| //===- HWAddressSanitizer.cpp - detector of uninitialized reads -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This file is a part of HWAddressSanitizer, an address sanity checker |
| /// based on tagged addressing. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| #include <sstream> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "hwasan" |
| |
| static const char *const kHwasanModuleCtorName = "hwasan.module_ctor"; |
| static const char *const kHwasanInitName = "__hwasan_init"; |
| |
| static const char *const kHwasanShadowMemoryDynamicAddress = |
| "__hwasan_shadow_memory_dynamic_address"; |
| |
| // Accesses sizes are powers of two: 1, 2, 4, 8, 16. |
| static const size_t kNumberOfAccessSizes = 5; |
| |
| static const size_t kDefaultShadowScale = 4; |
| static const uint64_t kDynamicShadowSentinel = |
| std::numeric_limits<uint64_t>::max(); |
| static const unsigned kPointerTagShift = 56; |
| |
| static const unsigned kShadowBaseAlignment = 32; |
| |
| static cl::opt<std::string> ClMemoryAccessCallbackPrefix( |
| "hwasan-memory-access-callback-prefix", |
| cl::desc("Prefix for memory access callbacks"), cl::Hidden, |
| cl::init("__hwasan_")); |
| |
| static cl::opt<bool> |
| ClInstrumentWithCalls("hwasan-instrument-with-calls", |
| cl::desc("instrument reads and writes with callbacks"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClInstrumentReads("hwasan-instrument-reads", |
| cl::desc("instrument read instructions"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClInstrumentWrites( |
| "hwasan-instrument-writes", cl::desc("instrument write instructions"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClInstrumentAtomics( |
| "hwasan-instrument-atomics", |
| cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClRecover( |
| "hwasan-recover", |
| cl::desc("Enable recovery mode (continue-after-error)."), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClInstrumentStack("hwasan-instrument-stack", |
| cl::desc("instrument stack (allocas)"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClUARRetagToZero( |
| "hwasan-uar-retag-to-zero", |
| cl::desc("Clear alloca tags before returning from the function to allow " |
| "non-instrumented and instrumented function calls mix. When set " |
| "to false, allocas are retagged before returning from the " |
| "function to detect use after return."), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClGenerateTagsWithCalls( |
| "hwasan-generate-tags-with-calls", |
| cl::desc("generate new tags with runtime library calls"), cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<int> ClMatchAllTag( |
| "hwasan-match-all-tag", |
| cl::desc("don't report bad accesses via pointers with this tag"), |
| cl::Hidden, cl::init(-1)); |
| |
| static cl::opt<bool> ClEnableKhwasan( |
| "hwasan-kernel", |
| cl::desc("Enable KernelHWAddressSanitizer instrumentation"), |
| cl::Hidden, cl::init(false)); |
| |
| // These flags allow to change the shadow mapping and control how shadow memory |
| // is accessed. The shadow mapping looks like: |
| // Shadow = (Mem >> scale) + offset |
| |
| static cl::opt<uint64_t> |
| ClMappingOffset("hwasan-mapping-offset", |
| cl::desc("HWASan shadow mapping offset [EXPERIMENTAL]"), |
| cl::Hidden, cl::init(0)); |
| |
| static cl::opt<bool> |
| ClWithIfunc("hwasan-with-ifunc", |
| cl::desc("Access dynamic shadow through an ifunc global on " |
| "platforms that support this"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClWithTls( |
| "hwasan-with-tls", |
| cl::desc("Access dynamic shadow through an thread-local pointer on " |
| "platforms that support this"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> |
| ClRecordStackHistory("hwasan-record-stack-history", |
| cl::desc("Record stack frames with tagged allocations " |
| "in a thread-local ring buffer"), |
| cl::Hidden, cl::init(true)); |
| static cl::opt<bool> |
| ClInstrumentMemIntrinsics("hwasan-instrument-mem-intrinsics", |
| cl::desc("instrument memory intrinsics"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> |
| ClInstrumentLandingPads("hwasan-instrument-landing-pads", |
| cl::desc("instrument landing pads"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClInlineAllChecks("hwasan-inline-all-checks", |
| cl::desc("inline all checks"), |
| cl::Hidden, cl::init(false)); |
| |
| namespace { |
| |
| /// An instrumentation pass implementing detection of addressability bugs |
| /// using tagged pointers. |
| class HWAddressSanitizer { |
| public: |
| explicit HWAddressSanitizer(Module &M, bool CompileKernel = false, |
| bool Recover = false) { |
| this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; |
| this->CompileKernel = ClEnableKhwasan.getNumOccurrences() > 0 ? |
| ClEnableKhwasan : CompileKernel; |
| |
| initializeModule(M); |
| } |
| |
| bool sanitizeFunction(Function &F); |
| void initializeModule(Module &M); |
| |
| void initializeCallbacks(Module &M); |
| |
| Value *getDynamicShadowIfunc(IRBuilder<> &IRB); |
| Value *getDynamicShadowNonTls(IRBuilder<> &IRB); |
| |
| void untagPointerOperand(Instruction *I, Value *Addr); |
| Value *shadowBase(); |
| Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); |
| void instrumentMemAccessInline(Value *Ptr, bool IsWrite, |
| unsigned AccessSizeIndex, |
| Instruction *InsertBefore); |
| void instrumentMemIntrinsic(MemIntrinsic *MI); |
| bool instrumentMemAccess(Instruction *I); |
| Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, |
| uint64_t *TypeSize, unsigned *Alignment, |
| Value **MaybeMask); |
| |
| bool isInterestingAlloca(const AllocaInst &AI); |
| bool tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, Value *Tag, size_t Size); |
| Value *tagPointer(IRBuilder<> &IRB, Type *Ty, Value *PtrLong, Value *Tag); |
| Value *untagPointer(IRBuilder<> &IRB, Value *PtrLong); |
| bool instrumentStack( |
| SmallVectorImpl<AllocaInst *> &Allocas, |
| DenseMap<AllocaInst *, std::vector<DbgDeclareInst *>> &AllocaDeclareMap, |
| SmallVectorImpl<Instruction *> &RetVec, Value *StackTag); |
| Value *readRegister(IRBuilder<> &IRB, StringRef Name); |
| bool instrumentLandingPads(SmallVectorImpl<Instruction *> &RetVec); |
| Value *getNextTagWithCall(IRBuilder<> &IRB); |
| Value *getStackBaseTag(IRBuilder<> &IRB); |
| Value *getAllocaTag(IRBuilder<> &IRB, Value *StackTag, AllocaInst *AI, |
| unsigned AllocaNo); |
| Value *getUARTag(IRBuilder<> &IRB, Value *StackTag); |
| |
| Value *getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty); |
| void emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord); |
| |
| private: |
| LLVMContext *C; |
| std::string CurModuleUniqueId; |
| Triple TargetTriple; |
| FunctionCallee HWAsanMemmove, HWAsanMemcpy, HWAsanMemset; |
| FunctionCallee HWAsanHandleVfork; |
| |
| /// This struct defines the shadow mapping using the rule: |
| /// shadow = (mem >> Scale) + Offset. |
| /// If InGlobal is true, then |
| /// extern char __hwasan_shadow[]; |
| /// shadow = (mem >> Scale) + &__hwasan_shadow |
| /// If InTls is true, then |
| /// extern char *__hwasan_tls; |
| /// shadow = (mem>>Scale) + align_up(__hwasan_shadow, kShadowBaseAlignment) |
| struct ShadowMapping { |
| int Scale; |
| uint64_t Offset; |
| bool InGlobal; |
| bool InTls; |
| |
| void init(Triple &TargetTriple); |
| unsigned getAllocaAlignment() const { return 1U << Scale; } |
| }; |
| ShadowMapping Mapping; |
| |
| Type *IntptrTy; |
| Type *Int8PtrTy; |
| Type *Int8Ty; |
| Type *Int32Ty; |
| |
| bool CompileKernel; |
| bool Recover; |
| |
| Function *HwasanCtorFunction; |
| |
| FunctionCallee HwasanMemoryAccessCallback[2][kNumberOfAccessSizes]; |
| FunctionCallee HwasanMemoryAccessCallbackSized[2]; |
| |
| FunctionCallee HwasanTagMemoryFunc; |
| FunctionCallee HwasanGenerateTagFunc; |
| FunctionCallee HwasanThreadEnterFunc; |
| |
| Constant *ShadowGlobal; |
| |
| Value *LocalDynamicShadow = nullptr; |
| Value *StackBaseTag = nullptr; |
| GlobalValue *ThreadPtrGlobal = nullptr; |
| }; |
| |
| class HWAddressSanitizerLegacyPass : public FunctionPass { |
| public: |
| // Pass identification, replacement for typeid. |
| static char ID; |
| |
| explicit HWAddressSanitizerLegacyPass(bool CompileKernel = false, |
| bool Recover = false) |
| : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover) {} |
| |
| StringRef getPassName() const override { return "HWAddressSanitizer"; } |
| |
| bool doInitialization(Module &M) override { |
| HWASan = llvm::make_unique<HWAddressSanitizer>(M, CompileKernel, Recover); |
| return true; |
| } |
| |
| bool runOnFunction(Function &F) override { |
| return HWASan->sanitizeFunction(F); |
| } |
| |
| bool doFinalization(Module &M) override { |
| HWASan.reset(); |
| return false; |
| } |
| |
| private: |
| std::unique_ptr<HWAddressSanitizer> HWASan; |
| bool CompileKernel; |
| bool Recover; |
| }; |
| |
| } // end anonymous namespace |
| |
| char HWAddressSanitizerLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN( |
| HWAddressSanitizerLegacyPass, "hwasan", |
| "HWAddressSanitizer: detect memory bugs using tagged addressing.", false, |
| false) |
| INITIALIZE_PASS_END( |
| HWAddressSanitizerLegacyPass, "hwasan", |
| "HWAddressSanitizer: detect memory bugs using tagged addressing.", false, |
| false) |
| |
| FunctionPass *llvm::createHWAddressSanitizerLegacyPassPass(bool CompileKernel, |
| bool Recover) { |
| assert(!CompileKernel || Recover); |
| return new HWAddressSanitizerLegacyPass(CompileKernel, Recover); |
| } |
| |
| HWAddressSanitizerPass::HWAddressSanitizerPass(bool CompileKernel, bool Recover) |
| : CompileKernel(CompileKernel), Recover(Recover) {} |
| |
| PreservedAnalyses HWAddressSanitizerPass::run(Module &M, |
| ModuleAnalysisManager &MAM) { |
| HWAddressSanitizer HWASan(M, CompileKernel, Recover); |
| bool Modified = false; |
| for (Function &F : M) |
| Modified |= HWASan.sanitizeFunction(F); |
| if (Modified) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| /// Module-level initialization. |
| /// |
| /// inserts a call to __hwasan_init to the module's constructor list. |
| void HWAddressSanitizer::initializeModule(Module &M) { |
| LLVM_DEBUG(dbgs() << "Init " << M.getName() << "\n"); |
| auto &DL = M.getDataLayout(); |
| |
| TargetTriple = Triple(M.getTargetTriple()); |
| |
| Mapping.init(TargetTriple); |
| |
| C = &(M.getContext()); |
| CurModuleUniqueId = getUniqueModuleId(&M); |
| IRBuilder<> IRB(*C); |
| IntptrTy = IRB.getIntPtrTy(DL); |
| Int8PtrTy = IRB.getInt8PtrTy(); |
| Int8Ty = IRB.getInt8Ty(); |
| Int32Ty = IRB.getInt32Ty(); |
| |
| HwasanCtorFunction = nullptr; |
| if (!CompileKernel) { |
| std::tie(HwasanCtorFunction, std::ignore) = |
| getOrCreateSanitizerCtorAndInitFunctions( |
| M, kHwasanModuleCtorName, kHwasanInitName, |
| /*InitArgTypes=*/{}, |
| /*InitArgs=*/{}, |
| // This callback is invoked when the functions are created the first |
| // time. Hook them into the global ctors list in that case: |
| [&](Function *Ctor, FunctionCallee) { |
| Comdat *CtorComdat = M.getOrInsertComdat(kHwasanModuleCtorName); |
| Ctor->setComdat(CtorComdat); |
| appendToGlobalCtors(M, Ctor, 0, Ctor); |
| }); |
| } |
| |
| if (!TargetTriple.isAndroid()) { |
| Constant *C = M.getOrInsertGlobal("__hwasan_tls", IntptrTy, [&] { |
| auto *GV = new GlobalVariable(M, IntptrTy, /*isConstant=*/false, |
| GlobalValue::ExternalLinkage, nullptr, |
| "__hwasan_tls", nullptr, |
| GlobalVariable::InitialExecTLSModel); |
| appendToCompilerUsed(M, GV); |
| return GV; |
| }); |
| ThreadPtrGlobal = cast<GlobalVariable>(C); |
| } |
| } |
| |
| void HWAddressSanitizer::initializeCallbacks(Module &M) { |
| IRBuilder<> IRB(*C); |
| for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { |
| const std::string TypeStr = AccessIsWrite ? "store" : "load"; |
| const std::string EndingStr = Recover ? "_noabort" : ""; |
| |
| HwasanMemoryAccessCallbackSized[AccessIsWrite] = M.getOrInsertFunction( |
| ClMemoryAccessCallbackPrefix + TypeStr + "N" + EndingStr, |
| FunctionType::get(IRB.getVoidTy(), {IntptrTy, IntptrTy}, false)); |
| |
| for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; |
| AccessSizeIndex++) { |
| HwasanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] = |
| M.getOrInsertFunction( |
| ClMemoryAccessCallbackPrefix + TypeStr + |
| itostr(1ULL << AccessSizeIndex) + EndingStr, |
| FunctionType::get(IRB.getVoidTy(), {IntptrTy}, false)); |
| } |
| } |
| |
| HwasanTagMemoryFunc = M.getOrInsertFunction( |
| "__hwasan_tag_memory", IRB.getVoidTy(), Int8PtrTy, Int8Ty, IntptrTy); |
| HwasanGenerateTagFunc = |
| M.getOrInsertFunction("__hwasan_generate_tag", Int8Ty); |
| |
| ShadowGlobal = M.getOrInsertGlobal("__hwasan_shadow", |
| ArrayType::get(IRB.getInt8Ty(), 0)); |
| |
| const std::string MemIntrinCallbackPrefix = |
| CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; |
| HWAsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", |
| IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| IRB.getInt8PtrTy(), IntptrTy); |
| HWAsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", |
| IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| IRB.getInt8PtrTy(), IntptrTy); |
| HWAsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", |
| IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), |
| IRB.getInt32Ty(), IntptrTy); |
| |
| HWAsanHandleVfork = |
| M.getOrInsertFunction("__hwasan_handle_vfork", IRB.getVoidTy(), IntptrTy); |
| |
| HwasanThreadEnterFunc = |
| M.getOrInsertFunction("__hwasan_thread_enter", IRB.getVoidTy()); |
| } |
| |
| Value *HWAddressSanitizer::getDynamicShadowIfunc(IRBuilder<> &IRB) { |
| // An empty inline asm with input reg == output reg. |
| // An opaque no-op cast, basically. |
| InlineAsm *Asm = InlineAsm::get( |
| FunctionType::get(Int8PtrTy, {ShadowGlobal->getType()}, false), |
| StringRef(""), StringRef("=r,0"), |
| /*hasSideEffects=*/false); |
| return IRB.CreateCall(Asm, {ShadowGlobal}, ".hwasan.shadow"); |
| } |
| |
| Value *HWAddressSanitizer::getDynamicShadowNonTls(IRBuilder<> &IRB) { |
| // Generate code only when dynamic addressing is needed. |
| if (Mapping.Offset != kDynamicShadowSentinel) |
| return nullptr; |
| |
| if (Mapping.InGlobal) { |
| return getDynamicShadowIfunc(IRB); |
| } else { |
| Value *GlobalDynamicAddress = |
| IRB.GetInsertBlock()->getParent()->getParent()->getOrInsertGlobal( |
| kHwasanShadowMemoryDynamicAddress, Int8PtrTy); |
| return IRB.CreateLoad(Int8PtrTy, GlobalDynamicAddress); |
| } |
| } |
| |
| Value *HWAddressSanitizer::isInterestingMemoryAccess(Instruction *I, |
| bool *IsWrite, |
| uint64_t *TypeSize, |
| unsigned *Alignment, |
| Value **MaybeMask) { |
| // Skip memory accesses inserted by another instrumentation. |
| if (I->getMetadata("nosanitize")) return nullptr; |
| |
| // Do not instrument the load fetching the dynamic shadow address. |
| if (LocalDynamicShadow == I) |
| return nullptr; |
| |
| Value *PtrOperand = nullptr; |
| const DataLayout &DL = I->getModule()->getDataLayout(); |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| if (!ClInstrumentReads) return nullptr; |
| *IsWrite = false; |
| *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); |
| *Alignment = LI->getAlignment(); |
| PtrOperand = LI->getPointerOperand(); |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| if (!ClInstrumentWrites) return nullptr; |
| *IsWrite = true; |
| *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); |
| *Alignment = SI->getAlignment(); |
| PtrOperand = SI->getPointerOperand(); |
| } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { |
| if (!ClInstrumentAtomics) return nullptr; |
| *IsWrite = true; |
| *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); |
| *Alignment = 0; |
| PtrOperand = RMW->getPointerOperand(); |
| } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { |
| if (!ClInstrumentAtomics) return nullptr; |
| *IsWrite = true; |
| *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); |
| *Alignment = 0; |
| PtrOperand = XCHG->getPointerOperand(); |
| } |
| |
| if (PtrOperand) { |
| // Do not instrument accesses from different address spaces; we cannot deal |
| // with them. |
| Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); |
| if (PtrTy->getPointerAddressSpace() != 0) |
| return nullptr; |
| |
| // Ignore swifterror addresses. |
| // swifterror memory addresses are mem2reg promoted by instruction |
| // selection. As such they cannot have regular uses like an instrumentation |
| // function and it makes no sense to track them as memory. |
| if (PtrOperand->isSwiftError()) |
| return nullptr; |
| } |
| |
| return PtrOperand; |
| } |
| |
| static unsigned getPointerOperandIndex(Instruction *I) { |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| return LI->getPointerOperandIndex(); |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) |
| return SI->getPointerOperandIndex(); |
| if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) |
| return RMW->getPointerOperandIndex(); |
| if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) |
| return XCHG->getPointerOperandIndex(); |
| report_fatal_error("Unexpected instruction"); |
| return -1; |
| } |
| |
| static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { |
| size_t Res = countTrailingZeros(TypeSize / 8); |
| assert(Res < kNumberOfAccessSizes); |
| return Res; |
| } |
| |
| void HWAddressSanitizer::untagPointerOperand(Instruction *I, Value *Addr) { |
| if (TargetTriple.isAArch64()) |
| return; |
| |
| IRBuilder<> IRB(I); |
| Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); |
| Value *UntaggedPtr = |
| IRB.CreateIntToPtr(untagPointer(IRB, AddrLong), Addr->getType()); |
| I->setOperand(getPointerOperandIndex(I), UntaggedPtr); |
| } |
| |
| Value *HWAddressSanitizer::shadowBase() { |
| if (LocalDynamicShadow) |
| return LocalDynamicShadow; |
| return ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, Mapping.Offset), |
| Int8PtrTy); |
| } |
| |
| Value *HWAddressSanitizer::memToShadow(Value *Mem, IRBuilder<> &IRB) { |
| // Mem >> Scale |
| Value *Shadow = IRB.CreateLShr(Mem, Mapping.Scale); |
| if (Mapping.Offset == 0) |
| return IRB.CreateIntToPtr(Shadow, Int8PtrTy); |
| // (Mem >> Scale) + Offset |
| return IRB.CreateGEP(Int8Ty, shadowBase(), Shadow); |
| } |
| |
| void HWAddressSanitizer::instrumentMemAccessInline(Value *Ptr, bool IsWrite, |
| unsigned AccessSizeIndex, |
| Instruction *InsertBefore) { |
| const int64_t AccessInfo = Recover * 0x20 + IsWrite * 0x10 + AccessSizeIndex; |
| IRBuilder<> IRB(InsertBefore); |
| |
| if (!ClInlineAllChecks && TargetTriple.isAArch64() && |
| TargetTriple.isOSBinFormatELF() && !Recover) { |
| Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
| Ptr = IRB.CreateBitCast(Ptr, Int8PtrTy); |
| IRB.CreateCall( |
| Intrinsic::getDeclaration(M, Intrinsic::hwasan_check_memaccess), |
| {shadowBase(), Ptr, ConstantInt::get(Int32Ty, AccessInfo)}); |
| return; |
| } |
| |
| Value *PtrLong = IRB.CreatePointerCast(Ptr, IntptrTy); |
| Value *PtrTag = IRB.CreateTrunc(IRB.CreateLShr(PtrLong, kPointerTagShift), |
| IRB.getInt8Ty()); |
| Value *AddrLong = untagPointer(IRB, PtrLong); |
| Value *Shadow = memToShadow(AddrLong, IRB); |
| Value *MemTag = IRB.CreateLoad(Int8Ty, Shadow); |
| Value *TagMismatch = IRB.CreateICmpNE(PtrTag, MemTag); |
| |
| int matchAllTag = ClMatchAllTag.getNumOccurrences() > 0 ? |
| ClMatchAllTag : (CompileKernel ? 0xFF : -1); |
| if (matchAllTag != -1) { |
| Value *TagNotIgnored = IRB.CreateICmpNE(PtrTag, |
| ConstantInt::get(PtrTag->getType(), matchAllTag)); |
| TagMismatch = IRB.CreateAnd(TagMismatch, TagNotIgnored); |
| } |
| |
| Instruction *CheckTerm = |
| SplitBlockAndInsertIfThen(TagMismatch, InsertBefore, false, |
| MDBuilder(*C).createBranchWeights(1, 100000)); |
| |
| IRB.SetInsertPoint(CheckTerm); |
| Value *OutOfShortGranuleTagRange = |
| IRB.CreateICmpUGT(MemTag, ConstantInt::get(Int8Ty, 15)); |
| Instruction *CheckFailTerm = |
| SplitBlockAndInsertIfThen(OutOfShortGranuleTagRange, CheckTerm, !Recover, |
| MDBuilder(*C).createBranchWeights(1, 100000)); |
| |
| IRB.SetInsertPoint(CheckTerm); |
| Value *PtrLowBits = IRB.CreateTrunc(IRB.CreateAnd(PtrLong, 15), Int8Ty); |
| PtrLowBits = IRB.CreateAdd( |
| PtrLowBits, ConstantInt::get(Int8Ty, (1 << AccessSizeIndex) - 1)); |
| Value *PtrLowBitsOOB = IRB.CreateICmpUGE(PtrLowBits, MemTag); |
| SplitBlockAndInsertIfThen(PtrLowBitsOOB, CheckTerm, false, |
| MDBuilder(*C).createBranchWeights(1, 100000), |
| nullptr, nullptr, CheckFailTerm->getParent()); |
| |
| IRB.SetInsertPoint(CheckTerm); |
| Value *InlineTagAddr = IRB.CreateOr(AddrLong, 15); |
| InlineTagAddr = IRB.CreateIntToPtr(InlineTagAddr, Int8PtrTy); |
| Value *InlineTag = IRB.CreateLoad(Int8Ty, InlineTagAddr); |
| Value *InlineTagMismatch = IRB.CreateICmpNE(PtrTag, InlineTag); |
| SplitBlockAndInsertIfThen(InlineTagMismatch, CheckTerm, false, |
| MDBuilder(*C).createBranchWeights(1, 100000), |
| nullptr, nullptr, CheckFailTerm->getParent()); |
| |
| IRB.SetInsertPoint(CheckFailTerm); |
| InlineAsm *Asm; |
| switch (TargetTriple.getArch()) { |
| case Triple::x86_64: |
| // The signal handler will find the data address in rdi. |
| Asm = InlineAsm::get( |
| FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false), |
| "int3\nnopl " + itostr(0x40 + AccessInfo) + "(%rax)", |
| "{rdi}", |
| /*hasSideEffects=*/true); |
| break; |
| case Triple::aarch64: |
| case Triple::aarch64_be: |
| // The signal handler will find the data address in x0. |
| Asm = InlineAsm::get( |
| FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false), |
| "brk #" + itostr(0x900 + AccessInfo), |
| "{x0}", |
| /*hasSideEffects=*/true); |
| break; |
| default: |
| report_fatal_error("unsupported architecture"); |
| } |
| IRB.CreateCall(Asm, PtrLong); |
| if (Recover) |
| cast<BranchInst>(CheckFailTerm)->setSuccessor(0, CheckTerm->getParent()); |
| } |
| |
| void HWAddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { |
| IRBuilder<> IRB(MI); |
| if (isa<MemTransferInst>(MI)) { |
| IRB.CreateCall( |
| isa<MemMoveInst>(MI) ? HWAsanMemmove : HWAsanMemcpy, |
| {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), |
| IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), |
| IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); |
| } else if (isa<MemSetInst>(MI)) { |
| IRB.CreateCall( |
| HWAsanMemset, |
| {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), |
| IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), |
| IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); |
| } |
| MI->eraseFromParent(); |
| } |
| |
| bool HWAddressSanitizer::instrumentMemAccess(Instruction *I) { |
| LLVM_DEBUG(dbgs() << "Instrumenting: " << *I << "\n"); |
| bool IsWrite = false; |
| unsigned Alignment = 0; |
| uint64_t TypeSize = 0; |
| Value *MaybeMask = nullptr; |
| |
| if (ClInstrumentMemIntrinsics && isa<MemIntrinsic>(I)) { |
| instrumentMemIntrinsic(cast<MemIntrinsic>(I)); |
| return true; |
| } |
| |
| Value *Addr = |
| isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask); |
| |
| if (!Addr) |
| return false; |
| |
| if (MaybeMask) |
| return false; //FIXME |
| |
| IRBuilder<> IRB(I); |
| if (isPowerOf2_64(TypeSize) && |
| (TypeSize / 8 <= (1UL << (kNumberOfAccessSizes - 1))) && |
| (Alignment >= (1UL << Mapping.Scale) || Alignment == 0 || |
| Alignment >= TypeSize / 8)) { |
| size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); |
| if (ClInstrumentWithCalls) { |
| IRB.CreateCall(HwasanMemoryAccessCallback[IsWrite][AccessSizeIndex], |
| IRB.CreatePointerCast(Addr, IntptrTy)); |
| } else { |
| instrumentMemAccessInline(Addr, IsWrite, AccessSizeIndex, I); |
| } |
| } else { |
| IRB.CreateCall(HwasanMemoryAccessCallbackSized[IsWrite], |
| {IRB.CreatePointerCast(Addr, IntptrTy), |
| ConstantInt::get(IntptrTy, TypeSize / 8)}); |
| } |
| untagPointerOperand(I, Addr); |
| |
| return true; |
| } |
| |
| static uint64_t getAllocaSizeInBytes(const AllocaInst &AI) { |
| uint64_t ArraySize = 1; |
| if (AI.isArrayAllocation()) { |
| const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); |
| assert(CI && "non-constant array size"); |
| ArraySize = CI->getZExtValue(); |
| } |
| Type *Ty = AI.getAllocatedType(); |
| uint64_t SizeInBytes = AI.getModule()->getDataLayout().getTypeAllocSize(Ty); |
| return SizeInBytes * ArraySize; |
| } |
| |
| bool HWAddressSanitizer::tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, |
| Value *Tag, size_t Size) { |
| size_t AlignedSize = alignTo(Size, Mapping.getAllocaAlignment()); |
| |
| Value *JustTag = IRB.CreateTrunc(Tag, IRB.getInt8Ty()); |
| if (ClInstrumentWithCalls) { |
| IRB.CreateCall(HwasanTagMemoryFunc, |
| {IRB.CreatePointerCast(AI, Int8PtrTy), JustTag, |
| ConstantInt::get(IntptrTy, AlignedSize)}); |
| } else { |
| size_t ShadowSize = Size >> Mapping.Scale; |
| Value *ShadowPtr = memToShadow(IRB.CreatePointerCast(AI, IntptrTy), IRB); |
| // If this memset is not inlined, it will be intercepted in the hwasan |
| // runtime library. That's OK, because the interceptor skips the checks if |
| // the address is in the shadow region. |
| // FIXME: the interceptor is not as fast as real memset. Consider lowering |
| // llvm.memset right here into either a sequence of stores, or a call to |
| // hwasan_tag_memory. |
| if (ShadowSize) |
| IRB.CreateMemSet(ShadowPtr, JustTag, ShadowSize, /*Align=*/1); |
| if (Size != AlignedSize) { |
| IRB.CreateStore( |
| ConstantInt::get(Int8Ty, Size % Mapping.getAllocaAlignment()), |
| IRB.CreateConstGEP1_32(Int8Ty, ShadowPtr, ShadowSize)); |
| IRB.CreateStore(JustTag, IRB.CreateConstGEP1_32( |
| Int8Ty, IRB.CreateBitCast(AI, Int8PtrTy), |
| AlignedSize - 1)); |
| } |
| } |
| return true; |
| } |
| |
| static unsigned RetagMask(unsigned AllocaNo) { |
| // A list of 8-bit numbers that have at most one run of non-zero bits. |
| // x = x ^ (mask << 56) can be encoded as a single armv8 instruction for these |
| // masks. |
| // The list does not include the value 255, which is used for UAR. |
| // |
| // Because we are more likely to use earlier elements of this list than later |
| // ones, it is sorted in increasing order of probability of collision with a |
| // mask allocated (temporally) nearby. The program that generated this list |
| // can be found at: |
| // https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/sort_masks.py |
| static unsigned FastMasks[] = {0, 128, 64, 192, 32, 96, 224, 112, 240, |
| 48, 16, 120, 248, 56, 24, 8, 124, 252, |
| 60, 28, 12, 4, 126, 254, 62, 30, 14, |
| 6, 2, 127, 63, 31, 15, 7, 3, 1}; |
| return FastMasks[AllocaNo % (sizeof(FastMasks) / sizeof(FastMasks[0]))]; |
| } |
| |
| Value *HWAddressSanitizer::getNextTagWithCall(IRBuilder<> &IRB) { |
| return IRB.CreateZExt(IRB.CreateCall(HwasanGenerateTagFunc), IntptrTy); |
| } |
| |
| Value *HWAddressSanitizer::getStackBaseTag(IRBuilder<> &IRB) { |
| if (ClGenerateTagsWithCalls) |
| return getNextTagWithCall(IRB); |
| if (StackBaseTag) |
| return StackBaseTag; |
| // FIXME: use addressofreturnaddress (but implement it in aarch64 backend |
| // first). |
| Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
| auto GetStackPointerFn = |
| Intrinsic::getDeclaration(M, Intrinsic::frameaddress); |
| Value *StackPointer = IRB.CreateCall( |
| GetStackPointerFn, {Constant::getNullValue(IRB.getInt32Ty())}); |
| |
| // Extract some entropy from the stack pointer for the tags. |
| // Take bits 20..28 (ASLR entropy) and xor with bits 0..8 (these differ |
| // between functions). |
| Value *StackPointerLong = IRB.CreatePointerCast(StackPointer, IntptrTy); |
| Value *StackTag = |
| IRB.CreateXor(StackPointerLong, IRB.CreateLShr(StackPointerLong, 20), |
| "hwasan.stack.base.tag"); |
| return StackTag; |
| } |
| |
| Value *HWAddressSanitizer::getAllocaTag(IRBuilder<> &IRB, Value *StackTag, |
| AllocaInst *AI, unsigned AllocaNo) { |
| if (ClGenerateTagsWithCalls) |
| return getNextTagWithCall(IRB); |
| return IRB.CreateXor(StackTag, |
| ConstantInt::get(IntptrTy, RetagMask(AllocaNo))); |
| } |
| |
| Value *HWAddressSanitizer::getUARTag(IRBuilder<> &IRB, Value *StackTag) { |
| if (ClUARRetagToZero) |
| return ConstantInt::get(IntptrTy, 0); |
| if (ClGenerateTagsWithCalls) |
| return getNextTagWithCall(IRB); |
| return IRB.CreateXor(StackTag, ConstantInt::get(IntptrTy, 0xFFU)); |
| } |
| |
| // Add a tag to an address. |
| Value *HWAddressSanitizer::tagPointer(IRBuilder<> &IRB, Type *Ty, |
| Value *PtrLong, Value *Tag) { |
| Value *TaggedPtrLong; |
| if (CompileKernel) { |
| // Kernel addresses have 0xFF in the most significant byte. |
| Value *ShiftedTag = IRB.CreateOr( |
| IRB.CreateShl(Tag, kPointerTagShift), |
| ConstantInt::get(IntptrTy, (1ULL << kPointerTagShift) - 1)); |
| TaggedPtrLong = IRB.CreateAnd(PtrLong, ShiftedTag); |
| } else { |
| // Userspace can simply do OR (tag << 56); |
| Value *ShiftedTag = IRB.CreateShl(Tag, kPointerTagShift); |
| TaggedPtrLong = IRB.CreateOr(PtrLong, ShiftedTag); |
| } |
| return IRB.CreateIntToPtr(TaggedPtrLong, Ty); |
| } |
| |
| // Remove tag from an address. |
| Value *HWAddressSanitizer::untagPointer(IRBuilder<> &IRB, Value *PtrLong) { |
| Value *UntaggedPtrLong; |
| if (CompileKernel) { |
| // Kernel addresses have 0xFF in the most significant byte. |
| UntaggedPtrLong = IRB.CreateOr(PtrLong, |
| ConstantInt::get(PtrLong->getType(), 0xFFULL << kPointerTagShift)); |
| } else { |
| // Userspace addresses have 0x00. |
| UntaggedPtrLong = IRB.CreateAnd(PtrLong, |
| ConstantInt::get(PtrLong->getType(), ~(0xFFULL << kPointerTagShift))); |
| } |
| return UntaggedPtrLong; |
| } |
| |
| Value *HWAddressSanitizer::getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty) { |
| Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
| if (TargetTriple.isAArch64() && TargetTriple.isAndroid()) { |
| // Android provides a fixed TLS slot for sanitizers. See TLS_SLOT_SANITIZER |
| // in Bionic's libc/private/bionic_tls.h. |
| Function *ThreadPointerFunc = |
| Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); |
| Value *SlotPtr = IRB.CreatePointerCast( |
| IRB.CreateConstGEP1_32(IRB.getInt8Ty(), |
| IRB.CreateCall(ThreadPointerFunc), 0x30), |
| Ty->getPointerTo(0)); |
| return SlotPtr; |
| } |
| if (ThreadPtrGlobal) |
| return ThreadPtrGlobal; |
| |
| |
| return nullptr; |
| } |
| |
| void HWAddressSanitizer::emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord) { |
| if (!Mapping.InTls) { |
| LocalDynamicShadow = getDynamicShadowNonTls(IRB); |
| return; |
| } |
| |
| if (!WithFrameRecord && TargetTriple.isAndroid()) { |
| LocalDynamicShadow = getDynamicShadowIfunc(IRB); |
| return; |
| } |
| |
| Value *SlotPtr = getHwasanThreadSlotPtr(IRB, IntptrTy); |
| assert(SlotPtr); |
| |
| Instruction *ThreadLong = IRB.CreateLoad(IntptrTy, SlotPtr); |
| |
| Function *F = IRB.GetInsertBlock()->getParent(); |
| if (F->getFnAttribute("hwasan-abi").getValueAsString() == "interceptor") { |
| Value *ThreadLongEqZero = |
| IRB.CreateICmpEQ(ThreadLong, ConstantInt::get(IntptrTy, 0)); |
| auto *Br = cast<BranchInst>(SplitBlockAndInsertIfThen( |
| ThreadLongEqZero, cast<Instruction>(ThreadLongEqZero)->getNextNode(), |
| false, MDBuilder(*C).createBranchWeights(1, 100000))); |
| |
| IRB.SetInsertPoint(Br); |
| // FIXME: This should call a new runtime function with a custom calling |
| // convention to avoid needing to spill all arguments here. |
| IRB.CreateCall(HwasanThreadEnterFunc); |
| LoadInst *ReloadThreadLong = IRB.CreateLoad(IntptrTy, SlotPtr); |
| |
| IRB.SetInsertPoint(&*Br->getSuccessor(0)->begin()); |
| PHINode *ThreadLongPhi = IRB.CreatePHI(IntptrTy, 2); |
| ThreadLongPhi->addIncoming(ThreadLong, ThreadLong->getParent()); |
| ThreadLongPhi->addIncoming(ReloadThreadLong, ReloadThreadLong->getParent()); |
| ThreadLong = ThreadLongPhi; |
| } |
| |
| // Extract the address field from ThreadLong. Unnecessary on AArch64 with TBI. |
| Value *ThreadLongMaybeUntagged = |
| TargetTriple.isAArch64() ? ThreadLong : untagPointer(IRB, ThreadLong); |
| |
| if (WithFrameRecord) { |
| StackBaseTag = IRB.CreateAShr(ThreadLong, 3); |
| |
| // Prepare ring buffer data. |
| Value *PC; |
| if (TargetTriple.getArch() == Triple::aarch64) |
| PC = readRegister(IRB, "pc"); |
| else |
| PC = IRB.CreatePtrToInt(F, IntptrTy); |
| auto GetStackPointerFn = |
| Intrinsic::getDeclaration(F->getParent(), Intrinsic::frameaddress); |
| Value *SP = IRB.CreatePtrToInt( |
| IRB.CreateCall(GetStackPointerFn, |
| {Constant::getNullValue(IRB.getInt32Ty())}), |
| IntptrTy); |
| // Mix SP and PC. |
| // Assumptions: |
| // PC is 0x0000PPPPPPPPPPPP (48 bits are meaningful, others are zero) |
| // SP is 0xsssssssssssSSSS0 (4 lower bits are zero) |
| // We only really need ~20 lower non-zero bits (SSSS), so we mix like this: |
| // 0xSSSSPPPPPPPPPPPP |
| SP = IRB.CreateShl(SP, 44); |
| |
| // Store data to ring buffer. |
| Value *RecordPtr = |
| IRB.CreateIntToPtr(ThreadLongMaybeUntagged, IntptrTy->getPointerTo(0)); |
| IRB.CreateStore(IRB.CreateOr(PC, SP), RecordPtr); |
| |
| // Update the ring buffer. Top byte of ThreadLong defines the size of the |
| // buffer in pages, it must be a power of two, and the start of the buffer |
| // must be aligned by twice that much. Therefore wrap around of the ring |
| // buffer is simply Addr &= ~((ThreadLong >> 56) << 12). |
| // The use of AShr instead of LShr is due to |
| // https://bugs.llvm.org/show_bug.cgi?id=39030 |
| // Runtime library makes sure not to use the highest bit. |
| Value *WrapMask = IRB.CreateXor( |
| IRB.CreateShl(IRB.CreateAShr(ThreadLong, 56), 12, "", true, true), |
| ConstantInt::get(IntptrTy, (uint64_t)-1)); |
| Value *ThreadLongNew = IRB.CreateAnd( |
| IRB.CreateAdd(ThreadLong, ConstantInt::get(IntptrTy, 8)), WrapMask); |
| IRB.CreateStore(ThreadLongNew, SlotPtr); |
| } |
| |
| // Get shadow base address by aligning RecordPtr up. |
| // Note: this is not correct if the pointer is already aligned. |
| // Runtime library will make sure this never happens. |
| LocalDynamicShadow = IRB.CreateAdd( |
| IRB.CreateOr( |
| ThreadLongMaybeUntagged, |
| ConstantInt::get(IntptrTy, (1ULL << kShadowBaseAlignment) - 1)), |
| ConstantInt::get(IntptrTy, 1), "hwasan.shadow"); |
| LocalDynamicShadow = IRB.CreateIntToPtr(LocalDynamicShadow, Int8PtrTy); |
| } |
| |
| Value *HWAddressSanitizer::readRegister(IRBuilder<> &IRB, StringRef Name) { |
| Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
| Function *ReadRegister = |
| Intrinsic::getDeclaration(M, Intrinsic::read_register, IntptrTy); |
| MDNode *MD = MDNode::get(*C, {MDString::get(*C, Name)}); |
| Value *Args[] = {MetadataAsValue::get(*C, MD)}; |
| return IRB.CreateCall(ReadRegister, Args); |
| } |
| |
| bool HWAddressSanitizer::instrumentLandingPads( |
| SmallVectorImpl<Instruction *> &LandingPadVec) { |
| for (auto *LP : LandingPadVec) { |
| IRBuilder<> IRB(LP->getNextNode()); |
| IRB.CreateCall( |
| HWAsanHandleVfork, |
| {readRegister(IRB, (TargetTriple.getArch() == Triple::x86_64) ? "rsp" |
| : "sp")}); |
| } |
| return true; |
| } |
| |
| bool HWAddressSanitizer::instrumentStack( |
| SmallVectorImpl<AllocaInst *> &Allocas, |
| DenseMap<AllocaInst *, std::vector<DbgDeclareInst *>> &AllocaDeclareMap, |
| SmallVectorImpl<Instruction *> &RetVec, Value *StackTag) { |
| // Ideally, we want to calculate tagged stack base pointer, and rewrite all |
| // alloca addresses using that. Unfortunately, offsets are not known yet |
| // (unless we use ASan-style mega-alloca). Instead we keep the base tag in a |
| // temp, shift-OR it into each alloca address and xor with the retag mask. |
| // This generates one extra instruction per alloca use. |
| for (unsigned N = 0; N < Allocas.size(); ++N) { |
| auto *AI = Allocas[N]; |
| IRBuilder<> IRB(AI->getNextNode()); |
| |
| // Replace uses of the alloca with tagged address. |
| Value *Tag = getAllocaTag(IRB, StackTag, AI, N); |
| Value *AILong = IRB.CreatePointerCast(AI, IntptrTy); |
| Value *Replacement = tagPointer(IRB, AI->getType(), AILong, Tag); |
| std::string Name = |
| AI->hasName() ? AI->getName().str() : "alloca." + itostr(N); |
| Replacement->setName(Name + ".hwasan"); |
| |
| for (auto UI = AI->use_begin(), UE = AI->use_end(); UI != UE;) { |
| Use &U = *UI++; |
| if (U.getUser() != AILong) |
| U.set(Replacement); |
| } |
| |
| for (auto *DDI : AllocaDeclareMap.lookup(AI)) { |
| DIExpression *OldExpr = DDI->getExpression(); |
| DIExpression *NewExpr = DIExpression::append( |
| OldExpr, {dwarf::DW_OP_LLVM_tag_offset, RetagMask(N)}); |
| DDI->setArgOperand(2, MetadataAsValue::get(*C, NewExpr)); |
| } |
| |
| size_t Size = getAllocaSizeInBytes(*AI); |
| tagAlloca(IRB, AI, Tag, Size); |
| |
| for (auto RI : RetVec) { |
| IRB.SetInsertPoint(RI); |
| |
| // Re-tag alloca memory with the special UAR tag. |
| Value *Tag = getUARTag(IRB, StackTag); |
| tagAlloca(IRB, AI, Tag, alignTo(Size, Mapping.getAllocaAlignment())); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool HWAddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { |
| return (AI.getAllocatedType()->isSized() && |
| // FIXME: instrument dynamic allocas, too |
| AI.isStaticAlloca() && |
| // alloca() may be called with 0 size, ignore it. |
| getAllocaSizeInBytes(AI) > 0 && |
| // We are only interested in allocas not promotable to registers. |
| // Promotable allocas are common under -O0. |
| !isAllocaPromotable(&AI) && |
| // inalloca allocas are not treated as static, and we don't want |
| // dynamic alloca instrumentation for them as well. |
| !AI.isUsedWithInAlloca() && |
| // swifterror allocas are register promoted by ISel |
| !AI.isSwiftError()); |
| } |
| |
| bool HWAddressSanitizer::sanitizeFunction(Function &F) { |
| if (&F == HwasanCtorFunction) |
| return false; |
| |
| if (!F.hasFnAttribute(Attribute::SanitizeHWAddress)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Function: " << F.getName() << "\n"); |
| |
| SmallVector<Instruction*, 16> ToInstrument; |
| SmallVector<AllocaInst*, 8> AllocasToInstrument; |
| SmallVector<Instruction*, 8> RetVec; |
| SmallVector<Instruction*, 8> LandingPadVec; |
| DenseMap<AllocaInst *, std::vector<DbgDeclareInst *>> AllocaDeclareMap; |
| for (auto &BB : F) { |
| for (auto &Inst : BB) { |
| if (ClInstrumentStack) |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) { |
| if (isInterestingAlloca(*AI)) |
| AllocasToInstrument.push_back(AI); |
| continue; |
| } |
| |
| if (isa<ReturnInst>(Inst) || isa<ResumeInst>(Inst) || |
| isa<CleanupReturnInst>(Inst)) |
| RetVec.push_back(&Inst); |
| |
| if (auto *DDI = dyn_cast<DbgDeclareInst>(&Inst)) |
| if (auto *Alloca = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) |
| AllocaDeclareMap[Alloca].push_back(DDI); |
| |
| if (ClInstrumentLandingPads && isa<LandingPadInst>(Inst)) |
| LandingPadVec.push_back(&Inst); |
| |
| Value *MaybeMask = nullptr; |
| bool IsWrite; |
| unsigned Alignment; |
| uint64_t TypeSize; |
| Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, |
| &Alignment, &MaybeMask); |
| if (Addr || isa<MemIntrinsic>(Inst)) |
| ToInstrument.push_back(&Inst); |
| } |
| } |
| |
| initializeCallbacks(*F.getParent()); |
| |
| if (!LandingPadVec.empty()) |
| instrumentLandingPads(LandingPadVec); |
| |
| if (AllocasToInstrument.empty() && ToInstrument.empty()) |
| return false; |
| |
| assert(!LocalDynamicShadow); |
| |
| Instruction *InsertPt = &*F.getEntryBlock().begin(); |
| IRBuilder<> EntryIRB(InsertPt); |
| emitPrologue(EntryIRB, |
| /*WithFrameRecord*/ ClRecordStackHistory && |
| !AllocasToInstrument.empty()); |
| |
| bool Changed = false; |
| if (!AllocasToInstrument.empty()) { |
| Value *StackTag = |
| ClGenerateTagsWithCalls ? nullptr : getStackBaseTag(EntryIRB); |
| Changed |= instrumentStack(AllocasToInstrument, AllocaDeclareMap, RetVec, |
| StackTag); |
| } |
| |
| // Pad and align each of the allocas that we instrumented to stop small |
| // uninteresting allocas from hiding in instrumented alloca's padding and so |
| // that we have enough space to store real tags for short granules. |
| DenseMap<AllocaInst *, AllocaInst *> AllocaToPaddedAllocaMap; |
| for (AllocaInst *AI : AllocasToInstrument) { |
| uint64_t Size = getAllocaSizeInBytes(*AI); |
| uint64_t AlignedSize = alignTo(Size, Mapping.getAllocaAlignment()); |
| AI->setAlignment(std::max(AI->getAlignment(), 16u)); |
| if (Size != AlignedSize) { |
| Type *AllocatedType = AI->getAllocatedType(); |
| if (AI->isArrayAllocation()) { |
| uint64_t ArraySize = |
| cast<ConstantInt>(AI->getArraySize())->getZExtValue(); |
| AllocatedType = ArrayType::get(AllocatedType, ArraySize); |
| } |
| Type *TypeWithPadding = StructType::get( |
| AllocatedType, ArrayType::get(Int8Ty, AlignedSize - Size)); |
| auto *NewAI = new AllocaInst( |
| TypeWithPadding, AI->getType()->getAddressSpace(), nullptr, "", AI); |
| NewAI->takeName(AI); |
| NewAI->setAlignment(AI->getAlignment()); |
| NewAI->setUsedWithInAlloca(AI->isUsedWithInAlloca()); |
| NewAI->setSwiftError(AI->isSwiftError()); |
| NewAI->copyMetadata(*AI); |
| auto *Bitcast = new BitCastInst(NewAI, AI->getType(), "", AI); |
| AI->replaceAllUsesWith(Bitcast); |
| AllocaToPaddedAllocaMap[AI] = NewAI; |
| } |
| } |
| |
| if (!AllocaToPaddedAllocaMap.empty()) { |
| for (auto &BB : F) |
| for (auto &Inst : BB) |
| if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(&Inst)) |
| if (auto *AI = |
| dyn_cast_or_null<AllocaInst>(DVI->getVariableLocation())) |
| if (auto *NewAI = AllocaToPaddedAllocaMap.lookup(AI)) |
| DVI->setArgOperand( |
| 0, MetadataAsValue::get(*C, LocalAsMetadata::get(NewAI))); |
| for (auto &P : AllocaToPaddedAllocaMap) |
| P.first->eraseFromParent(); |
| } |
| |
| // If we split the entry block, move any allocas that were originally in the |
| // entry block back into the entry block so that they aren't treated as |
| // dynamic allocas. |
| if (EntryIRB.GetInsertBlock() != &F.getEntryBlock()) { |
| InsertPt = &*F.getEntryBlock().begin(); |
| for (auto II = EntryIRB.GetInsertBlock()->begin(), |
| IE = EntryIRB.GetInsertBlock()->end(); |
| II != IE;) { |
| Instruction *I = &*II++; |
| if (auto *AI = dyn_cast<AllocaInst>(I)) |
| if (isa<ConstantInt>(AI->getArraySize())) |
| I->moveBefore(InsertPt); |
| } |
| } |
| |
| for (auto Inst : ToInstrument) |
| Changed |= instrumentMemAccess(Inst); |
| |
| LocalDynamicShadow = nullptr; |
| StackBaseTag = nullptr; |
| |
| return Changed; |
| } |
| |
| void HWAddressSanitizer::ShadowMapping::init(Triple &TargetTriple) { |
| Scale = kDefaultShadowScale; |
| if (ClMappingOffset.getNumOccurrences() > 0) { |
| InGlobal = false; |
| InTls = false; |
| Offset = ClMappingOffset; |
| } else if (ClEnableKhwasan || ClInstrumentWithCalls) { |
| InGlobal = false; |
| InTls = false; |
| Offset = 0; |
| } else if (ClWithIfunc) { |
| InGlobal = true; |
| InTls = false; |
| Offset = kDynamicShadowSentinel; |
| } else if (ClWithTls) { |
| InGlobal = false; |
| InTls = true; |
| Offset = kDynamicShadowSentinel; |
| } else { |
| InGlobal = false; |
| InTls = false; |
| Offset = kDynamicShadowSentinel; |
| } |
| } |