| /* |
| * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved. |
| * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <openssl/err.h> |
| |
| #include "internal/bn_int.h" |
| #include "ec_lcl.h" |
| |
| #ifndef OPENSSL_NO_EC2M |
| |
| /* |
| * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members |
| * are handled by EC_GROUP_new. |
| */ |
| int ec_GF2m_simple_group_init(EC_GROUP *group) |
| { |
| group->field = BN_new(); |
| group->a = BN_new(); |
| group->b = BN_new(); |
| |
| if (group->field == NULL || group->a == NULL || group->b == NULL) { |
| BN_free(group->field); |
| BN_free(group->a); |
| BN_free(group->b); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are |
| * handled by EC_GROUP_free. |
| */ |
| void ec_GF2m_simple_group_finish(EC_GROUP *group) |
| { |
| BN_free(group->field); |
| BN_free(group->a); |
| BN_free(group->b); |
| } |
| |
| /* |
| * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other |
| * members are handled by EC_GROUP_clear_free. |
| */ |
| void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) |
| { |
| BN_clear_free(group->field); |
| BN_clear_free(group->a); |
| BN_clear_free(group->b); |
| group->poly[0] = 0; |
| group->poly[1] = 0; |
| group->poly[2] = 0; |
| group->poly[3] = 0; |
| group->poly[4] = 0; |
| group->poly[5] = -1; |
| } |
| |
| /* |
| * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are |
| * handled by EC_GROUP_copy. |
| */ |
| int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) |
| { |
| if (!BN_copy(dest->field, src->field)) |
| return 0; |
| if (!BN_copy(dest->a, src->a)) |
| return 0; |
| if (!BN_copy(dest->b, src->b)) |
| return 0; |
| dest->poly[0] = src->poly[0]; |
| dest->poly[1] = src->poly[1]; |
| dest->poly[2] = src->poly[2]; |
| dest->poly[3] = src->poly[3]; |
| dest->poly[4] = src->poly[4]; |
| dest->poly[5] = src->poly[5]; |
| if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == |
| NULL) |
| return 0; |
| if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == |
| NULL) |
| return 0; |
| bn_set_all_zero(dest->a); |
| bn_set_all_zero(dest->b); |
| return 1; |
| } |
| |
| /* Set the curve parameters of an EC_GROUP structure. */ |
| int ec_GF2m_simple_group_set_curve(EC_GROUP *group, |
| const BIGNUM *p, const BIGNUM *a, |
| const BIGNUM *b, BN_CTX *ctx) |
| { |
| int ret = 0, i; |
| |
| /* group->field */ |
| if (!BN_copy(group->field, p)) |
| goto err; |
| i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1; |
| if ((i != 5) && (i != 3)) { |
| ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); |
| goto err; |
| } |
| |
| /* group->a */ |
| if (!BN_GF2m_mod_arr(group->a, a, group->poly)) |
| goto err; |
| if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) |
| == NULL) |
| goto err; |
| bn_set_all_zero(group->a); |
| |
| /* group->b */ |
| if (!BN_GF2m_mod_arr(group->b, b, group->poly)) |
| goto err; |
| if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) |
| == NULL) |
| goto err; |
| bn_set_all_zero(group->b); |
| |
| ret = 1; |
| err: |
| return ret; |
| } |
| |
| /* |
| * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL |
| * then there values will not be set but the method will return with success. |
| */ |
| int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, |
| BIGNUM *a, BIGNUM *b, BN_CTX *ctx) |
| { |
| int ret = 0; |
| |
| if (p != NULL) { |
| if (!BN_copy(p, group->field)) |
| return 0; |
| } |
| |
| if (a != NULL) { |
| if (!BN_copy(a, group->a)) |
| goto err; |
| } |
| |
| if (b != NULL) { |
| if (!BN_copy(b, group->b)) |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| return ret; |
| } |
| |
| /* |
| * Gets the degree of the field. For a curve over GF(2^m) this is the value |
| * m. |
| */ |
| int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) |
| { |
| return BN_num_bits(group->field) - 1; |
| } |
| |
| /* |
| * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an |
| * elliptic curve <=> b != 0 (mod p) |
| */ |
| int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, |
| BN_CTX *ctx) |
| { |
| int ret = 0; |
| BIGNUM *b; |
| BN_CTX *new_ctx = NULL; |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, |
| ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| } |
| BN_CTX_start(ctx); |
| b = BN_CTX_get(ctx); |
| if (b == NULL) |
| goto err; |
| |
| if (!BN_GF2m_mod_arr(b, group->b, group->poly)) |
| goto err; |
| |
| /* |
| * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic |
| * curve <=> b != 0 (mod p) |
| */ |
| if (BN_is_zero(b)) |
| goto err; |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| /* Initializes an EC_POINT. */ |
| int ec_GF2m_simple_point_init(EC_POINT *point) |
| { |
| point->X = BN_new(); |
| point->Y = BN_new(); |
| point->Z = BN_new(); |
| |
| if (point->X == NULL || point->Y == NULL || point->Z == NULL) { |
| BN_free(point->X); |
| BN_free(point->Y); |
| BN_free(point->Z); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* Frees an EC_POINT. */ |
| void ec_GF2m_simple_point_finish(EC_POINT *point) |
| { |
| BN_free(point->X); |
| BN_free(point->Y); |
| BN_free(point->Z); |
| } |
| |
| /* Clears and frees an EC_POINT. */ |
| void ec_GF2m_simple_point_clear_finish(EC_POINT *point) |
| { |
| BN_clear_free(point->X); |
| BN_clear_free(point->Y); |
| BN_clear_free(point->Z); |
| point->Z_is_one = 0; |
| } |
| |
| /* |
| * Copy the contents of one EC_POINT into another. Assumes dest is |
| * initialized. |
| */ |
| int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) |
| { |
| if (!BN_copy(dest->X, src->X)) |
| return 0; |
| if (!BN_copy(dest->Y, src->Y)) |
| return 0; |
| if (!BN_copy(dest->Z, src->Z)) |
| return 0; |
| dest->Z_is_one = src->Z_is_one; |
| dest->curve_name = src->curve_name; |
| |
| return 1; |
| } |
| |
| /* |
| * Set an EC_POINT to the point at infinity. A point at infinity is |
| * represented by having Z=0. |
| */ |
| int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, |
| EC_POINT *point) |
| { |
| point->Z_is_one = 0; |
| BN_zero(point->Z); |
| return 1; |
| } |
| |
| /* |
| * Set the coordinates of an EC_POINT using affine coordinates. Note that |
| * the simple implementation only uses affine coordinates. |
| */ |
| int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, |
| EC_POINT *point, |
| const BIGNUM *x, |
| const BIGNUM *y, BN_CTX *ctx) |
| { |
| int ret = 0; |
| if (x == NULL || y == NULL) { |
| ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, |
| ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| if (!BN_copy(point->X, x)) |
| goto err; |
| BN_set_negative(point->X, 0); |
| if (!BN_copy(point->Y, y)) |
| goto err; |
| BN_set_negative(point->Y, 0); |
| if (!BN_copy(point->Z, BN_value_one())) |
| goto err; |
| BN_set_negative(point->Z, 0); |
| point->Z_is_one = 1; |
| ret = 1; |
| |
| err: |
| return ret; |
| } |
| |
| /* |
| * Gets the affine coordinates of an EC_POINT. Note that the simple |
| * implementation only uses affine coordinates. |
| */ |
| int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, |
| const EC_POINT *point, |
| BIGNUM *x, BIGNUM *y, |
| BN_CTX *ctx) |
| { |
| int ret = 0; |
| |
| if (EC_POINT_is_at_infinity(group, point)) { |
| ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
| EC_R_POINT_AT_INFINITY); |
| return 0; |
| } |
| |
| if (BN_cmp(point->Z, BN_value_one())) { |
| ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
| ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| if (x != NULL) { |
| if (!BN_copy(x, point->X)) |
| goto err; |
| BN_set_negative(x, 0); |
| } |
| if (y != NULL) { |
| if (!BN_copy(y, point->Y)) |
| goto err; |
| BN_set_negative(y, 0); |
| } |
| ret = 1; |
| |
| err: |
| return ret; |
| } |
| |
| /* |
| * Computes a + b and stores the result in r. r could be a or b, a could be |
| * b. Uses algorithm A.10.2 of IEEE P1363. |
| */ |
| int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| const EC_POINT *b, BN_CTX *ctx) |
| { |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; |
| int ret = 0; |
| |
| if (EC_POINT_is_at_infinity(group, a)) { |
| if (!EC_POINT_copy(r, b)) |
| return 0; |
| return 1; |
| } |
| |
| if (EC_POINT_is_at_infinity(group, b)) { |
| if (!EC_POINT_copy(r, a)) |
| return 0; |
| return 1; |
| } |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| return 0; |
| } |
| |
| BN_CTX_start(ctx); |
| x0 = BN_CTX_get(ctx); |
| y0 = BN_CTX_get(ctx); |
| x1 = BN_CTX_get(ctx); |
| y1 = BN_CTX_get(ctx); |
| x2 = BN_CTX_get(ctx); |
| y2 = BN_CTX_get(ctx); |
| s = BN_CTX_get(ctx); |
| t = BN_CTX_get(ctx); |
| if (t == NULL) |
| goto err; |
| |
| if (a->Z_is_one) { |
| if (!BN_copy(x0, a->X)) |
| goto err; |
| if (!BN_copy(y0, a->Y)) |
| goto err; |
| } else { |
| if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx)) |
| goto err; |
| } |
| if (b->Z_is_one) { |
| if (!BN_copy(x1, b->X)) |
| goto err; |
| if (!BN_copy(y1, b->Y)) |
| goto err; |
| } else { |
| if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx)) |
| goto err; |
| } |
| |
| if (BN_GF2m_cmp(x0, x1)) { |
| if (!BN_GF2m_add(t, x0, x1)) |
| goto err; |
| if (!BN_GF2m_add(s, y0, y1)) |
| goto err; |
| if (!group->meth->field_div(group, s, s, t, ctx)) |
| goto err; |
| if (!group->meth->field_sqr(group, x2, s, ctx)) |
| goto err; |
| if (!BN_GF2m_add(x2, x2, group->a)) |
| goto err; |
| if (!BN_GF2m_add(x2, x2, s)) |
| goto err; |
| if (!BN_GF2m_add(x2, x2, t)) |
| goto err; |
| } else { |
| if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { |
| if (!EC_POINT_set_to_infinity(group, r)) |
| goto err; |
| ret = 1; |
| goto err; |
| } |
| if (!group->meth->field_div(group, s, y1, x1, ctx)) |
| goto err; |
| if (!BN_GF2m_add(s, s, x1)) |
| goto err; |
| |
| if (!group->meth->field_sqr(group, x2, s, ctx)) |
| goto err; |
| if (!BN_GF2m_add(x2, x2, s)) |
| goto err; |
| if (!BN_GF2m_add(x2, x2, group->a)) |
| goto err; |
| } |
| |
| if (!BN_GF2m_add(y2, x1, x2)) |
| goto err; |
| if (!group->meth->field_mul(group, y2, y2, s, ctx)) |
| goto err; |
| if (!BN_GF2m_add(y2, y2, x2)) |
| goto err; |
| if (!BN_GF2m_add(y2, y2, y1)) |
| goto err; |
| |
| if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx)) |
| goto err; |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| /* |
| * Computes 2 * a and stores the result in r. r could be a. Uses algorithm |
| * A.10.2 of IEEE P1363. |
| */ |
| int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| BN_CTX *ctx) |
| { |
| return ec_GF2m_simple_add(group, r, a, a, ctx); |
| } |
| |
| int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) |
| { |
| if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y)) |
| /* point is its own inverse */ |
| return 1; |
| |
| if (!EC_POINT_make_affine(group, point, ctx)) |
| return 0; |
| return BN_GF2m_add(point->Y, point->X, point->Y); |
| } |
| |
| /* Indicates whether the given point is the point at infinity. */ |
| int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, |
| const EC_POINT *point) |
| { |
| return BN_is_zero(point->Z); |
| } |
| |
| /*- |
| * Determines whether the given EC_POINT is an actual point on the curve defined |
| * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: |
| * y^2 + x*y = x^3 + a*x^2 + b. |
| */ |
| int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
| BN_CTX *ctx) |
| { |
| int ret = -1; |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *lh, *y2; |
| int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
| const BIGNUM *, BN_CTX *); |
| int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| |
| if (EC_POINT_is_at_infinity(group, point)) |
| return 1; |
| |
| field_mul = group->meth->field_mul; |
| field_sqr = group->meth->field_sqr; |
| |
| /* only support affine coordinates */ |
| if (!point->Z_is_one) |
| return -1; |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| return -1; |
| } |
| |
| BN_CTX_start(ctx); |
| y2 = BN_CTX_get(ctx); |
| lh = BN_CTX_get(ctx); |
| if (lh == NULL) |
| goto err; |
| |
| /*- |
| * We have a curve defined by a Weierstrass equation |
| * y^2 + x*y = x^3 + a*x^2 + b. |
| * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 |
| * <=> ((x + a) * x + y ) * x + b + y^2 = 0 |
| */ |
| if (!BN_GF2m_add(lh, point->X, group->a)) |
| goto err; |
| if (!field_mul(group, lh, lh, point->X, ctx)) |
| goto err; |
| if (!BN_GF2m_add(lh, lh, point->Y)) |
| goto err; |
| if (!field_mul(group, lh, lh, point->X, ctx)) |
| goto err; |
| if (!BN_GF2m_add(lh, lh, group->b)) |
| goto err; |
| if (!field_sqr(group, y2, point->Y, ctx)) |
| goto err; |
| if (!BN_GF2m_add(lh, lh, y2)) |
| goto err; |
| ret = BN_is_zero(lh); |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| /*- |
| * Indicates whether two points are equal. |
| * Return values: |
| * -1 error |
| * 0 equal (in affine coordinates) |
| * 1 not equal |
| */ |
| int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, |
| const EC_POINT *b, BN_CTX *ctx) |
| { |
| BIGNUM *aX, *aY, *bX, *bY; |
| BN_CTX *new_ctx = NULL; |
| int ret = -1; |
| |
| if (EC_POINT_is_at_infinity(group, a)) { |
| return EC_POINT_is_at_infinity(group, b) ? 0 : 1; |
| } |
| |
| if (EC_POINT_is_at_infinity(group, b)) |
| return 1; |
| |
| if (a->Z_is_one && b->Z_is_one) { |
| return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1; |
| } |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| return -1; |
| } |
| |
| BN_CTX_start(ctx); |
| aX = BN_CTX_get(ctx); |
| aY = BN_CTX_get(ctx); |
| bX = BN_CTX_get(ctx); |
| bY = BN_CTX_get(ctx); |
| if (bY == NULL) |
| goto err; |
| |
| if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx)) |
| goto err; |
| if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx)) |
| goto err; |
| ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| /* Forces the given EC_POINT to internally use affine coordinates. */ |
| int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, |
| BN_CTX *ctx) |
| { |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *x, *y; |
| int ret = 0; |
| |
| if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) |
| return 1; |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| return 0; |
| } |
| |
| BN_CTX_start(ctx); |
| x = BN_CTX_get(ctx); |
| y = BN_CTX_get(ctx); |
| if (y == NULL) |
| goto err; |
| |
| if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) |
| goto err; |
| if (!BN_copy(point->X, x)) |
| goto err; |
| if (!BN_copy(point->Y, y)) |
| goto err; |
| if (!BN_one(point->Z)) |
| goto err; |
| point->Z_is_one = 1; |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| /* |
| * Forces each of the EC_POINTs in the given array to use affine coordinates. |
| */ |
| int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, |
| EC_POINT *points[], BN_CTX *ctx) |
| { |
| size_t i; |
| |
| for (i = 0; i < num; i++) { |
| if (!group->meth->make_affine(group, points[i], ctx)) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Wrapper to simple binary polynomial field multiplication implementation. */ |
| int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, |
| const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
| { |
| return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); |
| } |
| |
| /* Wrapper to simple binary polynomial field squaring implementation. */ |
| int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, |
| const BIGNUM *a, BN_CTX *ctx) |
| { |
| return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); |
| } |
| |
| /* Wrapper to simple binary polynomial field division implementation. */ |
| int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, |
| const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
| { |
| return BN_GF2m_mod_div(r, a, b, group->field, ctx); |
| } |
| |
| /*- |
| * Lopez-Dahab ladder, pre step. |
| * See e.g. "Guide to ECC" Alg 3.40. |
| * Modified to blind s and r independently. |
| * s:= p, r := 2p |
| */ |
| static |
| int ec_GF2m_simple_ladder_pre(const EC_GROUP *group, |
| EC_POINT *r, EC_POINT *s, |
| EC_POINT *p, BN_CTX *ctx) |
| { |
| /* if p is not affine, something is wrong */ |
| if (p->Z_is_one == 0) |
| return 0; |
| |
| /* s blinding: make sure lambda (s->Z here) is not zero */ |
| do { |
| if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1, |
| BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) { |
| ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB); |
| return 0; |
| } |
| } while (BN_is_zero(s->Z)); |
| |
| /* if field_encode defined convert between representations */ |
| if ((group->meth->field_encode != NULL |
| && !group->meth->field_encode(group, s->Z, s->Z, ctx)) |
| || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) |
| return 0; |
| |
| /* r blinding: make sure lambda (r->Y here for storage) is not zero */ |
| do { |
| if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1, |
| BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) { |
| ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB); |
| return 0; |
| } |
| } while (BN_is_zero(r->Y)); |
| |
| if ((group->meth->field_encode != NULL |
| && !group->meth->field_encode(group, r->Y, r->Y, ctx)) |
| || !group->meth->field_sqr(group, r->Z, p->X, ctx) |
| || !group->meth->field_sqr(group, r->X, r->Z, ctx) |
| || !BN_GF2m_add(r->X, r->X, group->b) |
| || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx) |
| || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)) |
| return 0; |
| |
| s->Z_is_one = 0; |
| r->Z_is_one = 0; |
| |
| return 1; |
| } |
| |
| /*- |
| * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords. |
| * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3 |
| * s := r + s, r := 2r |
| */ |
| static |
| int ec_GF2m_simple_ladder_step(const EC_GROUP *group, |
| EC_POINT *r, EC_POINT *s, |
| EC_POINT *p, BN_CTX *ctx) |
| { |
| if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx) |
| || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx) |
| || !group->meth->field_sqr(group, s->Y, r->Z, ctx) |
| || !group->meth->field_sqr(group, r->Z, r->X, ctx) |
| || !BN_GF2m_add(s->Z, r->Y, s->X) |
| || !group->meth->field_sqr(group, s->Z, s->Z, ctx) |
| || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx) |
| || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx) |
| || !BN_GF2m_add(s->X, s->X, r->Y) |
| || !group->meth->field_sqr(group, r->Y, r->Z, ctx) |
| || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx) |
| || !group->meth->field_sqr(group, s->Y, s->Y, ctx) |
| || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx) |
| || !BN_GF2m_add(r->X, r->Y, s->Y)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /*- |
| * Recover affine (x,y) result from Lopez-Dahab r and s, affine p. |
| * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m) |
| * without Precomputation" (Lopez and Dahab, CHES 1999), |
| * Appendix Alg Mxy. |
| */ |
| static |
| int ec_GF2m_simple_ladder_post(const EC_GROUP *group, |
| EC_POINT *r, EC_POINT *s, |
| EC_POINT *p, BN_CTX *ctx) |
| { |
| int ret = 0; |
| BIGNUM *t0, *t1, *t2 = NULL; |
| |
| if (BN_is_zero(r->Z)) |
| return EC_POINT_set_to_infinity(group, r); |
| |
| if (BN_is_zero(s->Z)) { |
| if (!EC_POINT_copy(r, p) |
| || !EC_POINT_invert(group, r, ctx)) { |
| ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB); |
| return 0; |
| } |
| return 1; |
| } |
| |
| BN_CTX_start(ctx); |
| t0 = BN_CTX_get(ctx); |
| t1 = BN_CTX_get(ctx); |
| t2 = BN_CTX_get(ctx); |
| if (t2 == NULL) { |
| ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx) |
| || !group->meth->field_mul(group, t1, p->X, r->Z, ctx) |
| || !BN_GF2m_add(t1, r->X, t1) |
| || !group->meth->field_mul(group, t2, p->X, s->Z, ctx) |
| || !group->meth->field_mul(group, r->Z, r->X, t2, ctx) |
| || !BN_GF2m_add(t2, t2, s->X) |
| || !group->meth->field_mul(group, t1, t1, t2, ctx) |
| || !group->meth->field_sqr(group, t2, p->X, ctx) |
| || !BN_GF2m_add(t2, p->Y, t2) |
| || !group->meth->field_mul(group, t2, t2, t0, ctx) |
| || !BN_GF2m_add(t1, t2, t1) |
| || !group->meth->field_mul(group, t2, p->X, t0, ctx) |
| || !group->meth->field_inv(group, t2, t2, ctx) |
| || !group->meth->field_mul(group, t1, t1, t2, ctx) |
| || !group->meth->field_mul(group, r->X, r->Z, t2, ctx) |
| || !BN_GF2m_add(t2, p->X, r->X) |
| || !group->meth->field_mul(group, t2, t2, t1, ctx) |
| || !BN_GF2m_add(r->Y, p->Y, t2) |
| || !BN_one(r->Z)) |
| goto err; |
| |
| r->Z_is_one = 1; |
| |
| /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ |
| BN_set_negative(r->X, 0); |
| BN_set_negative(r->Y, 0); |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| static |
| int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r, |
| const BIGNUM *scalar, size_t num, |
| const EC_POINT *points[], |
| const BIGNUM *scalars[], |
| BN_CTX *ctx) |
| { |
| int ret = 0; |
| EC_POINT *t = NULL; |
| |
| /*- |
| * We limit use of the ladder only to the following cases: |
| * - r := scalar * G |
| * Fixed point mul: scalar != NULL && num == 0; |
| * - r := scalars[0] * points[0] |
| * Variable point mul: scalar == NULL && num == 1; |
| * - r := scalar * G + scalars[0] * points[0] |
| * used, e.g., in ECDSA verification: scalar != NULL && num == 1 |
| * |
| * In any other case (num > 1) we use the default wNAF implementation. |
| * |
| * We also let the default implementation handle degenerate cases like group |
| * order or cofactor set to 0. |
| */ |
| if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor)) |
| return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); |
| |
| if (scalar != NULL && num == 0) |
| /* Fixed point multiplication */ |
| return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx); |
| |
| if (scalar == NULL && num == 1) |
| /* Variable point multiplication */ |
| return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx); |
| |
| /*- |
| * Double point multiplication: |
| * r := scalar * G + scalars[0] * points[0] |
| */ |
| |
| if ((t = EC_POINT_new(group)) == NULL) { |
| ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx) |
| || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx) |
| || !EC_POINT_add(group, r, t, r, ctx)) |
| goto err; |
| |
| ret = 1; |
| |
| err: |
| EC_POINT_free(t); |
| return ret; |
| } |
| |
| /*- |
| * Computes the multiplicative inverse of a in GF(2^m), storing the result in r. |
| * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error. |
| * SCA hardening is with blinding: BN_GF2m_mod_inv does that. |
| */ |
| static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r, |
| const BIGNUM *a, BN_CTX *ctx) |
| { |
| int ret; |
| |
| if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx))) |
| ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT); |
| return ret; |
| } |
| |
| const EC_METHOD *EC_GF2m_simple_method(void) |
| { |
| static const EC_METHOD ret = { |
| EC_FLAGS_DEFAULT_OCT, |
| NID_X9_62_characteristic_two_field, |
| ec_GF2m_simple_group_init, |
| ec_GF2m_simple_group_finish, |
| ec_GF2m_simple_group_clear_finish, |
| ec_GF2m_simple_group_copy, |
| ec_GF2m_simple_group_set_curve, |
| ec_GF2m_simple_group_get_curve, |
| ec_GF2m_simple_group_get_degree, |
| ec_group_simple_order_bits, |
| ec_GF2m_simple_group_check_discriminant, |
| ec_GF2m_simple_point_init, |
| ec_GF2m_simple_point_finish, |
| ec_GF2m_simple_point_clear_finish, |
| ec_GF2m_simple_point_copy, |
| ec_GF2m_simple_point_set_to_infinity, |
| 0, /* set_Jprojective_coordinates_GFp */ |
| 0, /* get_Jprojective_coordinates_GFp */ |
| ec_GF2m_simple_point_set_affine_coordinates, |
| ec_GF2m_simple_point_get_affine_coordinates, |
| 0, /* point_set_compressed_coordinates */ |
| 0, /* point2oct */ |
| 0, /* oct2point */ |
| ec_GF2m_simple_add, |
| ec_GF2m_simple_dbl, |
| ec_GF2m_simple_invert, |
| ec_GF2m_simple_is_at_infinity, |
| ec_GF2m_simple_is_on_curve, |
| ec_GF2m_simple_cmp, |
| ec_GF2m_simple_make_affine, |
| ec_GF2m_simple_points_make_affine, |
| ec_GF2m_simple_points_mul, |
| 0, /* precompute_mult */ |
| 0, /* have_precompute_mult */ |
| ec_GF2m_simple_field_mul, |
| ec_GF2m_simple_field_sqr, |
| ec_GF2m_simple_field_div, |
| ec_GF2m_simple_field_inv, |
| 0, /* field_encode */ |
| 0, /* field_decode */ |
| 0, /* field_set_to_one */ |
| ec_key_simple_priv2oct, |
| ec_key_simple_oct2priv, |
| 0, /* set private */ |
| ec_key_simple_generate_key, |
| ec_key_simple_check_key, |
| ec_key_simple_generate_public_key, |
| 0, /* keycopy */ |
| 0, /* keyfinish */ |
| ecdh_simple_compute_key, |
| 0, /* field_inverse_mod_ord */ |
| 0, /* blind_coordinates */ |
| ec_GF2m_simple_ladder_pre, |
| ec_GF2m_simple_ladder_step, |
| ec_GF2m_simple_ladder_post |
| }; |
| |
| return &ret; |
| } |
| |
| #endif |