| //===- DivRemPairs.cpp - Hoist/decompose division and remainder -*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass hoists and/or decomposes integer division and remainder |
| // instructions to enable CFG improvements and better codegen. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/DivRemPairs.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/DebugCounter.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/BypassSlowDivision.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "div-rem-pairs" |
| STATISTIC(NumPairs, "Number of div/rem pairs"); |
| STATISTIC(NumHoisted, "Number of instructions hoisted"); |
| STATISTIC(NumDecomposed, "Number of instructions decomposed"); |
| DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform", |
| "Controls transformations in div-rem-pairs pass"); |
| |
| /// A thin wrapper to store two values that we matched as div-rem pair. |
| /// We want this extra indirection to avoid dealing with RAUW'ing the map keys. |
| struct DivRemPairWorklistEntry { |
| /// The actual udiv/sdiv instruction. Source of truth. |
| AssertingVH<Instruction> DivInst; |
| |
| /// The instruction that we have matched as a remainder instruction. |
| /// Should only be used as Value, don't introspect it. |
| AssertingVH<Instruction> RemInst; |
| |
| DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_) |
| : DivInst(DivInst_), RemInst(RemInst_) { |
| assert((DivInst->getOpcode() == Instruction::UDiv || |
| DivInst->getOpcode() == Instruction::SDiv) && |
| "Not a division."); |
| assert(DivInst->getType() == RemInst->getType() && "Types should match."); |
| // We can't check anything else about remainder instruction, |
| // it's not strictly required to be a urem/srem. |
| } |
| |
| /// The type for this pair, identical for both the div and rem. |
| Type *getType() const { return DivInst->getType(); } |
| |
| /// Is this pair signed or unsigned? |
| bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; } |
| |
| /// In this pair, what are the divident and divisor? |
| Value *getDividend() const { return DivInst->getOperand(0); } |
| Value *getDivisor() const { return DivInst->getOperand(1); } |
| }; |
| using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>; |
| |
| /// Find matching pairs of integer div/rem ops (they have the same numerator, |
| /// denominator, and signedness). Place those pairs into a worklist for further |
| /// processing. This indirection is needed because we have to use TrackingVH<> |
| /// because we will be doing RAUW, and if one of the rem instructions we change |
| /// happens to be an input to another div/rem in the maps, we'd have problems. |
| static DivRemWorklistTy getWorklist(Function &F) { |
| // Insert all divide and remainder instructions into maps keyed by their |
| // operands and opcode (signed or unsigned). |
| DenseMap<DivRemMapKey, Instruction *> DivMap; |
| // Use a MapVector for RemMap so that instructions are moved/inserted in a |
| // deterministic order. |
| MapVector<DivRemMapKey, Instruction *> RemMap; |
| for (auto &BB : F) { |
| for (auto &I : BB) { |
| if (I.getOpcode() == Instruction::SDiv) |
| DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; |
| else if (I.getOpcode() == Instruction::UDiv) |
| DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; |
| else if (I.getOpcode() == Instruction::SRem) |
| RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; |
| else if (I.getOpcode() == Instruction::URem) |
| RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; |
| } |
| } |
| |
| // We'll accumulate the matching pairs of div-rem instructions here. |
| DivRemWorklistTy Worklist; |
| |
| // We can iterate over either map because we are only looking for matched |
| // pairs. Choose remainders for efficiency because they are usually even more |
| // rare than division. |
| for (auto &RemPair : RemMap) { |
| // Find the matching division instruction from the division map. |
| Instruction *DivInst = DivMap[RemPair.first]; |
| if (!DivInst) |
| continue; |
| |
| // We have a matching pair of div/rem instructions. |
| NumPairs++; |
| Instruction *RemInst = RemPair.second; |
| |
| // Place it in the worklist. |
| Worklist.emplace_back(DivInst, RemInst); |
| } |
| |
| return Worklist; |
| } |
| |
| /// Find matching pairs of integer div/rem ops (they have the same numerator, |
| /// denominator, and signedness). If they exist in different basic blocks, bring |
| /// them together by hoisting or replace the common division operation that is |
| /// implicit in the remainder: |
| /// X % Y <--> X - ((X / Y) * Y). |
| /// |
| /// We can largely ignore the normal safety and cost constraints on speculation |
| /// of these ops when we find a matching pair. This is because we are already |
| /// guaranteed that any exceptions and most cost are already incurred by the |
| /// first member of the pair. |
| /// |
| /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or |
| /// SimplifyCFG, but it's split off on its own because it's different enough |
| /// that it doesn't quite match the stated objectives of those passes. |
| static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, |
| const DominatorTree &DT) { |
| bool Changed = false; |
| |
| // Get the matching pairs of div-rem instructions. We want this extra |
| // indirection to avoid dealing with having to RAUW the keys of the maps. |
| DivRemWorklistTy Worklist = getWorklist(F); |
| |
| // Process each entry in the worklist. |
| for (DivRemPairWorklistEntry &E : Worklist) { |
| bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned()); |
| |
| auto &DivInst = E.DivInst; |
| auto &RemInst = E.RemInst; |
| |
| // If the target supports div+rem and the instructions are in the same block |
| // already, there's nothing to do. The backend should handle this. If the |
| // target does not support div+rem, then we will decompose the rem. |
| if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) |
| continue; |
| |
| bool DivDominates = DT.dominates(DivInst, RemInst); |
| if (!DivDominates && !DT.dominates(RemInst, DivInst)) |
| continue; |
| |
| if (!DebugCounter::shouldExecute(DRPCounter)) |
| continue; |
| |
| if (HasDivRemOp) { |
| // The target has a single div/rem operation. Hoist the lower instruction |
| // to make the matched pair visible to the backend. |
| if (DivDominates) |
| RemInst->moveAfter(DivInst); |
| else |
| DivInst->moveAfter(RemInst); |
| NumHoisted++; |
| } else { |
| // The target does not have a single div/rem operation. Decompose the |
| // remainder calculation as: |
| // X % Y --> X - ((X / Y) * Y). |
| Value *X = E.getDividend(); |
| Value *Y = E.getDivisor(); |
| Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); |
| Instruction *Sub = BinaryOperator::CreateSub(X, Mul); |
| |
| // If the remainder dominates, then hoist the division up to that block: |
| // |
| // bb1: |
| // %rem = srem %x, %y |
| // bb2: |
| // %div = sdiv %x, %y |
| // --> |
| // bb1: |
| // %div = sdiv %x, %y |
| // %mul = mul %div, %y |
| // %rem = sub %x, %mul |
| // |
| // If the division dominates, it's already in the right place. The mul+sub |
| // will be in a different block because we don't assume that they are |
| // cheap to speculatively execute: |
| // |
| // bb1: |
| // %div = sdiv %x, %y |
| // bb2: |
| // %rem = srem %x, %y |
| // --> |
| // bb1: |
| // %div = sdiv %x, %y |
| // bb2: |
| // %mul = mul %div, %y |
| // %rem = sub %x, %mul |
| // |
| // If the div and rem are in the same block, we do the same transform, |
| // but any code movement would be within the same block. |
| |
| if (!DivDominates) |
| DivInst->moveBefore(RemInst); |
| Mul->insertAfter(RemInst); |
| Sub->insertAfter(Mul); |
| |
| // Now kill the explicit remainder. We have replaced it with: |
| // (sub X, (mul (div X, Y), Y) |
| Sub->setName(RemInst->getName() + ".decomposed"); |
| Instruction *OrigRemInst = RemInst; |
| // Update AssertingVH<> with new instruction so it doesn't assert. |
| RemInst = Sub; |
| // And replace the original instruction with the new one. |
| OrigRemInst->replaceAllUsesWith(Sub); |
| OrigRemInst->eraseFromParent(); |
| NumDecomposed++; |
| } |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| // Pass manager boilerplate below here. |
| |
| namespace { |
| struct DivRemPairsLegacyPass : public FunctionPass { |
| static char ID; |
| DivRemPairsLegacyPass() : FunctionPass(ID) { |
| initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.setPreservesCFG(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| FunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| if (skipFunction(F)) |
| return false; |
| auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| return optimizeDivRem(F, TTI, DT); |
| } |
| }; |
| } // namespace |
| |
| char DivRemPairsLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs", |
| "Hoist/decompose integer division and remainder", false, |
| false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs", |
| "Hoist/decompose integer division and remainder", false, |
| false) |
| FunctionPass *llvm::createDivRemPairsPass() { |
| return new DivRemPairsLegacyPass(); |
| } |
| |
| PreservedAnalyses DivRemPairsPass::run(Function &F, |
| FunctionAnalysisManager &FAM) { |
| TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); |
| DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); |
| if (!optimizeDivRem(F, TTI, DT)) |
| return PreservedAnalyses::all(); |
| // TODO: This pass just hoists/replaces math ops - all analyses are preserved? |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| PA.preserve<GlobalsAA>(); |
| return PA; |
| } |