cl::desc("Don't instrument scalar globals"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClOptStack( |
| "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClDynamicAllocaStack( |
| "asan-stack-dynamic-alloca", |
| cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<uint32_t> ClForceExperiment( |
| "asan-force-experiment", |
| cl::desc("Force optimization experiment (for testing)"), cl::Hidden, |
| cl::init(0)); |
| |
| static cl::opt<bool> |
| ClUsePrivateAlias("asan-use-private-alias", |
| cl::desc("Use private aliases for global variables"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> |
| ClUseOdrIndicator("asan-use-odr-indicator", |
| cl::desc("Use odr indicators to improve ODR reporting"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> |
| ClUseGlobalsGC("asan-globals-live-support", |
| cl::desc("Use linker features to support dead " |
| "code stripping of globals"), |
| cl::Hidden, cl::init(true)); |
| |
| // This is on by default even though there is a bug in gold: |
| // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 |
| static cl::opt<bool> |
| ClWithComdat("asan-with-comdat", |
| cl::desc("Place ASan constructors in comdat sections"), |
| cl::Hidden, cl::init(true)); |
| |
| // Debug flags. |
| |
| static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, |
| cl::init(0)); |
| |
| static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), |
| cl::Hidden, cl::init(0)); |
| |
| static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, |
| cl::desc("Debug func")); |
| |
| static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), |
| cl::Hidden, cl::init(-1)); |
| |
| static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), |
| cl::Hidden, cl::init(-1)); |
| |
| STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); |
| STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); |
| STATISTIC(NumOptimizedAccessesToGlobalVar, |
| "Number of optimized accesses to global vars"); |
| STATISTIC(NumOptimizedAccessesToStackVar, |
| "Number of optimized accesses to stack vars"); |
| |
| namespace { |
| |
| /// This struct defines the shadow mapping using the rule: |
| /// shadow = (mem >> Scale) ADD-or-OR Offset. |
| /// If InGlobal is true, then |
| /// extern char __asan_shadow[]; |
| /// shadow = (mem >> Scale) + &__asan_shadow |
| struct ShadowMapping { |
| int Scale; |
| uint64_t Offset; |
| bool OrShadowOffset; |
| bool InGlobal; |
| }; |
| |
| } // end anonymous namespace |
| |
| static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, |
| bool IsKasan) { |
| bool IsAndroid = TargetTriple.isAndroid(); |
| bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); |
| bool IsFreeBSD = TargetTriple.isOSFreeBSD(); |
| bool IsNetBSD = TargetTriple.isOSNetBSD(); |
| bool IsPS4CPU = TargetTriple.isPS4CPU(); |
| bool IsLinux = TargetTriple.isOSLinux(); |
| bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || |
| TargetTriple.getArch() == Triple::ppc64le; |
| bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; |
| bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; |
| bool IsMIPS32 = TargetTriple.isMIPS32(); |
| bool IsMIPS64 = TargetTriple.isMIPS64(); |
| bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); |
| bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; |
| bool IsWindows = TargetTriple.isOSWindows(); |
| bool IsFuchsia = TargetTriple.isOSFuchsia(); |
| bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; |
| bool IsEmscripten = TargetTriple.isOSEmscripten(); |
| |
| ShadowMapping Mapping; |
| |
| Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; |
| if (ClMappingScale.getNumOccurrences() > 0) { |
| Mapping.Scale = ClMappingScale; |
| } |
| |
| if (LongSize == 32) { |
| if (IsAndroid) |
| Mapping.Offset = kDynamicShadowSentinel; |
| else if (IsMIPS32) |
| Mapping.Offset = kMIPS32_ShadowOffset32; |
| else if (IsFreeBSD) |
| Mapping.Offset = kFreeBSD_ShadowOffset32; |
| else if (IsNetBSD) |
| Mapping.Offset = kNetBSD_ShadowOffset32; |
| else if (IsIOS) |
| Mapping.Offset = kDynamicShadowSentinel; |
| else if (IsWindows) |
| Mapping.Offset = kWindowsShadowOffset32; |
| else if (IsEmscripten) |
| Mapping.Offset = kEmscriptenShadowOffset; |
| else if (IsMyriad) { |
| uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - |
| (kMyriadMemorySize32 >> Mapping.Scale)); |
| Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); |
| } |
| else |
| Mapping.Offset = kDefaultShadowOffset32; |
| } else { // LongSize == 64 |
| // Fuchsia is always PIE, which means that the beginning of the address |
| // space is always available. |
| if (IsFuchsia) |
| Mapping.Offset = 0; |
| else if (IsPPC64) |
| Mapping.Offset = kPPC64_ShadowOffset64; |
| else if (IsSystemZ) |
| Mapping.Offset = kSystemZ_ShadowOffset64; |
| else if (IsFreeBSD && !IsMIPS64) |
| Mapping.Offset = kFreeBSD_ShadowOffset64; |
| else if (IsNetBSD) { |
| if (IsKasan) |
| Mapping.Offset = kNetBSDKasan_ShadowOffset64; |
| else |
| Mapping.Offset = kNetBSD_ShadowOffset64; |
| } else if (IsPS4CPU) |
| Mapping.Offset = kPS4CPU_ShadowOffset64; |
| else if (IsLinux && IsX86_64) { |
| if (IsKasan) |
| Mapping.Offset = kLinuxKasan_ShadowOffset64; |
| else |
| Mapping.Offset = (kSmallX86_64ShadowOffsetBase & |
| (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); |
| } else if (IsWindows && IsX86_64) { |
| Mapping.Offset = kWindowsShadowOffset64; |
| } else if (IsMIPS64) |
| Mapping.Offset = kMIPS64_ShadowOffset64; |
| else if (IsIOS) |
| Mapping.Offset = kDynamicShadowSentinel; |
| else if (IsAArch64) |
| Mapping.Offset = kAArch64_ShadowOffset64; |
| else |
| Mapping.Offset = kDefaultShadowOffset64; |
| } |
| |
| if (ClForceDynamicShadow) { |
| Mapping.Offset = kDynamicShadowSentinel; |
| } |
| |
| if (ClMappingOffset.getNumOccurrences() > 0) { |
| Mapping.Offset = ClMappingOffset; |
| } |
| |
| // OR-ing shadow offset if more efficient (at least on x86) if the offset |
| // is a power of two, but on ppc64 we have to use add since the shadow |
| // offset is not necessary 1/8-th of the address space. On SystemZ, |
| // we could OR the constant in a single instruction, but it's more |
| // efficient to load it once and use indexed addressing. |
| Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && |
| !(Mapping.Offset & (Mapping.Offset - 1)) && |
| Mapping.Offset != kDynamicShadowSentinel; |
| bool IsAndroidWithIfuncSupport = |
| IsAndroid && !TargetTriple.isAndroidVersionLT(21); |
| Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; |
| |
| return Mapping; |
| } |
| |
| static size_t RedzoneSizeForScale(int MappingScale) { |
| // Redzone used for stack and globals is at least 32 bytes. |
| // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. |
| return std::max(32U, 1U << MappingScale); |
| } |
| |
| namespace { |
| |
| /// Module analysis for getting various metadata about the module. |
| class ASanGlobalsMetadataWrapperPass : public ModulePass { |
| public: |
| static char ID; |
| |
| ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { |
| initializeASanGlobalsMetadataWrapperPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnModule(Module &M) override { |
| GlobalsMD = GlobalsMetadata(M); |
| return false; |
| } |
| |
| StringRef getPassName() const override { |
| return "ASanGlobalsMetadataWrapperPass"; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| } |
| |
| GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } |
| |
| private: |
| GlobalsMetadata GlobalsMD; |
| }; |
| |
| char ASanGlobalsMetadataWrapperPass::ID = 0; |
| |
| /// AddressSanitizer: instrument the code in module to find memory bugs. |
| struct AddressSanitizer { |
| AddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD, |
| bool CompileKernel = false, bool Recover = false, |
| bool UseAfterScope = false) |
| : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(GlobalsMD) { |
| this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; |
| this->CompileKernel = |
| ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; |
| |
| C = &(M.getContext()); |
| LongSize = M.getDataLayout().getPointerSizeInBits(); |
| IntptrTy = Type::getIntNTy(*C, LongSize); |
| TargetTriple = Triple(M.getTargetTriple()); |
| |
| Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); |
| } |
| |
| uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { |
| uint64_t ArraySize = 1; |
| if (AI.isArrayAllocation()) { |
| const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); |
| assert(CI && "non-constant array size"); |
| ArraySize = CI->getZExtValue(); |
| } |
| Type *Ty = AI.getAllocatedType(); |
| uint64_t SizeInBytes = |
| AI.getModule()->getDataLayout().getTypeAllocSize(Ty); |
| return SizeInBytes * ArraySize; |
| } |
| |
| /// Check if we want (and can) handle this alloca. |
| bool isInterestingAlloca(const AllocaInst &AI); |
| |
| /// If it is an interesting memory access, return the PointerOperand |
| /// and set IsWrite/Alignment. Otherwise return nullptr. |
| /// MaybeMask is an output parameter for the mask Value, if we're looking at a |
| /// masked load/store. |
| Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, |
| uint64_t *TypeSize, unsigned *Alignment, |
| Value **MaybeMask = nullptr); |
| |
| void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, |
| bool UseCalls, const DataLayout &DL); |
| void instrumentPointerComparisonOrSubtraction(Instruction *I); |
| void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, |
| Value *Addr, uint32_t TypeSize, bool IsWrite, |
| Value *SizeArgument, bool UseCalls, uint32_t Exp); |
| void instrumentUnusualSizeOrAlignment(Instruction *I, |
| Instruction *InsertBefore, Value *Addr, |
| uint32_t TypeSize, bool IsWrite, |
| Value *SizeArgument, bool UseCalls, |
| uint32_t Exp); |
| Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, |
| Value *ShadowValue, uint32_t TypeSize); |
| Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, |
| bool IsWrite, size_t AccessSizeIndex, |
| Value *SizeArgument, uint32_t Exp); |
| void instrumentMemIntrinsic(MemIntrinsic *MI); |
| Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); |
| bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); |
| bool maybeInsertAsanInitAtFunctionEntry(Function &F); |
| void maybeInsertDynamicShadowAtFunctionEntry(Function &F); |
| void markEscapedLocalAllocas(Function &F); |
| |
| private: |
| friend struct FunctionStackPoisoner; |
| |
| void initializeCallbacks(Module &M); |
| |
| bool LooksLikeCodeInBug11395(Instruction *I); |
| bool GlobalIsLinkerInitialized(GlobalVariable *G); |
| bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, |
| uint64_t TypeSize) const; |
| |
| /// Helper to cleanup per-function state. |
| struct FunctionStateRAII { |
| AddressSanitizer *Pass; |
| |
| FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { |
| assert(Pass->ProcessedAllocas.empty() && |
| "last pass forgot to clear cache"); |
| assert(!Pass->LocalDynamicShadow); |
| } |
| |
| ~FunctionStateRAII() { |
| Pass->LocalDynamicShadow = nullptr; |
| Pass->ProcessedAllocas.clear(); |
| } |
| }; |
| |
| LLVMContext *C; |
| Triple TargetTriple; |
| int LongSize; |
| bool CompileKernel; |
| bool Recover; |
| bool UseAfterScope; |
| Type *IntptrTy; |
| ShadowMapping Mapping; |
| FunctionCallee AsanHandleNoReturnFunc; |
| FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; |
| Constant *AsanShadowGlobal; |
| |
| // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). |
| FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; |
| FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; |
| |
| // These arrays is indexed by AccessIsWrite and Experiment. |
| FunctionCallee AsanErrorCallbackSized[2][2]; |
| FunctionCallee AsanMemoryAccessCallbackSized[2][2]; |
| |
| FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; |
| InlineAsm *EmptyAsm; |
| Value *LocalDynamicShadow = nullptr; |
| GlobalsMetadata GlobalsMD; |
| DenseMap<const AllocaInst *, bool> ProcessedAllocas; |
| }; |
| |
| class AddressSanitizerLegacyPass : public FunctionPass { |
| public: |
| static char ID; |
| |
| explicit AddressSanitizerLegacyPass(bool CompileKernel = false, |
| bool Recover = false, |
| bool UseAfterScope = false) |
| : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), |
| UseAfterScope(UseAfterScope) { |
| initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| StringRef getPassName() const override { |
| return "AddressSanitizerFunctionPass"; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<ASanGlobalsMetadataWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| GlobalsMetadata &GlobalsMD = |
| getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); |
| const TargetLibraryInfo *TLI = |
| &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| AddressSanitizer ASan(*F.getParent(), GlobalsMD, CompileKernel, Recover, |
| UseAfterScope); |
| return ASan.instrumentFunction(F, TLI); |
| } |
| |
| private: |
| bool CompileKernel; |
| bool Recover; |
| bool UseAfterScope; |
| }; |
| |
| class ModuleAddressSanitizer { |
| public: |
| ModuleAddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD, |
| bool CompileKernel = false, bool Recover = false, |
| bool UseGlobalsGC = true, bool UseOdrIndicator = false) |
| : GlobalsMD(GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC), |
| // Enable aliases as they should have no downside with ODR indicators. |
| UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), |
| UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), |
| // Not a typo: ClWithComdat is almost completely pointless without |
| // ClUseGlobalsGC (because then it only works on modules without |
| // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; |
| // and both suffer from gold PR19002 for which UseGlobalsGC constructor |
| // argument is designed as workaround. Therefore, disable both |
| // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to |
| // do globals-gc. |
| UseCtorComdat(UseGlobalsGC && ClWithComdat) { |
| this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; |
| this->CompileKernel = |
| ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel; |
| |
| C = &(M.getContext()); |
| int LongSize = M.getDataLayout().getPointerSizeInBits(); |
| IntptrTy = Type::getIntNTy(*C, LongSize); |
| TargetTriple = Triple(M.getTargetTriple()); |
| Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); |
| } |
| |
| bool instrumentModule(Module &); |
| |
| private: |
| void initializeCallbacks(Module &M); |
| |
| bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); |
| void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, |
| ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers); |
| void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, |
| ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers, |
| const std::string &UniqueModuleId); |
| void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, |
| ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers); |
| void |
| InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, |
| ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers); |
| |
| GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, |
| StringRef OriginalName); |
| void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, |
| StringRef InternalSuffix); |
| IRBuilder<> CreateAsanModuleDtor(Module &M); |
| |
| bool ShouldInstrumentGlobal(GlobalVariable *G); |
| bool ShouldUseMachOGlobalsSection() const; |
| StringRef getGlobalMetadataSection() const; |
| void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); |
| void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); |
| size_t MinRedzoneSizeForGlobal() const { |
| return RedzoneSizeForScale(Mapping.Scale); |
| } |
| int GetAsanVersion(const Module &M) const; |
| |
| GlobalsMetadata GlobalsMD; |
| bool CompileKernel; |
| bool Recover; |
| bool UseGlobalsGC; |
| bool UsePrivateAlias; |
| bool UseOdrIndicator; |
| bool UseCtorComdat; |
| Type *IntptrTy; |
| LLVMContext *C; |
| Triple TargetTriple; |
| ShadowMapping Mapping; |
| FunctionCallee AsanPoisonGlobals; |
| FunctionCallee AsanUnpoisonGlobals; |
| FunctionCallee AsanRegisterGlobals; |
| FunctionCallee AsanUnregisterGlobals; |
| FunctionCallee AsanRegisterImageGlobals; |
| FunctionCallee AsanUnregisterImageGlobals; |
| FunctionCallee AsanRegisterElfGlobals; |
| FunctionCallee AsanUnregisterElfGlobals; |
| |
| Function *AsanCtorFunction = nullptr; |
| Function *AsanDtorFunction = nullptr; |
| }; |
| |
| class ModuleAddressSanitizerLegacyPass : public ModulePass { |
| public: |
| static char ID; |
| |
| explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, |
| bool Recover = false, |
| bool UseGlobalGC = true, |
| bool UseOdrIndicator = false) |
| : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), |
| UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { |
| initializeModuleAddressSanitizerLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| StringRef getPassName() const override { return "ModuleAddressSanitizer"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<ASanGlobalsMetadataWrapperPass>(); |
| } |
| |
| bool runOnModule(Module &M) override { |
| GlobalsMetadata &GlobalsMD = |
| getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); |
| ModuleAddressSanitizer ASanModule(M, GlobalsMD, CompileKernel, Recover, |
| UseGlobalGC, UseOdrIndicator); |
| return ASanModule.instrumentModule(M); |
| } |
| |
| private: |
| bool CompileKernel; |
| bool Recover; |
| bool UseGlobalGC; |
| bool UseOdrIndicator; |
| }; |
| |
| // Stack poisoning does not play well with exception handling. |
| // When an exception is thrown, we essentially bypass the code |
| // that unpoisones the stack. This is why the run-time library has |
| // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire |
| // stack in the interceptor. This however does not work inside the |
| // actual function which catches the exception. Most likely because the |
| // compiler hoists the load of the shadow value somewhere too high. |
| // This causes asan to report a non-existing bug on 453.povray. |
| // It sounds like an LLVM bug. |
| struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { |
| Function &F; |
| AddressSanitizer &ASan; |
| DIBuilder DIB; |
| LLVMContext *C; |
| Type *IntptrTy; |
| Type *IntptrPtrTy; |
| ShadowMapping Mapping; |
| |
| SmallVector<AllocaInst *, 16> AllocaVec; |
| SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; |
| SmallVector<Instruction *, 8> RetVec; |
| unsigned StackAlignment; |
| |
| FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], |
| AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; |
| FunctionCallee AsanSetShadowFunc[0x100] = {}; |
| FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; |
| FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; |
| |
| // Stores a place and arguments of poisoning/unpoisoning call for alloca. |
| struct AllocaPoisonCall { |
| IntrinsicInst *InsBefore; |
| AllocaInst *AI; |
| uint64_t Size; |
| bool DoPoison; |
| }; |
| SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; |
| SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; |
| bool HasUntracedLifetimeIntrinsic = false; |
| |
| SmallVector<AllocaInst *, 1> DynamicAllocaVec; |
| SmallVector<IntrinsicInst *, 1> StackRestoreVec; |
| AllocaInst *DynamicAllocaLayout = nullptr; |
| IntrinsicInst *LocalEscapeCall = nullptr; |
| |
| // Maps Value to an AllocaInst from which the Value is originated. |
| using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; |
| AllocaForValueMapTy AllocaForValue; |
| |
| bool HasNonEmptyInlineAsm = false; |
| bool HasReturnsTwiceCall = false; |
| std::unique_ptr<CallInst> EmptyInlineAsm; |
| |
| FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) |
| : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), |
| C(ASan.C), IntptrTy(ASan.IntptrTy), |
| IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), |
| StackAlignment(1 << Mapping.Scale), |
| EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} |
| |
| bool runOnFunction() { |
| if (!ClStack) return false; |
| |
| if (ClRedzoneByvalArgs) |
| copyArgsPassedByValToAllocas(); |
| |
| // Collect alloca, ret, lifetime instructions etc. |
| for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); |
| |
| if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; |
| |
| initializeCallbacks(*F.getParent()); |
| |
| if (HasUntracedLifetimeIntrinsic) { |
| // If there are lifetime intrinsics which couldn't be traced back to an |
| // alloca, we may not know exactly when a variable enters scope, and |
| // therefore should "fail safe" by not poisoning them. |
| StaticAllocaPoisonCallVec.clear(); |
| DynamicAllocaPoisonCallVec.clear(); |
| } |
| |
| processDynamicAllocas(); |
| processStaticAllocas(); |
| |
| if (ClDebugStack) { |
| LLVM_DEBUG(dbgs() << F); |
| } |
| return true; |
| } |
| |
| // Arguments marked with the "byval" attribute are implicitly copied without |
| // using an alloca instruction. To produce redzones for those arguments, we |
| // copy them a second time into memory allocated with an alloca instruction. |
| void copyArgsPassedByValToAllocas(); |
| |
| // Finds all Alloca instructions and puts |
| // poisoned red zones around all of them. |
| // Then unpoison everything back before the function returns. |
| void processStaticAllocas(); |
| void processDynamicAllocas(); |
| |
| void createDynamicAllocasInitStorage(); |
| |
| // ----------------------- Visitors. |
| /// Collect all Ret instructions. |
| void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } |
| |
| /// Collect all Resume instructions. |
| void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } |
| |
| /// Collect all CatchReturnInst instructions. |
| void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } |
| |
| void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, |
| Value *SavedStack) { |
| IRBuilder<> IRB(InstBefore); |
| Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); |
| // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we |
| // need to adjust extracted SP to compute the address of the most recent |
| // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for |
| // this purpose. |
| if (!isa<ReturnInst>(InstBefore)) { |
| Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( |
| InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, |
| {IntptrTy}); |
| |
| Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); |
| |
| DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), |
| DynamicAreaOffset); |
| } |
| |
| IRB.CreateCall( |
| AsanAllocasUnpoisonFunc, |
| {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); |
| } |
| |
| // Unpoison dynamic allocas redzones. |
| void unpoisonDynamicAllocas() { |
| for (auto &Ret : RetVec) |
| unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); |
| |
| for (auto &StackRestoreInst : StackRestoreVec) |
| unpoisonDynamicAllocasBeforeInst(StackRestoreInst, |
| StackRestoreInst->getOperand(0)); |
| } |
| |
| // Deploy and poison redzones around dynamic alloca call. To do this, we |
| // should replace this call with another one with changed parameters and |
| // replace all its uses with new address, so |
| // addr = alloca type, old_size, align |
| // is replaced by |
| // new_size = (old_size + additional_size) * sizeof(type) |
| // tmp = alloca i8, new_size, max(align, 32) |
| // addr = tmp + 32 (first 32 bytes are for the left redzone). |
| // Additional_size is added to make new memory allocation contain not only |
| // requested memory, but also left, partial and right redzones. |
| void handleDynamicAllocaCall(AllocaInst *AI); |
| |
| /// Collect Alloca instructions we want (and can) handle. |
| void visitAllocaInst(AllocaInst &AI) { |
| if (!ASan.isInterestingAlloca(AI)) { |
| if (AI.isStaticAlloca()) { |
| // Skip over allocas that are present *before* the first instrumented |
| // alloca, we don't want to move those around. |
| if (AllocaVec.empty()) |
| return; |
| |
| StaticAllocasToMoveUp.push_back(&AI); |
| } |
| return; |
| } |
| |
| StackAlignment = std::max(StackAlignment, AI.getAlignment()); |
| if (!AI.isStaticAlloca()) |
| DynamicAllocaVec.push_back(&AI); |
| else |
| AllocaVec.push_back(&AI); |
| } |
| |
| /// Collect lifetime intrinsic calls to check for use-after-scope |
| /// errors. |
| void visitIntrinsicInst(IntrinsicInst &II) { |
| Intrinsic::ID ID = II.getIntrinsicID(); |
| if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); |
| if (ID == Intrinsic::localescape) LocalEscapeCall = &II; |
| if (!ASan.UseAfterScope) |
| return; |
| if (!II.isLifetimeStartOrEnd()) |
| return; |
| // Found lifetime intrinsic, add ASan instrumentation if necessary. |
| ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); |
| // If size argument is undefined, don't do anything. |
| if (Size->isMinusOne()) return; |
| // Check that size doesn't saturate uint64_t and can |
| // be stored in IntptrTy. |
| const uint64_t SizeValue = Size->getValue().getLimitedValue(); |
| if (SizeValue == ~0ULL || |
| !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) |
| return; |
| // Find alloca instruction that corresponds to llvm.lifetime argument. |
| AllocaInst *AI = |
| llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue); |
| if (!AI) { |
| HasUntracedLifetimeIntrinsic = true; |
| return; |
| } |
| // We're interested only in allocas we can handle. |
| if (!ASan.isInterestingAlloca(*AI)) |
| return; |
| bool DoPoison = (ID == Intrinsic::lifetime_end); |
| AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; |
| if (AI->isStaticAlloca()) |
| StaticAllocaPoisonCallVec.push_back(APC); |
| else if (ClInstrumentDynamicAllocas) |
| DynamicAllocaPoisonCallVec.push_back(APC); |
| } |
| |
| void visitCallSite(CallSite CS) { |
| Instruction *I = CS.getInstruction(); |
| if (CallInst *CI = dyn_cast<CallInst>(I)) { |
| HasNonEmptyInlineAsm |= CI->isInlineAsm() && |
| !CI->isIdenticalTo(EmptyInlineAsm.get()) && |
| I != ASan.LocalDynamicShadow; |
| HasReturnsTwiceCall |= CI->canReturnTwice(); |
| } |
| } |
| |
| // ---------------------- Helpers. |
| void initializeCallbacks(Module &M); |
| |
| // Copies bytes from ShadowBytes into shadow memory for indexes where |
| // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that |
| // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. |
| void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, |
| IRBuilder<> &IRB, Value *ShadowBase); |
| void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, |
| size_t Begin, size_t End, IRBuilder<> &IRB, |
| Value *ShadowBase); |
| void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, |
| ArrayRef<uint8_t> ShadowBytes, size_t Begin, |
| size_t End, IRBuilder<> &IRB, Value *ShadowBase); |
| |
| void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); |
| |
| Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, |
| bool Dynamic); |
| PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, |
| Instruction *ThenTerm, Value *ValueIfFalse); |
| }; |
| |
| } // end anonymous namespace |
| |
| void LocationMetadata::parse(MDNode *MDN) { |
| assert(MDN->getNumOperands() == 3); |
| MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); |
| Filename = DIFilename->getString(); |
| LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); |
| ColumnNo = |
| mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); |
| } |
| |
| // FIXME: It would be cleaner to instead attach relevant metadata to the globals |
| // we want to sanitize instead and reading this metadata on each pass over a |
| // function instead of reading module level metadata at first. |
| GlobalsMetadata::GlobalsMetadata(Module &M) { |
| NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); |
| if (!Globals) |
| return; |
| for (auto MDN : Globals->operands()) { |
| // Metadata node contains the global and the fields of "Entry". |
| assert(MDN->getNumOperands() == 5); |
| auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); |
| // The optimizer may optimize away a global entirely. |
| if (!V) |
| continue; |
| auto *StrippedV = V->stripPointerCasts(); |
| auto *GV = dyn_cast<GlobalVariable>(StrippedV); |
| if (!GV) |
| continue; |
| // We can already have an entry for GV if it was merged with another |
| // global. |
| Entry &E = Entries[GV]; |
| if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) |
| E.SourceLoc.parse(Loc); |
| if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) |
| E.Name = Name->getString(); |
| ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); |
| E.IsDynInit |= IsDynInit->isOne(); |
| ConstantInt *IsBlacklisted = |
| mdconst::extract<ConstantInt>(MDN->getOperand(4)); |
| E.IsBlacklisted |= IsBlacklisted->isOne(); |
| } |
| } |
| |
| AnalysisKey ASanGlobalsMetadataAnalysis::Key; |
| |
| GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, |
| ModuleAnalysisManager &AM) { |
| return GlobalsMetadata(M); |
| } |
| |
| AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, |
| bool UseAfterScope) |
| : CompileKernel(CompileKernel), Recover(Recover), |
| UseAfterScope(UseAfterScope) {} |
| |
| PreservedAnalyses AddressSanitizerPass::run(Function &F, |
| AnalysisManager<Function> &AM) { |
| auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); |
| auto &MAM = MAMProxy.getManager(); |
| Module &M = *F.getParent(); |
| if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { |
| const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); |
| AddressSanitizer Sanitizer(M, *R, CompileKernel, Recover, UseAfterScope); |
| if (Sanitizer.instrumentFunction(F, TLI)) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| report_fatal_error( |
| "The ASanGlobalsMetadataAnalysis is required to run before " |
| "AddressSanitizer can run"); |
| return PreservedAnalyses::all(); |
| } |
| |
| ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, |
| bool Recover, |
| bool UseGlobalGC, |
| bool UseOdrIndicator) |
| : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), |
| UseOdrIndicator(UseOdrIndicator) {} |
| |
| PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, |
| AnalysisManager<Module> &AM) { |
| GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); |
| ModuleAddressSanitizer Sanitizer(M, GlobalsMD, CompileKernel, Recover, |
| UseGlobalGC, UseOdrIndicator); |
| if (Sanitizer.instrumentModule(M)) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", |
| "Read metadata to mark which globals should be instrumented " |
| "when running ASan.", |
| false, true) |
| |
| char AddressSanitizerLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN( |
| AddressSanitizerLegacyPass, "asan", |
| "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, |
| false) |
| INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_END( |
| AddressSanitizerLegacyPass, "asan", |
| "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, |
| false) |
| |
| FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, |
| bool Recover, |
| bool UseAfterScope) { |
| assert(!CompileKernel || Recover); |
| return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); |
| } |
| |
| char ModuleAddressSanitizerLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS( |
| ModuleAddressSanitizerLegacyPass, "asan-module", |
| "AddressSanitizer: detects use-after-free and out-of-bounds bugs." |
| "ModulePass", |
| false, false) |
| |
| ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( |
| bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { |
| assert(!CompileKernel || Recover); |
| return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, |
| UseGlobalsGC, UseOdrIndicator); |
| } |
| |
| static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { |
| size_t Res = countTrailingZeros(TypeSize / 8); |
| assert(Res < kNumberOfAccessSizes); |
| return Res; |
| } |
| |
| /// Create a global describing a source location. |
| static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, |
| LocationMetadata MD) { |
| Constant *LocData[] = { |
| createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), |
| ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), |
| ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), |
| }; |
| auto LocStruct = ConstantStruct::getAnon(LocData); |
| auto GV = new GlobalVariable(M, LocStruct->getType(), true, |
| GlobalValue::PrivateLinkage, LocStruct, |
| kAsanGenPrefix); |
| GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); |
| return GV; |
| } |
| |
| /// Check if \p G has been created by a trusted compiler pass. |
| static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { |
| // Do not instrument @llvm.global_ctors, @llvm.used, etc. |
| if (G->getName().startswith("llvm.")) |
| return true; |
| |
| // Do not instrument asan globals. |
| if (G->getName().startswith(kAsanGenPrefix) || |
| G->getName().startswith(kSanCovGenPrefix) || |
| G->getName().startswith(kODRGenPrefix)) |
| return true; |
| |
| // Do not instrument gcov counter arrays. |
| if (G->getName() == "__llvm_gcov_ctr") |
| return true; |
| |
| return false; |
| } |
| |
| Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { |
| // Shadow >> scale |
| Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); |
| if (Mapping.Offset == 0) return Shadow; |
| // (Shadow >> scale) | offset |
| Value *ShadowBase; |
| if (LocalDynamicShadow) |
| ShadowBase = LocalDynamicShadow; |
| else |
| ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); |
| if (Mapping.OrShadowOffset) |
| return IRB.CreateOr(Shadow, ShadowBase); |
| else |
| return IRB.CreateAdd(Shadow, ShadowBase); |
| } |
| |
| // Instrument memset/memmove/memcpy |
| void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { |
| IRBuilder<> IRB(MI); |
| if (isa<MemTransferInst>(MI)) { |
| IRB.CreateCall( |
| isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, |
| {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), |
| IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), |
| IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); |
| } else if (isa<MemSetInst>(MI)) { |
| IRB.CreateCall( |
| AsanMemset, |
| {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), |
| IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), |
| IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); |
| } |
| MI->eraseFromParent(); |
| } |
| |
| /// Check if we want (and can) handle this alloca. |
| bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { |
| auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); |
| |
| if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) |
| return PreviouslySeenAllocaInfo->getSecond(); |
| |
| bool IsInteresting = |
| (AI.getAllocatedType()->isSized() && |
| // alloca() may be called with 0 size, ignore it. |
| ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && |
| // We are only interested in allocas not promotable to registers. |
| // Promotable allocas are common under -O0. |
| (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && |
| // inalloca allocas are not treated as static, and we don't want |
| // dynamic alloca instrumentation for them as well. |
| !AI.isUsedWithInAlloca() && |
| // swifterror allocas are register promoted by ISel |
| !AI.isSwiftError()); |
| |
| ProcessedAllocas[&AI] = IsInteresting; |
| return IsInteresting; |
| } |
| |
| Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, |
| bool *IsWrite, |
| uint64_t *TypeSize, |
| unsigned *Alignment, |
| Value **MaybeMask) { |
| // Skip memory accesses inserted by another instrumentation. |
| if (I->getMetadata("nosanitize")) return nullptr; |
| |
| // Do not instrument the load fetching the dynamic shadow address. |
| if (LocalDynamicShadow == I) |
| return nullptr; |
| |
| Value *PtrOperand = nullptr; |
| const DataLayout &DL = I->getModule()->getDataLayout(); |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| if (!ClInstrumentReads) return nullptr; |
| *IsWrite = false; |
| *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); |
| *Alignment = LI->getAlignment(); |
| PtrOperand = LI->getPointerOperand(); |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| if (!ClInstrumentWrites) return nullptr; |
| *IsWrite = true; |
| *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); |
| *Alignment = SI->getAlignment(); |
| PtrOperand = SI->getPointerOperand(); |
| } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { |
| if (!ClInstrumentAtomics) return nullptr; |
| *IsWrite = true; |
| *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); |
| *Alignment = 0; |
| PtrOperand = RMW->getPointerOperand(); |
| } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { |
| if (!ClInstrumentAtomics) return nullptr; |
| *IsWrite = true; |
| *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); |
| *Alignment = 0; |
| PtrOperand = XCHG->getPointerOperand(); |
| } else if (auto CI = dyn_cast<CallInst>(I)) { |
| auto *F = dyn_cast<Function>(CI->getCalledValue()); |
| if (F && (F->getName().startswith("llvm.masked.load.") || |
| F->getName().startswith("llvm.masked.store."))) { |
| unsigned OpOffset = 0; |
| if (F->getName().startswith("llvm.masked.store.")) { |
| if (!ClInstrumentWrites) |
| return nullptr; |
| // Masked store has an initial operand for the value. |
| OpOffset = 1; |
| *IsWrite = true; |
| } else { |
| if (!ClInstrumentReads) |
| return nullptr; |
| *IsWrite = false; |
| } |
| |
| auto BasePtr = CI->getOperand(0 + OpOffset); |
| auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); |
| *TypeSize = DL.getTypeStoreSizeInBits(Ty); |
| if (auto AlignmentConstant = |
| dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) |
| *Alignment = (unsigned)AlignmentConstant->getZExtValue(); |
| else |
| *Alignment = 1; // No alignment guarantees. We probably got Undef |
| if (MaybeMask) |
| *MaybeMask = CI->getOperand(2 + OpOffset); |
| PtrOperand = BasePtr; |
| } |
| } |
| |
| if (PtrOperand) { |
| // Do not instrument acesses from different address spaces; we cannot deal |
| // with them. |
| Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); |
| if (PtrTy->getPointerAddressSpace() != 0) |
| return nullptr; |
| |
| // Ignore swifterror addresses. |
| // swifterror memory addresses are mem2reg promoted by instruction |
| // selection. As such they cannot have regular uses like an instrumentation |
| // function and it makes no sense to track them as memory. |
| if (PtrOperand->isSwiftError()) |
| return nullptr; |
| } |
| |
| // Treat memory accesses to promotable allocas as non-interesting since they |
| // will not cause memory violations. This greatly speeds up the instrumented |
| // executable at -O0. |
| if (ClSkipPromotableAllocas) |
| if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) |
| return isInterestingAlloca(*AI) ? AI : nullptr; |
| |
| return PtrOperand; |
| } |
| |
| static bool isPointerOperand(Value *V) { |
| return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); |
| } |
| |
| // This is a rough heuristic; it may cause both false positives and |
| // false negatives. The proper implementation requires cooperation with |
| // the frontend. |
| static bool isInterestingPointerComparison(Instruction *I) { |
| if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { |
| if (!Cmp->isRelational()) |
| return false; |
| } else { |
| return false; |
| } |
| return isPointerOperand(I->getOperand(0)) && |
| isPointerOperand(I->getOperand(1)); |
| } |
| |
| // This is a rough heuristic; it may cause both false positives and |
| // false negatives. The proper implementation requires cooperation with |
| // the frontend. |
| static bool isInterestingPointerSubtraction(Instruction *I) { |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { |
| if (BO->getOpcode() != Instruction::Sub) |
| return false; |
| } else { |
| return false; |
| } |
| return isPointerOperand(I->getOperand(0)) && |
| isPointerOperand(I->getOperand(1)); |
| } |
| |
| bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { |
| // If a global variable does not have dynamic initialization we don't |
| // have to instrument it. However, if a global does not have initializer |
| // at all, we assume it has dynamic initializer (in other TU). |
| // |
| // FIXME: Metadata should be attched directly to the global directly instead |
| // of being added to llvm.asan.globals. |
| return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; |
| } |
| |
| void AddressSanitizer::instrumentPointerComparisonOrSubtraction( |
| Instruction *I) { |
| IRBuilder<> IRB(I); |
| FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; |
| Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; |
| for (Value *&i : Param) { |
| if (i->getType()->isPointerTy()) |
| i = IRB.CreatePointerCast(i, IntptrTy); |
| } |
| IRB.CreateCall(F, Param); |
| } |
| |
| static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, |
| Instruction *InsertBefore, Value *Addr, |
| unsigned Alignment, unsigned Granularity, |
| uint32_t TypeSize, bool IsWrite, |
| Value *SizeArgument, bool UseCalls, |
| uint32_t Exp) { |
| // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check |
| // if the data is properly aligned. |
| if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || |
| TypeSize == 128) && |
| (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) |
| return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, |
| nullptr, UseCalls, Exp); |
| Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, |
| IsWrite, nullptr, UseCalls, Exp); |
| } |
| |
| static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, |
| const DataLayout &DL, Type *IntptrTy, |
| Value *Mask, Instruction *I, |
| Value *Addr, unsigned Alignment, |
| unsigned Granularity, uint32_t TypeSize, |
| bool IsWrite, Value *SizeArgument, |
| bool UseCalls, uint32_t Exp) { |
| auto *VTy = cast<PointerType>(Addr->getType())->getElementType(); |
| uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); |
| unsigned Num = VTy->getVectorNumElements(); |
| auto Zero = ConstantInt::get(IntptrTy, 0); |
| for (unsigned Idx = 0; Idx < Num; ++Idx) { |
| Value *InstrumentedAddress = nullptr; |
| Instruction *InsertBefore = I; |
| if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { |
| // dyn_cast as we might get UndefValue |
| if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { |
| if (Masked->isZero()) |
| // Mask is constant false, so no instrumentation needed. |
| continue; |
| // If we have a true or undef value, fall through to doInstrumentAddress |
| // with InsertBefore == I |
| } |
| } else { |
| IRBuilder<> IRB(I); |
| Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); |
| Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); |
| InsertBefore = ThenTerm; |
| } |
| |
| IRBuilder<> IRB(InsertBefore); |
| InstrumentedAddress = |
| IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); |
| doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, |
| Granularity, ElemTypeSize, IsWrite, SizeArgument, |
| UseCalls, Exp); |
| } |
| } |
| |
| void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, |
| Instruction *I, bool UseCalls, |
| const DataLayout &DL) { |
| bool IsWrite = false; |
| unsigned Alignment = 0; |
| uint64_t TypeSize = 0; |
| Value *MaybeMask = nullptr; |
| Value *Addr = |
| isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); |
| assert(Addr); |
| |
| // Optimization experiments. |
| // The experiments can be used to evaluate potential optimizations that remove |
| // instrumentation (assess false negatives). Instead of completely removing |
| // some instrumentation, you set Exp to a non-zero value (mask of optimization |
| // experiments that want to remove instrumentation of this instruction). |
| // If Exp is non-zero, this pass will emit special calls into runtime |
| // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls |
| // make runtime terminate the program in a special way (with a different |
| // exit status). Then you run the new compiler on a buggy corpus, collect |
| // the special terminations (ideally, you don't see them at all -- no false |
| // negatives) and make the decision on the optimization. |
| uint32_t Exp = ClForceExperiment; |
| |
| if (ClOpt && ClOptGlobals) { |
| // If initialization order checking is disabled, a simple access to a |
| // dynamically initialized global is always valid. |
| GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); |
| if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && |
| isSafeAccess(ObjSizeVis, Addr, TypeSize)) { |
| NumOptimizedAccessesToGlobalVar++; |
| return; |
| } |
| } |
| |
| if (ClOpt && ClOptStack) { |
| // A direct inbounds access to a stack variable is always valid. |
| if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && |
| isSafeAccess(ObjSizeVis, Addr, TypeSize)) { |
| NumOptimizedAccessesToStackVar++; |
| return; |
| } |
| } |
| |
| if (IsWrite) |
| NumInstrumentedWrites++; |
| else |
| NumInstrumentedReads++; |
| |
| unsigned Granularity = 1 << Mapping.Scale; |
| if (MaybeMask) { |
| instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr, |
| Alignment, Granularity, TypeSize, IsWrite, |
| nullptr, UseCalls, Exp); |
| } else { |
| doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize, |
| IsWrite, nullptr, UseCalls, Exp); |
| } |
| } |
| |
| Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, |
| Value *Addr, bool IsWrite, |
| size_t AccessSizeIndex, |
| Value *SizeArgument, |
| uint32_t Exp) { |
| IRBuilder<> IRB(InsertBefore); |
| Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); |
| CallInst *Call = nullptr; |
| if (SizeArgument) { |
| if (Exp == 0) |
| Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], |
| {Addr, SizeArgument}); |
| else |
| Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], |
| {Addr, SizeArgument, ExpVal}); |
| } else { |
| if (Exp == 0) |
| Call = |
| IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); |
| else |
| Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], |
| {Addr, ExpVal}); |
| } |
| |
| // We don't do Call->setDoesNotReturn() because the BB already has |
| // UnreachableInst at the end. |
| // This EmptyAsm is required to avoid callback merge. |
| IRB.CreateCall(EmptyAsm, {}); |
| return Call; |
| } |
| |
| Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, |
| Value *ShadowValue, |
| uint32_t TypeSize) { |
| size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; |
| // Addr & (Granularity - 1) |
| Value *LastAccessedByte = |
| IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); |
| // (Addr & (Granularity - 1)) + size - 1 |
| if (TypeSize / 8 > 1) |
| LastAccessedByte = IRB.CreateAdd( |
| LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); |
| // (uint8_t) ((Addr & (Granularity-1)) + size - 1) |
| LastAccessedByte = |
| IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); |
| // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue |
| return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); |
| } |
| |
| void AddressSanitizer::instrumentAddress(Instruction *OrigIns, |
| Instruction *InsertBefore, Value *Addr, |
| uint32_t TypeSize, bool IsWrite, |
| Value *SizeArgument, bool UseCalls, |
| uint32_t Exp) { |
| bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; |
| |
| IRBuilder<> IRB(InsertBefore); |
| Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); |
| size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); |
| |
| if (UseCalls) { |
| if (Exp == 0) |
| IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], |
| AddrLong); |
| else |
| IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], |
| {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); |
| return; |
| } |
| |
| if (IsMyriad) { |
| // Strip the cache bit and do range check. |
| // AddrLong &= ~kMyriadCacheBitMask32 |
| AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); |
| // Tag = AddrLong >> kMyriadTagShift |
| Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); |
| // Tag == kMyriadDDRTag |
| Value *TagCheck = |
| IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); |
| |
| Instruction *TagCheckTerm = |
| SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, |
| MDBuilder(*C).createBranchWeights(1, 100000)); |
| assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); |
| IRB.SetInsertPoint(TagCheckTerm); |
| InsertBefore = TagCheckTerm; |
| } |
| |
| Type *ShadowTy = |
| IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); |
| Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); |
| Value *ShadowPtr = memToShadow(AddrLong, IRB); |
| Value *CmpVal = Constant::getNullValue(ShadowTy); |
| Value *ShadowValue = |
| IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); |
| |
| Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); |
| size_t Granularity = 1ULL << Mapping.Scale; |
| Instruction *CrashTerm = nullptr; |
| |
| if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { |
| // We use branch weights for the slow path check, to indicate that the slow |
| // path is rarely taken. This seems to be the case for SPEC benchmarks. |
| Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
| Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); |
| assert(cast<BranchInst>(CheckTerm)->isUnconditional()); |
| BasicBlock *NextBB = CheckTerm->getSuccessor(0); |
| IRB.SetInsertPoint(CheckTerm); |
| Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); |
| if (Recover) { |
| CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); |
| } else { |
| BasicBlock *CrashBlock = |
| BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); |
| CrashTerm = new UnreachableInst(*C, CrashBlock); |
| BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); |
| ReplaceInstWithInst(CheckTerm, NewTerm); |
| } |
| } else { |
| CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); |
| } |
| |
| Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, |
| AccessSizeIndex, SizeArgument, Exp); |
| Crash->setDebugLoc(OrigIns->getDebugLoc()); |
| } |
| |
| // Instrument unusual size or unusual alignment. |
| // We can not do it with a single check, so we do 1-byte check for the first |
| // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able |
| // to report the actual access size. |
| void AddressSanitizer::instrumentUnusualSizeOrAlignment( |
| Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, |
| bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { |
| IRBuilder<> IRB(InsertBefore); |
| Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); |
| Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); |
| if (UseCalls) { |
| if (Exp == 0) |
| IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], |
| {AddrLong, Size}); |
| else |
| IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], |
| {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); |
| } else { |
| Value *LastByte = IRB.CreateIntToPtr( |
| IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), |
| Addr->getType()); |
| instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); |
| instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); |
| } |
| } |
| |
| void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, |
| GlobalValue *ModuleName) { |
| // Set up the arguments to our poison/unpoison functions. |
| IRBuilder<> IRB(&GlobalInit.front(), |
| GlobalInit.front().getFirstInsertionPt()); |
| |
| // Add a call to poison all external globals before the given function starts. |
| Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); |
| IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); |
| |
| // Add calls to unpoison all globals before each return instruction. |
| for (auto &BB : GlobalInit.getBasicBlockList()) |
| if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) |
| CallInst::Create(AsanUnpoisonGlobals, "", RI); |
| } |
| |
| void ModuleAddressSanitizer::createInitializerPoisonCalls( |
| Module &M, GlobalValue *ModuleName) { |
| GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); |
| if (!GV) |
| return; |
| |
| ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); |
| if (!CA) |
| return; |
| |
| for (Use &OP : CA->operands()) { |
| if (isa<ConstantAggregateZero>(OP)) continue; |
| ConstantStruct *CS = cast<ConstantStruct>(OP); |
| |
| // Must have a function or null ptr. |
| if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { |
| if (F->getName() == kAsanModuleCtorName) continue; |
| ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); |
| // Don't instrument CTORs that will run before asan.module_ctor. |
| if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; |
| poisonOneInitializer(*F, ModuleName); |
| } |
| } |
| } |
| |
| bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) { |
| Type *Ty = G->getValueType(); |
| LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); |
| |
| // FIXME: Metadata should be attched directly to the global directly instead |
| // of being added to llvm.asan.globals. |
| if (GlobalsMD.get(G).IsBlacklisted) return false; |
| if (!Ty->isSized()) return false; |
| if (!G->hasInitializer()) return false; |
| if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. |
| // Two problems with thread-locals: |
| // - The address of the main thread's copy can't be computed at link-time. |
| // - Need to poison all copies, not just the main thread's one. |
| if (G->isThreadLocal()) return false; |
| // For now, just ignore this Global if the alignment is large. |
| if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; |
| |
| // For non-COFF targets, only instrument globals known to be defined by this |
| // TU. |
| // FIXME: We can instrument comdat globals on ELF if we are using the |
| // GC-friendly metadata scheme. |
| if (!TargetTriple.isOSBinFormatCOFF()) { |
| if (!G->hasExactDefinition() || G->hasComdat()) |
| return false; |
| } else { |
| // On COFF, don't instrument non-ODR linkages. |
| if (G->isInterposable()) |
| return false; |
| } |
| |
| // If a comdat is present, it must have a selection kind that implies ODR |
| // semantics: no duplicates, any, or exact match. |
| if (Comdat *C = G->getComdat()) { |
| switch (C->getSelectionKind()) { |
| case Comdat::Any: |
| case Comdat::ExactMatch: |
| case Comdat::NoDuplicates: |
| break; |
| case Comdat::Largest: |
| case Comdat::SameSize: |
| return false; |
| } |
| } |
| |
| if (G->hasSection()) { |
| StringRef Section = G->getSection(); |
| |
| // Globals from llvm.metadata aren't emitted, do not instrument them. |
| if (Section == "llvm.metadata") return false; |
| // Do not instrument globals from special LLVM sections. |
| if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; |
| |
| // Do not instrument function pointers to initialization and termination |
| // routines: dynamic linker will not properly handle redzones. |
| if (Section.startswith(".preinit_array") || |
| Section.startswith(".init_array") || |
| Section.startswith(".fini_array")) { |
| return false; |
| } |
| |
| // On COFF, if the section name contains '$', it is highly likely that the |
| // user is using section sorting to create an array of globals similar to |
| // the way initialization callbacks are registered in .init_array and |
| // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones |
| // to such globals is counterproductive, because the intent is that they |
| // will form an array, and out-of-bounds accesses are expected. |
| // See https://github.com/google/sanitizers/issues/305 |
| // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx |
| if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { |
| LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " |
| << *G << "\n"); |
| return false; |
| } |
| |
| if (TargetTriple.isOSBinFormatMachO()) { |
| StringRef ParsedSegment, ParsedSection; |
| unsigned TAA = 0, StubSize = 0; |
| bool TAAParsed; |
| std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( |
| Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); |
| assert(ErrorCode.empty() && "Invalid section specifier."); |
| |
| // Ignore the globals from the __OBJC section. The ObjC runtime assumes |
| // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to |
| // them. |
| if (ParsedSegment == "__OBJC" || |
| (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { |
| LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); |
| return false; |
| } |
| // See https://github.com/google/sanitizers/issues/32 |
| // Constant CFString instances are compiled in the following way: |
| // -- the string buffer is emitted into |
| // __TEXT,__cstring,cstring_literals |
| // -- the constant NSConstantString structure referencing that buffer |
| // is placed into __DATA,__cfstring |
| // Therefore there's no point in placing redzones into __DATA,__cfstring. |
| // Moreover, it causes the linker to crash on OS X 10.7 |
| if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { |
| LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); |
| return false; |
| } |
| // The linker merges the contents of cstring_literals and removes the |
| // trailing zeroes. |
| if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { |
| LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // On Mach-O platforms, we emit global metadata in a separate section of the |
| // binary in order to allow the linker to properly dead strip. This is only |
| // supported on recent versions of ld64. |
| bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { |
| if (!TargetTriple.isOSBinFormatMachO()) |
| return false; |
| |
| if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) |
| return true; |
| if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) |
| return true; |
| if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) |
| return true; |
| |
| return false; |
| } |
| |
| StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { |
| switch (TargetTriple.getObjectFormat()) { |
| case Triple::COFF: return ".ASAN$GL"; |
| case Triple::ELF: return "asan_globals"; |
| case Triple::MachO: return "__DATA,__asan_globals,regular"; |
| default: break; |
| } |
| llvm_unreachable("unsupported object format"); |
| } |
| |
| void ModuleAddressSanitizer::initializeCallbacks(Module &M) { |
| IRBuilder<> IRB(*C); |
| |
| // Declare our poisoning and unpoisoning functions. |
| AsanPoisonGlobals = |
| M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); |
| AsanUnpoisonGlobals = |
| M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); |
| |
| // Declare functions that register/unregister globals. |
| AsanRegisterGlobals = M.getOrInsertFunction( |
| kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); |
| AsanUnregisterGlobals = M.getOrInsertFunction( |
| kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); |
| |
| // Declare the functions that find globals in a shared object and then invoke |
| // the (un)register function on them. |
| AsanRegisterImageGlobals = M.getOrInsertFunction( |
| kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); |
| AsanUnregisterImageGlobals = M.getOrInsertFunction( |
| kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); |
| |
| AsanRegisterElfGlobals = |
| M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), |
| IntptrTy, IntptrTy, IntptrTy); |
| AsanUnregisterElfGlobals = |
| M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), |
| IntptrTy, IntptrTy, IntptrTy); |
| } |
| |
| // Put the metadata and the instrumented global in the same group. This ensures |
| // that the metadata is discarded if the instrumented global is discarded. |
| void ModuleAddressSanitizer::SetComdatForGlobalMetadata( |
| GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { |
| Module &M = *G->getParent(); |
| Comdat *C = G->getComdat(); |
| if (!C) { |
| if (!G->hasName()) { |
| // If G is unnamed, it must be internal. Give it an artificial name |
| // so we can put it in a comdat. |
| assert(G->hasLocalLinkage()); |
| G->setName(Twine(kAsanGenPrefix) + "_anon_global"); |
| } |
| |
| if (!InternalSuffix.empty() && G->hasLocalLinkage()) { |
| std::string Name = G->getName(); |
| Name += InternalSuffix; |
| C = M.getOrInsertComdat(Name); |
| } else { |
| C = M.getOrInsertComdat(G->getName()); |
| } |
| |
| // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private |
| // linkage to internal linkage so that a symbol table entry is emitted. This |
| // is necessary in order to create the comdat group. |
| if (TargetTriple.isOSBinFormatCOFF()) { |
| C->setSelectionKind(Comdat::NoDuplicates); |
| if (G->hasPrivateLinkage()) |
| G->setLinkage(GlobalValue::InternalLinkage); |
| } |
| G->setComdat(C); |
| } |
| |
| assert(G->hasComdat()); |
| Metadata->setComdat(G->getComdat()); |
| } |
| |
| // Create a separate metadata global and put it in the appropriate ASan |
| // global registration section. |
| GlobalVariable * |
| ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, |
| StringRef OriginalName) { |
| auto Linkage = TargetTriple.isOSBinFormatMachO() |
| ? GlobalVariable::InternalLinkage |
| : GlobalVariable::PrivateLinkage; |
| GlobalVariable *Metadata = new GlobalVariable( |
| M, Initializer->getType(), false, Linkage, Initializer, |
| Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); |
| Metadata->setSection(getGlobalMetadataSection()); |
| return Metadata; |
| } |
| |
| IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { |
| AsanDtorFunction = |
| Function::Create(FunctionType::get(Type::getVoidTy(*C), false), |
| GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); |
| BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); |
| |
| return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB)); |
| } |
| |
| void ModuleAddressSanitizer::InstrumentGlobalsCOFF( |
| IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers) { |
| assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| auto &DL = M.getDataLayout(); |
| |
| for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
| Constant *Initializer = MetadataInitializers[i]; |
| GlobalVariable *G = ExtendedGlobals[i]; |
| GlobalVariable *Metadata = |
| CreateMetadataGlobal(M, Initializer, G->getName()); |
| |
| // The MSVC linker always inserts padding when linking incrementally. We |
| // cope with that by aligning each struct to its size, which must be a power |
| // of two. |
| unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); |
| assert(isPowerOf2_32(SizeOfGlobalStruct) && |
| "global metadata will not be padded appropriately"); |
| Metadata->setAlignment(SizeOfGlobalStruct); |
| |
| SetComdatForGlobalMetadata(G, Metadata, ""); |
| } |
| } |
| |
| void ModuleAddressSanitizer::InstrumentGlobalsELF( |
| IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers, |
| const std::string &UniqueModuleId) { |
| assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| |
| SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); |
| for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
| GlobalVariable *G = ExtendedGlobals[i]; |
| GlobalVariable *Metadata = |
| CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); |
| MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); |
| Metadata->setMetadata(LLVMContext::MD_associated, MD); |
| MetadataGlobals[i] = Metadata; |
| |
| SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); |
| } |
| |
| // Update llvm.compiler.used, adding the new metadata globals. This is |
| // needed so that during LTO these variables stay alive. |
| if (!MetadataGlobals.empty()) |
| appendToCompilerUsed(M, MetadataGlobals); |
| |
| // RegisteredFlag serves two purposes. First, we can pass it to dladdr() |
| // to look up the loaded image that contains it. Second, we can store in it |
| // whether registration has already occurred, to prevent duplicate |
| // registration. |
| // |
| // Common linkage ensures that there is only one global per shared library. |
| GlobalVariable *RegisteredFlag = new GlobalVariable( |
| M, IntptrTy, false, GlobalVariable::CommonLinkage, |
| ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); |
| RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); |
| |
| // Create start and stop symbols. |
| GlobalVariable *StartELFMetadata = new GlobalVariable( |
| M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, |
| "__start_" + getGlobalMetadataSection()); |
| StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); |
| GlobalVariable *StopELFMetadata = new GlobalVariable( |
| M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, |
| "__stop_" + getGlobalMetadataSection()); |
| StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); |
| |
| // Create a call to register the globals with the runtime. |
| IRB.CreateCall(AsanRegisterElfGlobals, |
| {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), |
| IRB.CreatePointerCast(StartELFMetadata, IntptrTy), |
| IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); |
| |
| // We also need to unregister globals at the end, e.g., when a shared library |
| // gets closed. |
| IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); |
| IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, |
| {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), |
| IRB.CreatePointerCast(StartELFMetadata, IntptrTy), |
| IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); |
| } |
| |
| void ModuleAddressSanitizer::InstrumentGlobalsMachO( |
| IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers) { |
| assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| |
| // On recent Mach-O platforms, use a structure which binds the liveness of |
| // the global variable to the metadata struct. Keep the list of "Liveness" GV |
| // created to be added to llvm.compiler.used |
| StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); |
| SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); |
| |
| for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
| Constant *Initializer = MetadataInitializers[i]; |
| GlobalVariable *G = ExtendedGlobals[i]; |
| GlobalVariable *Metadata = |
| CreateMetadataGlobal(M, Initializer, G->getName()); |
| |
| // On recent Mach-O platforms, we emit the global metadata in a way that |
| // allows the linker to properly strip dead globals. |
| auto LivenessBinder = |
| ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), |
| ConstantExpr::getPointerCast(Metadata, IntptrTy)); |
| GlobalVariable *Liveness = new GlobalVariable( |
| M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, |
| Twine("__asan_binder_") + G->getName()); |
| Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); |
| LivenessGlobals[i] = Liveness; |
| } |
| |
| // Update llvm.compiler.used, adding the new liveness globals. This is |
| // needed so that during LTO these variables stay alive. The alternative |
| // would be to have the linker handling the LTO symbols, but libLTO |
| // current API does not expose access to the section for each symbol. |
| if (!LivenessGlobals.empty()) |
| appendToCompilerUsed(M, LivenessGlobals); |
| |
| // RegisteredFlag serves two purposes. First, we can pass it to dladdr() |
| // to look up the loaded image that contains it. Second, we can store in it |
| // whether registration has already occurred, to prevent duplicate |
| // registration. |
| // |
| // common linkage ensures that there is only one global per shared library. |
| GlobalVariable *RegisteredFlag = new GlobalVariable( |
| M, IntptrTy, false, GlobalVariable::CommonLinkage, |
| ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); |
| RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); |
| |
| IRB.CreateCall(AsanRegisterImageGlobals, |
| {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); |
| |
| // We also need to unregister globals at the end, e.g., when a shared library |
| // gets closed. |
| IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); |
| IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, |
| {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); |
| } |
| |
| void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( |
| IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| ArrayRef<Constant *> MetadataInitializers) { |
| assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| unsigned N = ExtendedGlobals.size(); |
| assert(N > 0); |
| |
| // On platforms that don't have a custom metadata section, we emit an array |
| // of global metadata structures. |
| ArrayType *ArrayOfGlobalStructTy = |
| ArrayType::get(MetadataInitializers[0]->getType(), N); |
| auto AllGlobals = new GlobalVariable( |
| M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, |
| ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); |
| if (Mapping.Scale > 3) |
| AllGlobals->setAlignment(1ULL << Mapping.Scale); |
| |
| IRB.CreateCall(AsanRegisterGlobals, |
| {IRB.CreatePointerCast(AllGlobals, IntptrTy), |
| ConstantInt::get(IntptrTy, N)}); |
| |
| // We also need to unregister globals at the end, e.g., when a shared library |
| // gets closed. |
| IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M); |
| IRB_Dtor.CreateCall(AsanUnregisterGlobals, |
| {IRB.CreatePointerCast(AllGlobals, IntptrTy), |
| ConstantInt::get(IntptrTy, N)}); |
| } |
| |
| // This function replaces all global variables with new variables that have |
| // trailing redzones. It also creates a function that poisons |
| // redzones and inserts this function into llvm.global_ctors. |
| // Sets *CtorComdat to true if the global registration code emitted into the |
| // asan constructor is comdat-compatible. |
| bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, |
| bool *CtorComdat) { |
| *CtorComdat = false; |
| |
| SmallVector<GlobalVariable *, 16> GlobalsToChange; |
| |
| for (auto &G : M.globals()) { |
| if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); |
| } |
| |
| size_t n = GlobalsToChange.size(); |
| if (n == 0) { |
| *CtorComdat = true; |
| return false; |
| } |
| |
| auto &DL = M.getDataLayout(); |
| |
| // A global is described by a structure |
| // size_t beg; |
| // size_t size; |
| // size_t size_with_redzone; |
| // const char *name; |
| // const char *module_name; |
| // size_t has_dynamic_init; |
| // void *source_location; |
| // size_t odr_indicator; |
| // We initialize an array of such structures and pass it to a run-time call. |
| StructType *GlobalStructTy = |
| StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, |
| IntptrTy, IntptrTy, IntptrTy); |
| SmallVector<GlobalVariable *, 16> NewGlobals(n); |
| SmallVector<Constant *, 16> Initializers(n); |
| |
| bool HasDynamicallyInitializedGlobals = false; |
| |
| // We shouldn't merge same module names, as this string serves as unique |
| // module ID in runtime. |
| GlobalVariable *ModuleName = createPrivateGlobalForString( |
| M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); |
| |
| for (size_t i = 0; i < n; i++) { |
| static const uint64_t kMaxGlobalRedzone = 1 << 18; |
| GlobalVariable *G = GlobalsToChange[i]; |
| |
| // FIXME: Metadata should be attched directly to the global directly instead |
| // of being added to llvm.asan.globals. |
| auto MD = GlobalsMD.get(G); |
| StringRef NameForGlobal = G->getName(); |
| // Create string holding the global name (use global name from metadata |
| // if it's available, otherwise just write the name of global variable). |
| GlobalVariable *Name = createPrivateGlobalForString( |
| M, MD.Name.empty() ? NameForGlobal : MD.Name, |
| /*AllowMerging*/ true, kAsanGenPrefix); |
| |
| Type *Ty = G->getValueType(); |
| uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); |
| uint64_t MinRZ = MinRedzoneSizeForGlobal(); |
| // MinRZ <= RZ <= kMaxGlobalRedzone |
| // and trying to make RZ to be ~ 1/4 of SizeInBytes. |
| uint64_t RZ = std::max( |
| MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); |
| uint64_t RightRedzoneSize = RZ; |
| // Round up to MinRZ |
| if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); |
| assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); |
| Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); |
| |
| StructType *NewTy = StructType::get(Ty, RightRedZoneTy); |
| Constant *NewInitializer = ConstantStruct::get( |
| NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); |
| |
| // Create a new global variable with enough space for a redzone. |
| GlobalValue::LinkageTypes Linkage = G->getLinkage(); |
| if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) |
| Linkage = GlobalValue::InternalLinkage; |
| GlobalVariable *NewGlobal = |
| new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, |
| "", G, G->getThreadLocalMode()); |
| NewGlobal->copyAttributesFrom(G); |
| NewGlobal->setComdat(G->getComdat()); |
| NewGlobal->setAlignment(MinRZ); |
| // Don't fold globals with redzones. ODR violation detector and redzone |
| // poisoning implicitly creates a dependence on the global's address, so it |
| // is no longer valid for it to be marked unnamed_addr. |
| NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); |
| |
| // Move null-terminated C strings to "__asan_cstring" section on Darwin. |
| if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && |
| G->isConstant()) { |
| auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); |
| if (Seq && Seq->isCString()) |
| NewGlobal->setSection("__TEXT,__asan_cstring,regular"); |
| } |
| |
| // Transfer the debug info. The payload starts at offset zero so we can |
| // copy the debug info over as is. |
| SmallVector<DIGlobalVariableExpression *, 1> GVs; |
| G->getDebugInfo(GVs); |
| for (auto *GV : GVs) |
| NewGlobal->addDebugInfo(GV); |
| |
| Value *Indices2[2]; |
| Indices2[0] = IRB.getInt32(0); |
| Indices2[1] = IRB.getInt32(0); |
| |
| G->replaceAllUsesWith( |
| ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); |
| NewGlobal->takeName(G); |
| G->eraseFromParent(); |
| NewGlobals[i] = NewGlobal; |
| |
| Constant *SourceLoc; |
| if (!MD.SourceLoc.empty()) { |
| auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); |
| SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); |
| } else { |
| SourceLoc = ConstantInt::get(IntptrTy, 0); |
| } |
| |
| Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); |
| GlobalValue *InstrumentedGlobal = NewGlobal; |
| |
| bool CanUsePrivateAliases = |
| TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || |
| TargetTriple.isOSBinFormatWasm(); |
| if (CanUsePrivateAliases && UsePrivateAlias) { |
| // Create local alias for NewGlobal to avoid crash on ODR between |
| // instrumented and non-instrumented libraries. |
| InstrumentedGlobal = |
| GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); |
| } |
| |
| // ODR should not happen for local linkage. |
| if (NewGlobal->hasLocalLinkage()) { |
| ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), |
| IRB.getInt8PtrTy()); |
| } else if (UseOdrIndicator) { |
| // With local aliases, we need to provide another externally visible |
| // symbol __odr_asan_XXX to detect ODR violation. |
| auto *ODRIndicatorSym = |
| new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, |
| Constant::getNullValue(IRB.getInt8Ty()), |
| kODRGenPrefix + NameForGlobal, nullptr, |
| NewGlobal->getThreadLocalMode()); |
| |
| // Set meaningful attributes for indicator symbol. |
| ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); |
| ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); |
| ODRIndicatorSym->setAlignment(1); |
| ODRIndicator = ODRIndicatorSym; |
| } |
| |
| Constant *Initializer = ConstantStruct::get( |
| GlobalStructTy, |
| ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), |
| ConstantInt::get(IntptrTy, SizeInBytes), |
| ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), |
| ConstantExpr::getPointerCast(Name, IntptrTy), |
| ConstantExpr::getPointerCast(ModuleName, IntptrTy), |
| ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, |
| ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); |
| |
| if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; |
| |
| LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); |
| |
| Initializers[i] = Initializer; |
| } |
| |
| // Add instrumented globals to llvm.compiler.used list to avoid LTO from |
| // ConstantMerge'ing them. |
| SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; |
| for (size_t i = 0; i < n; i++) { |
| GlobalVariable *G = NewGlobals[i]; |
| if (G->getName().empty()) continue; |
| GlobalsToAddToUsedList.push_back(G); |
| } |
| appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); |
| |
| std::string ELFUniqueModuleId = |
| (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) |
| : ""; |
| |
| if (!ELFUniqueModuleId.empty()) { |
| InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); |
| *CtorComdat = true; |
| } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { |
| InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); |
| } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { |
| InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); |
| } else { |
| InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); |
| } |
| |
| // Create calls for poisoning before initializers run and unpoisoning after. |
| if (HasDynamicallyInitializedGlobals) |
| createInitializerPoisonCalls(M, ModuleName); |
| |
| LLVM_DEBUG(dbgs() << M); |
| return true; |
| } |
| |
| int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { |
| int LongSize = M.getDataLayout().getPointerSizeInBits(); |
| bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); |
| int Version = 8; |
| // 32-bit Android is one version ahead because of the switch to dynamic |
| // shadow. |
| Version += (LongSize == 32 && isAndroid); |
| return Version; |
| } |
| |
| bool ModuleAddressSanitizer::instrumentModule(Module &M) { |
| initializeCallbacks(M); |
| |
| if (CompileKernel) |
| return false; |
| |
| // Create a module constructor. A destructor is created lazily because not all |
| // platforms, and not all modules need it. |
| std::string VersionCheckName = |
| kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M)); |
| std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( |
| M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, |
| /*InitArgs=*/{}, VersionCheckName); |
| |
| bool CtorComdat = true; |
| bool Changed = false; |
| // TODO(glider): temporarily disabled globals instrumentation for KASan. |
| if (ClGlobals) { |
| IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); |
| Changed |= InstrumentGlobals(IRB, M, &CtorComdat); |
| } |
| |
| // Put the constructor and destructor in comdat if both |
| // (1) global instrumentation is not TU-specific |
| // (2) target is ELF. |
| if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { |
| AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); |
| appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority, |
| AsanCtorFunction); |
| if (AsanDtorFunction) { |
| AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); |
| appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority, |
| AsanDtorFunction); |
| } |
| } else { |
| appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); |
| if (AsanDtorFunction) |
| appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); |
| } |
| |
| return Changed; |
| } |
| |
| void AddressSanitizer::initializeCallbacks(Module &M) { |
| IRBuilder<> IRB(*C); |
| // Create __asan_report* callbacks. |
| // IsWrite, TypeSize and Exp are encoded in the function name. |
| for (int Exp = 0; Exp < 2; Exp++) { |
| for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { |
| const std::string TypeStr = AccessIsWrite ? "store" : "load"; |
| const std::string ExpStr = Exp ? "exp_" : ""; |
| const std::string EndingStr = Recover ? "_noabort" : ""; |
| |
| SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; |
| SmallVector<Type *, 2> Args1{1, IntptrTy}; |
| if (Exp) { |
| Type *ExpType = Type::getInt32Ty(*C); |
| Args2.push_back(ExpType); |
| Args1.push_back(ExpType); |
| } |
| AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( |
| kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, |
| FunctionType::get(IRB.getVoidTy(), Args2, false)); |
| |
| AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( |
| ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, |
| FunctionType::get(IRB.getVoidTy(), Args2, false)); |
| |
| for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; |
| AccessSizeIndex++) { |
| const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); |
| AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = |
| M.getOrInsertFunction( |
| kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, |
| FunctionType::get(IRB.getVoidTy(), Args1, false)); |
| |
| AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = |
| M.getOrInsertFunction( |
| ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, |
| FunctionType::get(IRB.getVoidTy(), Args1, false)); |
| } |
| } |
| } |
| |
| const std::string MemIntrinCallbackPrefix = |
| CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; |
| AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", |
| IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| IRB.getInt8PtrTy(), IntptrTy); |
| AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", |
| IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| IRB.getInt8PtrTy(), IntptrTy); |
| AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", |
| IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| IRB.getInt32Ty(), IntptrTy); |
| |
| AsanHandleNoReturnFunc = |
| M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); |
| |
| AsanPtrCmpFunction = |
| M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); |
| AsanPtrSubFunction = |
| M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); |
| // We insert an empty inline asm after __asan_report* to avoid callback merge. |
| EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), |
| StringRef(""), StringRef(""), |
| /*hasSideEffects=*/true); |
| if (Mapping.InGlobal) |
| AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", |
| ArrayType::get(IRB.getInt8Ty(), 0)); |
| } |
| |
| bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { |
| // For each NSObject descendant having a +load method, this method is invoked |
| // by the ObjC runtime before any of the static constructors is called. |
| // Therefore we need to instrument such methods with a call to __asan_init |
| // at the beginning in order to initialize our runtime before any access to |
| // the shadow memory. |
| // We cannot just ignore these methods, because they may call other |
| // instrumented functions. |
| if (F.getName().find(" load]") != std::string::npos) { |
| FunctionCallee AsanInitFunction = |
| declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); |
| IRBuilder<> IRB(&F.front(), F.front().begin()); |
| IRB.CreateCall(AsanInitFunction, {}); |
| return true; |
| } |
| return false; |
| } |
| |
| void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { |
| // Generate code only when dynamic addressing is needed. |
| if (Mapping.Offset != kDynamicShadowSentinel) |
| return; |
| |
| IRBuilder<> IRB(&F.front().front()); |
| if (Mapping.InGlobal) { |
| if (ClWithIfuncSuppressRemat) { |
| // An empty inline asm with input reg == output reg. |
| // An opaque pointer-to-int cast, basically. |
| InlineAsm *Asm = InlineAsm::get( |
| FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), |
| StringRef(""), StringRef("=r,0"), |
| /*hasSideEffects=*/false); |
| LocalDynamicShadow = |
| IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); |
| } else { |
| LocalDynamicShadow = |
| IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); |
| } |
| } else { |
| Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( |
| kAsanShadowMemoryDynamicAddress, IntptrTy); |
| LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); |
| } |
| } |
| |
| void AddressSanitizer::markEscapedLocalAllocas(Function &F) { |
| // Find the one possible call to llvm.localescape and pre-mark allocas passed |
| // to it as uninteresting. This assumes we haven't started processing allocas |
| // yet. This check is done up front because iterating the use list in |
| // isInterestingAlloca would be algorithmically slower. |
| assert(ProcessedAllocas.empty() && "must process localescape before allocas"); |
| |
| // Try to get the declaration of llvm.localescape. If it's not in the module, |
| // we can exit early. |
| if (!F.getParent()->getFunction("llvm.localescape")) return; |
| |
| // Look for a call to llvm.localescape call in the entry block. It can't be in |
| // any other block. |
| for (Instruction &I : F.getEntryBlock()) { |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); |
| if (II && II->getIntrinsicID() == Intrinsic::localescape) { |
| // We found a call. Mark all the allocas passed in as uninteresting. |
| for (Value *Arg : II->arg_operands()) { |
| AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); |
| assert(AI && AI->isStaticAlloca() && |
| "non-static alloca arg to localescape"); |
| ProcessedAllocas[AI] = false; |
| } |
| break; |
| } |
| } |
| } |
| |
| bool AddressSanitizer::instrumentFunction(Function &F, |
| const TargetLibraryInfo *TLI) { |
| if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; |
| if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; |
| if (F.getName().startswith("__asan_")) return false; |
| |
| bool FunctionModified = false; |
| |
| // If needed, insert __asan_init before checking for SanitizeAddress attr. |
| // This function needs to be called even if the function body is not |
| // instrumented. |
| if (maybeInsertAsanInitAtFunctionEntry(F)) |
| FunctionModified = true; |
| |
| // Leave if the function doesn't need instrumentation. |
| if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; |
| |
| LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); |
| |
| initializeCallbacks(*F.getParent()); |
| |
| FunctionStateRAII CleanupObj(this); |
| |
| maybeInsertDynamicShadowAtFunctionEntry(F); |
| |
| // We can't instrument allocas used with llvm.localescape. Only static allocas |
| // can be passed to that intrinsic. |
| markEscapedLocalAllocas(F); |
| |
| // We want to instrument every address only once per basic block (unless there |
| // are calls between uses). |
| SmallPtrSet<Value *, 16> TempsToInstrument; |
| SmallVector<Instruction *, 16> ToInstrument; |
| SmallVector<Instruction *, 8> NoReturnCalls; |
| SmallVector<BasicBlock *, 16> AllBlocks; |
| SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; |
| int NumAllocas = 0; |
| bool IsWrite; |
| unsigned Alignment; |
| uint64_t TypeSize; |
| |
| // Fill the set of memory operations to instrument. |
| for (auto &BB : F) { |
| AllBlocks.push_back(&BB); |
| TempsToInstrument.clear(); |
| int NumInsnsPerBB = 0; |
| for (auto &Inst : BB) { |
| if (LooksLikeCodeInBug11395(&Inst)) return false; |
| Value *MaybeMask = nullptr; |
| if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, |
| &Alignment, &MaybeMask)) { |
| if (ClOpt && ClOptSameTemp) { |
| // If we have a mask, skip instrumentation if we've already |
| // instrumented the full object. But don't add to TempsToInstrument |
| // because we might get another load/store with a different mask. |
| if (MaybeMask) { |
| if (TempsToInstrument.count(Addr)) |
| continue; // We've seen this (whole) temp in the current BB. |
| } else { |
| if (!TempsToInstrument.insert(Addr).second) |
| continue; // We've seen this temp in the current BB. |
| } |
| } |
| } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && |
| isInterestingPointerComparison(&Inst)) || |
| ((ClInvalidPointerPairs || ClInvalidPointerSub) && |
| isInterestingPointerSubtraction(&Inst))) { |
| PointerComparisonsOrSubtracts.push_back(&Inst); |
| continue; |
| } else if (isa<MemIntrinsic>(Inst)) { |
| // ok, take it. |
| } else { |
| if (isa<AllocaInst>(Inst)) NumAllocas++; |
| CallSite CS(&Inst); |
| if (CS) { |
| // A call inside BB. |
| TempsToInstrument.clear(); |
| if (CS.doesNotReturn() && !CS->getMetadata("nosanitize")) |
| NoReturnCalls.push_back(CS.getInstruction()); |
| } |
| if (CallInst *CI = dyn_cast<CallInst>(&Inst)) |
| maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); |
| continue; |
| } |
| ToInstrument.push_back(&Inst); |
| NumInsnsPerBB++; |
| if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; |
| } |
| } |
| |
| bool UseCalls = |
| (ClInstrumentationWithCallsThreshold >= 0 && |
| ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| ObjectSizeOpts ObjSizeOpts; |
| ObjSizeOpts.RoundToAlign = true; |
| ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); |
| |
| // Instrument. |
| int NumInstrumented = 0; |
| for (auto Inst : ToInstrument) { |
| if (ClDebugMin < 0 || ClDebugMax < 0 || |
| (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { |
| if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) |
| instrumentMop(ObjSizeVis, Inst, UseCalls, |
| F.getParent()->getDataLayout()); |
| else |
| instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); |
| } |
| NumInstrumented++; |
| } |
| |
| FunctionStackPoisoner FSP(F, *this); |
| bool ChangedStack = FSP.runOnFunction(); |
| |
| // We must unpoison the stack before NoReturn calls (throw, _exit, etc). |
| // See e.g. https://github.com/google/sanitizers/issues/37 |
| for (auto CI : NoReturnCalls) { |
| IRBuilder<> IRB(CI); |
| IRB.CreateCall(AsanHandleNoReturnFunc, {}); |
| } |
| |
| for (auto Inst : PointerComparisonsOrSubtracts) { |
| instrumentPointerComparisonOrSubtraction(Inst); |
| NumInstrumented++; |
| } |
| |
| if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty()) |
| FunctionModified = true; |
| |
| LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " |
| << F << "\n"); |
| |
| return FunctionModified; |
| } |
| |
| // Workaround for bug 11395: we don't want to instrument stack in functions |
| // with large assembly blobs (32-bit only), otherwise reg alloc may crash. |
| // FIXME: remove once the bug 11395 is fixed. |
| bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { |
| if (LongSize != 32) return false; |
| CallInst *CI = dyn_cast<CallInst>(I); |
| if (!CI || !CI->isInlineAsm()) return false; |
| if (CI->getNumArgOperands() <= 5) return false; |
| // We have inline assembly with quite a few arguments. |
| return true; |
| } |
| |
| void FunctionStackPoisoner::initializeCallbacks(Module &M) { |
| IRBuilder<> IRB(*C); |
| for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { |
| std::string Suffix = itostr(i); |
| AsanStackMallocFunc[i] = M.getOrInsertFunction( |
| kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); |
| AsanStackFreeFunc[i] = |
| M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, |
| IRB.getVoidTy(), IntptrTy, IntptrTy); |
| } |
| if (ASan.UseAfterScope) { |
| AsanPoisonStackMemoryFunc = M.getOrInsertFunction( |
| kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); |
| AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( |
| kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); |
| } |
| |
| for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { |
| std::ostringstream Name; |
| Name << kAsanSetShadowPrefix; |
| Name << std::setw(2) << std::setfill('0') << std::hex << Val; |
| AsanSetShadowFunc[Val] = |
| M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); |
| } |
| |
| AsanAllocaPoisonFunc = M.getOrInsertFunction( |
| kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); |
| AsanAllocasUnpoisonFunc = M.getOrInsertFunction( |
| kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); |
| } |
| |
| void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, |
| ArrayRef<uint8_t> ShadowBytes, |
| size_t Begin, size_t End, |
| IRBuilder<> &IRB, |
| Value *ShadowBase) { |
| if (Begin >= End) |
| return; |
| |
| const size_t LargestStoreSizeInBytes = |
| std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); |
| |
| const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); |
| |
| // Poison given range in shadow using larges store size with out leading and |
| // trailing zeros in ShadowMask. Zeros never change, so they need neither |
| // poisoning nor up-poisoning. Still we don't mind if some of them get into a |
| // middle of a store. |
| for (size_t i = Begin; i < End;) { |
| if (!ShadowMask[i]) { |
| assert(!ShadowBytes[i]); |
| ++i; |
| continue; |
| } |
| |
| size_t StoreSizeInBytes = LargestStoreSizeInBytes; |
| // Fit store size into the range. |
| while (StoreSizeInBytes > End - i) |
| StoreSizeInBytes /= 2; |
| |
| // Minimize store size by trimming trailing zeros. |
| for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { |
| while (j <= StoreSizeInBytes / 2) |
| StoreSizeInBytes /= 2; |
| } |
| |
| uint64_t Val = 0; |
| for (size_t j = 0; j < StoreSizeInBytes; j++) { |
| if (IsLittleEndian) |
| Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); |
| else |
| Val = (Val << 8) | ShadowBytes[i + j]; |
| } |
| |
| Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); |
| Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); |
| IRB.CreateAlignedStore( |
| Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1); |
| |
| i += StoreSizeInBytes; |
| } |
| } |
| |
| void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, |
| ArrayRef<uint8_t> ShadowBytes, |
| IRBuilder<> &IRB, Value *ShadowBase) { |
| copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); |
| } |
| |
| void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, |
| ArrayRef<uint8_t> ShadowBytes, |
| size_t Begin, size_t End, |
| IRBuilder<> &IRB, Value *ShadowBase) { |
| assert(ShadowMask.size() == ShadowBytes.size()); |
| size_t Done = Begin; |
| for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { |
| if (!ShadowMask[i]) { |
| assert(!ShadowBytes[i]); |
| continue; |
| } |
| uint8_t Val = ShadowBytes[i]; |
| if (!AsanSetShadowFunc[Val]) |
| continue; |
| |
| // Skip same values. |
| for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { |
| } |
| |
| if (j - i >= ClMaxInlinePoisoningSize) { |
| copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); |
| IRB.CreateCall(AsanSetShadowFunc[Val], |
| {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), |
| ConstantInt::get(IntptrTy, j - i)}); |
| Done = j; |
| } |
| } |
| |
| copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); |
| } |
| |
| // Fake stack allocator (asan_fake_stack.h) has 11 size classes |
| // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass |
| static int StackMallocSizeClass(uint64_t LocalStackSize) { |
| assert(LocalStackSize <= kMaxStackMallocSize); |
| uint64_t MaxSize = kMinStackMallocSize; |
| for (int i = 0;; i++, MaxSize *= 2) |
| if (LocalStackSize <= MaxSize) return i; |
| llvm_unreachable("impossible LocalStackSize"); |
| } |
| |
| void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { |
| Instruction *CopyInsertPoint = &F.front().front(); |
| if (CopyInsertPoint == ASan.LocalDynamicShadow) { |
| // Insert after the dynamic shadow location is determined |
| CopyInsertPoint = CopyInsertPoint->getNextNode(); |
| assert(CopyInsertPoint); |
| } |
| IRBuilder<> IRB(CopyInsertPoint); |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| for (Argument &Arg : F.args()) { |
| if (Arg.hasByValAttr()) { |
| Type *Ty = Arg.getType()->getPointerElementType(); |
| unsigned Align = Arg.getParamAlignment(); |
| if (Align == 0) Align = DL.getABITypeAlignment(Ty); |
| |
| AllocaInst *AI = IRB.CreateAlloca( |
| Ty, nullptr, |
| (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + |
| ".byval"); |
| AI->setAlignment(Align); |
| Arg.replaceAllUsesWith(AI); |
| |
| uint64_t AllocSize = DL.getTypeAllocSize(Ty); |
| IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize); |
| } |
| } |
| } |
| |
| PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, |
| Value *ValueIfTrue, |
| Instruction *ThenTerm, |
| Value *ValueIfFalse) { |
| PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); |
| BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); |
| PHI->addIncoming(ValueIfFalse, CondBlock); |
| BasicBlock *ThenBlock = ThenTerm->getParent(); |
| PHI->addIncoming(ValueIfTrue, ThenBlock); |
| return PHI; |
| } |
| |
| Value *FunctionStackPoisoner::createAllocaForLayout( |
| IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { |
| AllocaInst *Alloca; |
| if (Dynamic) { |
| Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), |
| ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), |
| "MyAlloca"); |
| } else { |
| Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), |
| nullptr, "MyAlloca"); |
| assert(Alloca->isStaticAlloca()); |
| } |
| assert((ClRealignStack & (ClRealignStack - 1)) == 0); |
| size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); |
| Alloca->setAlignment(FrameAlignment); |
| return IRB.CreatePointerCast(Alloca, IntptrTy); |
| } |
| |
| void FunctionStackPoisoner::createDynamicAllocasInitStorage() { |
| BasicBlock &FirstBB = *F.begin(); |
| IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); |
| DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); |
| IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); |
| DynamicAllocaLayout->setAlignment(32); |
| } |
| |
| void FunctionStackPoisoner::processDynamicAllocas() { |
| if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { |
| assert(DynamicAllocaPoisonCallVec.empty()); |
| return; |
| } |
| |
| // Insert poison calls for lifetime intrinsics for dynamic allocas. |
| for (const auto &APC : DynamicAllocaPoisonCallVec) { |
| assert(APC.InsBefore); |
| assert(APC.AI); |
| assert(ASan.isInterestingAlloca(*APC.AI)); |
| assert(!APC.AI->isStaticAlloca()); |
| |
| IRBuilder<> IRB(APC.InsBefore); |
| poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); |
| // Dynamic allocas will be unpoisoned unconditionally below in |
| // unpoisonDynamicAllocas. |
| // Flag that we need unpoison static allocas. |
| } |
| |
| // Handle dynamic allocas. |
| createDynamicAllocasInitStorage(); |
| for (auto &AI : DynamicAllocaVec) |
| handleDynamicAllocaCall(AI); |
| unpoisonDynamicAllocas(); |
| } |
| |
| void FunctionStackPoisoner::processStaticAllocas() { |
| if (AllocaVec.empty()) { |
| assert(StaticAllocaPoisonCallVec.empty()); |
| return; |
| } |
| |
| int StackMallocIdx = -1; |
| DebugLoc EntryDebugLocation; |
| if (auto SP = F.getSubprogram()) |
| EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); |
| |
| Instruction *InsBefore = AllocaVec[0]; |
| IRBuilder<> IRB(InsBefore); |
| IRB.SetCurrentDebugLocation(EntryDebugLocation); |
| |
| // Make sure non-instrumented allocas stay in the entry block. Otherwise, |
| // debug info is broken, because only entry-block allocas are treated as |
| // regular stack slots. |
| auto InsBeforeB = InsBefore->getParent(); |
| assert(InsBeforeB == &F.getEntryBlock()); |
| for (auto *AI : StaticAllocasToMoveUp) |
| if (AI->getParent() == InsBeforeB) |
| AI->moveBefore(InsBefore); |
| |
| // If we have a call to llvm.localescape, keep it in the entry block. |
| if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); |
| |
| SmallVector<ASanStackVariableDescription, 16> SVD; |
| SVD.reserve(AllocaVec.size()); |
| for (AllocaInst *AI : AllocaVec) { |
| ASanStackVariableDescription D = {AI->getName().data(), |
| ASan.getAllocaSizeInBytes(*AI), |
| 0, |
| AI->getAlignment(), |
| AI, |
| 0, |
| 0}; |
| SVD.push_back(D); |
| } |
| |
| // Minimal header size (left redzone) is 4 pointers, |
| // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. |
| size_t Granularity = 1ULL << Mapping.Scale; |
| size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); |
| const ASanStackFrameLayout &L = |
| ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); |
| |
| // Build AllocaToSVDMap for ASanStackVariableDescription lookup. |
| DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; |
| for (auto &Desc : SVD) |
| AllocaToSVDMap[Desc.AI] = &Desc; |
| |
| // Update SVD with information from lifetime intrinsics. |
| for (const auto &APC : StaticAllocaPoisonCallVec) { |
| assert(APC.InsBefore); |
| assert(APC.AI); |
| assert(ASan.isInterestingAlloca(*APC.AI)); |
| assert(APC.AI->isStaticAlloca()); |
| |
| ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; |
| Desc.LifetimeSize = Desc.Size; |
| if (const DILocation *FnLoc = EntryDebugLocation.get()) { |
| if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { |
| if (LifetimeLoc->getFile() == FnLoc->getFile()) |
| if (unsigned Line = LifetimeLoc->getLine()) |
| Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); |
| } |
| } |
| } |
| |
| auto DescriptionString = ComputeASanStackFrameDescription(SVD); |
| LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); |
| uint64_t LocalStackSize = L.FrameSize; |
| bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && |
| LocalStackSize <= kMaxStackMallocSize; |
| bool DoDynamicAlloca = ClDynamicAllocaStack; |
| // Don't do dynamic alloca or stack malloc if: |
| // 1) There is inline asm: too often it makes assumptions on which registers |
| // are available. |
| // 2) There is a returns_twice call (typically setjmp), which is |
| // optimization-hostile, and doesn't play well with introduced indirect |
| // register-relative calculation of local variable addresses. |
| DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; |
| DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; |
| |
| Value *StaticAlloca = |
| DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); |
| |
| Value *FakeStack; |
| Value *LocalStackBase; |
| Value *LocalStackBaseAlloca; |
| uint8_t DIExprFlags = DIExpression::ApplyOffset; |
| |
| if (DoStackMalloc) { |
| LocalStackBaseAlloca = |
| IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); |
| // void *FakeStack = __asan_option_detect_stack_use_after_return |
| // ? __asan_stack_malloc_N(LocalStackSize) |
| // : nullptr; |
| // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); |
| Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( |
| kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); |
| Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( |
| IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), |
| Constant::getNullValue(IRB.getInt32Ty())); |
| Instruction *Term = |
| SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); |
| IRBuilder<> IRBIf(Term); |
| IRBIf.SetCurrentDebugLocation(EntryDebugLocation); |
| StackMallocIdx = StackMallocSizeClass(LocalStackSize); |
| assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); |
| Value *FakeStackValue = |
| IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], |
| ConstantInt::get(IntptrTy, LocalStackSize)); |
| IRB.SetInsertPoint(InsBefore); |
| IRB.SetCurrentDebugLocation(EntryDebugLocation); |
| FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, |
| ConstantInt::get(IntptrTy, 0)); |
| |
| Value *NoFakeStack = |
| IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); |
| Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); |
| IRBIf.SetInsertPoint(Term); |
| IRBIf.SetCurrentDebugLocation(EntryDebugLocation); |
| Value *AllocaValue = |
| DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; |
| |
| IRB.SetInsertPoint(InsBefore); |
| IRB.SetCurrentDebugLocation(EntryDebugLocation); |
| LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); |
| IRB.SetCurrentDebugLocation(EntryDebugLocation); |
| IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); |
| DIExprFlags |= DIExpression::DerefBefore; |
| } else { |
| // void *FakeStack = nullptr; |
| // void *LocalStackBase = alloca(LocalStackSize); |
| FakeStack = ConstantInt::get(IntptrTy, 0); |
| LocalStackBase = |
| DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; |
| LocalStackBaseAlloca = LocalStackBase; |
| } |
| |
| // Replace Alloca instructions with base+offset. |
| for (const auto &Desc : SVD) { |
| AllocaInst *AI = Desc.AI; |
| replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, DIExprFlags, |
| Desc.Offset); |
| Value *NewAllocaPtr = IRB.CreateIntToPtr( |
| IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), |
| AI->getType()); |
| AI->replaceAllUsesWith(NewAllocaPtr); |
| } |
| |
| // The left-most redzone has enough space for at least 4 pointers. |
| // Write the Magic value to redzone[0]. |
| Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); |
| IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), |
| BasePlus0); |
| // Write the frame description constant to redzone[1]. |
| Value *BasePlus1 = IRB.CreateIntToPtr( |
| IRB.CreateAdd(LocalStackBase, |
| ConstantInt::get(IntptrTy, ASan.LongSize / 8)), |
| IntptrPtrTy); |
| GlobalVariable *StackDescriptionGlobal = |
| createPrivateGlobalForString(*F.getParent(), DescriptionString, |
| /*AllowMerging*/ true, kAsanGenPrefix); |
| Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); |
| IRB.CreateStore(Description, BasePlus1); |
| // Write the PC to redzone[2]. |
| Value *BasePlus2 = IRB.CreateIntToPtr( |
| IRB.CreateAdd(LocalStackBase, |
| ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), |
| IntptrPtrTy); |
| IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); |
| |
| const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); |
| |
| // Poison the stack red zones at the entry. |
| Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); |
| // As mask we must use most poisoned case: red zones and after scope. |
| // As bytes we can use either the same or just red zones only. |
| copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); |
| |
| if (!StaticAllocaPoisonCallVec.empty()) { |
| const auto &ShadowInScope = GetShadowBytes(SVD, L); |
| |
| // Poison static allocas near lifetime intrinsics. |
| for (const auto &APC : StaticAllocaPoisonCallVec) { |
| const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; |
| assert(Desc.Offset % L.Granularity == 0); |
| size_t Begin = Desc.Offset / L.Granularity; |
| size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; |
| |
| IRBuilder<> IRB(APC.InsBefore); |
| copyToShadow(ShadowAfterScope, |
| APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, |
| IRB, ShadowBase); |
| } |
| } |
| |
| SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); |
| SmallVector<uint8_t, 64> ShadowAfterReturn; |
| |
| // (Un)poison the stack before all ret instructions. |
| for (auto Ret : RetVec) { |
| IRBuilder<> IRBRet(Ret); |
| // Mark the current frame as retired. |
| IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), |
| BasePlus0); |
| if (DoStackMalloc) { |
| assert(StackMallocIdx >= 0); |
| // if FakeStack != 0 // LocalStackBase == FakeStack |
| // // In use-after-return mode, poison the whole stack frame. |
| // if StackMallocIdx <= 4 |
| // // For small sizes inline the whole thing: |
| // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); |
| // **SavedFlagPtr(FakeStack) = 0 |
| // else |
| // __asan_stack_free_N(FakeStack, LocalStackSize) |
| // else |
| // <This is not a fake stack; unpoison the redzones> |
| Value *Cmp = |
| IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); |
| Instruction *ThenTerm, *ElseTerm; |
| SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); |
| |
| IRBuilder<> IRBPoison(ThenTerm); |
| if (StackMallocIdx <= 4) { |
| int ClassSize = kMinStackMallocSize << StackMallocIdx; |
| ShadowAfterReturn.resize(ClassSize / L.Granularity, |
| kAsanStackUseAfterReturnMagic); |
| copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, |
| ShadowBase); |
| Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( |
| FakeStack, |
| ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); |
| Value *SavedFlagPtr = IRBPoison.CreateLoad( |
| IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); |
| IRBPoison.CreateStore( |
| Constant::getNullValue(IRBPoison.getInt8Ty()), |
| IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); |
| } else { |
| // For larger frames call __asan_stack_free_*. |
| IRBPoison.CreateCall( |
| AsanStackFreeFunc[StackMallocIdx], |
| {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); |
| } |
| |
| IRBuilder<> IRBElse(ElseTerm); |
| copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); |
| } else { |
| copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); |
| } |
| } |
| |
| // We are done. Remove the old unused alloca instructions. |
| for (auto AI : AllocaVec) AI->eraseFromParent(); |
| } |
| |
| void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, |
| IRBuilder<> &IRB, bool DoPoison) { |
| // For now just insert the call to ASan runtime. |
| Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); |
| Value *SizeArg = ConstantInt::get(IntptrTy, Size); |
| IRB.CreateCall( |
| DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, |
| {AddrArg, SizeArg}); |
| } |
| |
| // Handling llvm.lifetime intrinsics for a given %alloca: |
| // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. |
| // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect |
| // invalid accesses) and unpoison it for llvm.lifetime.start (the memory |
| // could be poisoned by previous llvm.lifetime.end instruction, as the |
| // variable may go in and out of scope several times, e.g. in loops). |
| // (3) if we poisoned at least one %alloca in a function, |
| // unpoison the whole stack frame at function exit. |
| void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { |
| IRBuilder<> IRB(AI); |
| |
| const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); |
| const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; |
| |
| Value *Zero = Constant::getNullValue(IntptrTy); |
| Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); |
| Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); |
| |
| // Since we need to extend alloca with additional memory to locate |
| // redzones, and OldSize is number of allocated blocks with |
| // ElementSize size, get allocated memory size in bytes by |
| // OldSize * ElementSize. |
| const unsigned ElementSize = |
| F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); |
| Value *OldSize = |
| IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), |
| ConstantInt::get(IntptrTy, ElementSize)); |
| |
| // PartialSize = OldSize % 32 |
| Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); |
| |
| // Misalign = kAllocaRzSize - PartialSize; |
| Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); |
| |
| // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; |
| Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); |
| Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); |
| |
| // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize |
| // Align is added to locate left redzone, PartialPadding for possible |
| // partial redzone and kAllocaRzSize for right redzone respectively. |
| Value *AdditionalChunkSize = IRB.CreateAdd( |
| ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); |
| |
| Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); |
| |
| // Insert new alloca with new NewSize and Align params. |
| AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); |
| NewAlloca->setAlignment(Align); |
| |
| // NewAddress = Address + Align |
| Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), |
| ConstantInt::get(IntptrTy, Align)); |
| |
| // Insert __asan_alloca_poison call for new created alloca. |
| IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); |
| |
| // Store the last alloca's address to DynamicAllocaLayout. We'll need this |
| // for unpoisoning stuff. |
| IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); |
| |
| Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); |
| |
| // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. |
| AI->replaceAllUsesWith(NewAddressPtr); |
| |
| // We are done. Erase old alloca from parent. |
| AI->eraseFromParent(); |
| } |
| |
| // isSafeAccess returns true if Addr is always inbounds with respect to its |
| // base object. For example, it is a field access or an array access with |
| // constant inbounds index. |
| bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, |
| Value *Addr, uint64_t TypeSize) const { |
| SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); |
| if (!ObjSizeVis.bothKnown(SizeOffset)) return false; |
| uint64_t Size = SizeOffset.first.getZExtValue(); |
| int64_t Offset = SizeOffset.second.getSExtValue(); |
| // Three checks are required to ensure safety: |
| // . Offset >= 0 (since the offset is given from the base ptr) |
| // . Size >= Offset (unsigned) |
| // . Size - Offset >= NeededSize (unsigned) |
| return Offset >= 0 && Size >= uint64_t(Offset) && |
| Size - uint64_t(Offset) >= TypeSize / 8; |
| } |