| use crate::base; |
| use crate::common::CodegenCx; |
| use crate::debuginfo; |
| use crate::llvm::{self, True}; |
| use crate::type_::Type; |
| use crate::type_of::LayoutLlvmExt; |
| use crate::value::Value; |
| use cstr::cstr; |
| use libc::c_uint; |
| use rustc_codegen_ssa::traits::*; |
| use rustc_hir::def_id::DefId; |
| use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs}; |
| use rustc_middle::mir::interpret::{ |
| read_target_uint, Allocation, ErrorHandled, GlobalAlloc, Pointer, Scalar as InterpScalar, |
| }; |
| use rustc_middle::mir::mono::MonoItem; |
| use rustc_middle::ty::{self, Instance, Ty}; |
| use rustc_middle::{bug, span_bug}; |
| use rustc_target::abi::{AddressSpace, Align, HasDataLayout, LayoutOf, Primitive, Scalar, Size}; |
| use tracing::debug; |
| |
| pub fn const_alloc_to_llvm(cx: &CodegenCx<'ll, '_>, alloc: &Allocation) -> &'ll Value { |
| let mut llvals = Vec::with_capacity(alloc.relocations().len() + 1); |
| let dl = cx.data_layout(); |
| let pointer_size = dl.pointer_size.bytes() as usize; |
| |
| let mut next_offset = 0; |
| for &(offset, alloc_id) in alloc.relocations().iter() { |
| let offset = offset.bytes(); |
| assert_eq!(offset as usize as u64, offset); |
| let offset = offset as usize; |
| if offset > next_offset { |
| // This `inspect` is okay since we have checked that it is not within a relocation, it |
| // is within the bounds of the allocation, and it doesn't affect interpreter execution |
| // (we inspect the result after interpreter execution). Any undef byte is replaced with |
| // some arbitrary byte value. |
| // |
| // FIXME: relay undef bytes to codegen as undef const bytes |
| let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(next_offset..offset); |
| llvals.push(cx.const_bytes(bytes)); |
| } |
| let ptr_offset = read_target_uint( |
| dl.endian, |
| // This `inspect` is okay since it is within the bounds of the allocation, it doesn't |
| // affect interpreter execution (we inspect the result after interpreter execution), |
| // and we properly interpret the relocation as a relocation pointer offset. |
| alloc.inspect_with_uninit_and_ptr_outside_interpreter(offset..(offset + pointer_size)), |
| ) |
| .expect("const_alloc_to_llvm: could not read relocation pointer") |
| as u64; |
| |
| let address_space = match cx.tcx.global_alloc(alloc_id) { |
| GlobalAlloc::Function(..) => cx.data_layout().instruction_address_space, |
| GlobalAlloc::Static(..) | GlobalAlloc::Memory(..) => AddressSpace::DATA, |
| }; |
| |
| llvals.push(cx.scalar_to_backend( |
| InterpScalar::from_pointer( |
| Pointer::new(alloc_id, Size::from_bytes(ptr_offset)), |
| &cx.tcx, |
| ), |
| &Scalar { value: Primitive::Pointer, valid_range: 0..=!0 }, |
| cx.type_i8p_ext(address_space), |
| )); |
| next_offset = offset + pointer_size; |
| } |
| if alloc.len() >= next_offset { |
| let range = next_offset..alloc.len(); |
| // This `inspect` is okay since we have check that it is after all relocations, it is |
| // within the bounds of the allocation, and it doesn't affect interpreter execution (we |
| // inspect the result after interpreter execution). Any undef byte is replaced with some |
| // arbitrary byte value. |
| // |
| // FIXME: relay undef bytes to codegen as undef const bytes |
| let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(range); |
| llvals.push(cx.const_bytes(bytes)); |
| } |
| |
| cx.const_struct(&llvals, true) |
| } |
| |
| pub fn codegen_static_initializer( |
| cx: &CodegenCx<'ll, 'tcx>, |
| def_id: DefId, |
| ) -> Result<(&'ll Value, &'tcx Allocation), ErrorHandled> { |
| let alloc = cx.tcx.eval_static_initializer(def_id)?; |
| Ok((const_alloc_to_llvm(cx, alloc), alloc)) |
| } |
| |
| fn set_global_alignment(cx: &CodegenCx<'ll, '_>, gv: &'ll Value, mut align: Align) { |
| // The target may require greater alignment for globals than the type does. |
| // Note: GCC and Clang also allow `__attribute__((aligned))` on variables, |
| // which can force it to be smaller. Rust doesn't support this yet. |
| if let Some(min) = cx.sess().target.min_global_align { |
| match Align::from_bits(min) { |
| Ok(min) => align = align.max(min), |
| Err(err) => { |
| cx.sess().err(&format!("invalid minimum global alignment: {}", err)); |
| } |
| } |
| } |
| unsafe { |
| llvm::LLVMSetAlignment(gv, align.bytes() as u32); |
| } |
| } |
| |
| fn check_and_apply_linkage( |
| cx: &CodegenCx<'ll, 'tcx>, |
| attrs: &CodegenFnAttrs, |
| ty: Ty<'tcx>, |
| sym: &str, |
| span_def_id: DefId, |
| ) -> &'ll Value { |
| let llty = cx.layout_of(ty).llvm_type(cx); |
| if let Some(linkage) = attrs.linkage { |
| debug!("get_static: sym={} linkage={:?}", sym, linkage); |
| |
| // If this is a static with a linkage specified, then we need to handle |
| // it a little specially. The typesystem prevents things like &T and |
| // extern "C" fn() from being non-null, so we can't just declare a |
| // static and call it a day. Some linkages (like weak) will make it such |
| // that the static actually has a null value. |
| let llty2 = if let ty::RawPtr(ref mt) = ty.kind() { |
| cx.layout_of(mt.ty).llvm_type(cx) |
| } else { |
| cx.sess().span_fatal( |
| cx.tcx.def_span(span_def_id), |
| "must have type `*const T` or `*mut T` due to `#[linkage]` attribute", |
| ) |
| }; |
| unsafe { |
| // Declare a symbol `foo` with the desired linkage. |
| let g1 = cx.declare_global(&sym, llty2); |
| llvm::LLVMRustSetLinkage(g1, base::linkage_to_llvm(linkage)); |
| |
| // Declare an internal global `extern_with_linkage_foo` which |
| // is initialized with the address of `foo`. If `foo` is |
| // discarded during linking (for example, if `foo` has weak |
| // linkage and there are no definitions), then |
| // `extern_with_linkage_foo` will instead be initialized to |
| // zero. |
| let mut real_name = "_rust_extern_with_linkage_".to_string(); |
| real_name.push_str(&sym); |
| let g2 = cx.define_global(&real_name, llty).unwrap_or_else(|| { |
| cx.sess().span_fatal( |
| cx.tcx.def_span(span_def_id), |
| &format!("symbol `{}` is already defined", &sym), |
| ) |
| }); |
| llvm::LLVMRustSetLinkage(g2, llvm::Linkage::InternalLinkage); |
| llvm::LLVMSetInitializer(g2, g1); |
| g2 |
| } |
| } else { |
| // Generate an external declaration. |
| // FIXME(nagisa): investigate whether it can be changed into define_global |
| cx.declare_global(&sym, llty) |
| } |
| } |
| |
| pub fn ptrcast(val: &'ll Value, ty: &'ll Type) -> &'ll Value { |
| unsafe { llvm::LLVMConstPointerCast(val, ty) } |
| } |
| |
| impl CodegenCx<'ll, 'tcx> { |
| crate fn const_bitcast(&self, val: &'ll Value, ty: &'ll Type) -> &'ll Value { |
| unsafe { llvm::LLVMConstBitCast(val, ty) } |
| } |
| |
| crate fn static_addr_of_mut( |
| &self, |
| cv: &'ll Value, |
| align: Align, |
| kind: Option<&str>, |
| ) -> &'ll Value { |
| unsafe { |
| let gv = match kind { |
| Some(kind) if !self.tcx.sess.fewer_names() => { |
| let name = self.generate_local_symbol_name(kind); |
| let gv = self.define_global(&name[..], self.val_ty(cv)).unwrap_or_else(|| { |
| bug!("symbol `{}` is already defined", name); |
| }); |
| llvm::LLVMRustSetLinkage(gv, llvm::Linkage::PrivateLinkage); |
| gv |
| } |
| _ => self.define_private_global(self.val_ty(cv)), |
| }; |
| llvm::LLVMSetInitializer(gv, cv); |
| set_global_alignment(&self, gv, align); |
| llvm::SetUnnamedAddress(gv, llvm::UnnamedAddr::Global); |
| gv |
| } |
| } |
| |
| crate fn get_static(&self, def_id: DefId) -> &'ll Value { |
| let instance = Instance::mono(self.tcx, def_id); |
| if let Some(&g) = self.instances.borrow().get(&instance) { |
| return g; |
| } |
| |
| let defined_in_current_codegen_unit = |
| self.codegen_unit.items().contains_key(&MonoItem::Static(def_id)); |
| assert!( |
| !defined_in_current_codegen_unit, |
| "consts::get_static() should always hit the cache for \ |
| statics defined in the same CGU, but did not for `{:?}`", |
| def_id |
| ); |
| |
| let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all()); |
| let sym = self.tcx.symbol_name(instance).name; |
| let fn_attrs = self.tcx.codegen_fn_attrs(def_id); |
| |
| debug!("get_static: sym={} instance={:?} fn_attrs={:?}", sym, instance, fn_attrs); |
| |
| let g = if def_id.is_local() && !self.tcx.is_foreign_item(def_id) { |
| let llty = self.layout_of(ty).llvm_type(self); |
| if let Some(g) = self.get_declared_value(sym) { |
| if self.val_ty(g) != self.type_ptr_to(llty) { |
| span_bug!(self.tcx.def_span(def_id), "Conflicting types for static"); |
| } |
| } |
| |
| let g = self.declare_global(sym, llty); |
| |
| if !self.tcx.is_reachable_non_generic(def_id) { |
| unsafe { |
| llvm::LLVMRustSetVisibility(g, llvm::Visibility::Hidden); |
| } |
| } |
| |
| g |
| } else { |
| check_and_apply_linkage(&self, &fn_attrs, ty, sym, def_id) |
| }; |
| |
| // Thread-local statics in some other crate need to *always* be linked |
| // against in a thread-local fashion, so we need to be sure to apply the |
| // thread-local attribute locally if it was present remotely. If we |
| // don't do this then linker errors can be generated where the linker |
| // complains that one object files has a thread local version of the |
| // symbol and another one doesn't. |
| if fn_attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) { |
| llvm::set_thread_local_mode(g, self.tls_model); |
| } |
| |
| if !def_id.is_local() { |
| let needs_dll_storage_attr = self.use_dll_storage_attrs && !self.tcx.is_foreign_item(def_id) && |
| // ThinLTO can't handle this workaround in all cases, so we don't |
| // emit the attrs. Instead we make them unnecessary by disallowing |
| // dynamic linking when linker plugin based LTO is enabled. |
| !self.tcx.sess.opts.cg.linker_plugin_lto.enabled(); |
| |
| // If this assertion triggers, there's something wrong with commandline |
| // argument validation. |
| debug_assert!( |
| !(self.tcx.sess.opts.cg.linker_plugin_lto.enabled() |
| && self.tcx.sess.target.is_like_windows |
| && self.tcx.sess.opts.cg.prefer_dynamic) |
| ); |
| |
| if needs_dll_storage_attr { |
| // This item is external but not foreign, i.e., it originates from an external Rust |
| // crate. Since we don't know whether this crate will be linked dynamically or |
| // statically in the final application, we always mark such symbols as 'dllimport'. |
| // If final linkage happens to be static, we rely on compiler-emitted __imp_ stubs |
| // to make things work. |
| // |
| // However, in some scenarios we defer emission of statics to downstream |
| // crates, so there are cases where a static with an upstream DefId |
| // is actually present in the current crate. We can find out via the |
| // is_codegened_item query. |
| if !self.tcx.is_codegened_item(def_id) { |
| unsafe { |
| llvm::LLVMSetDLLStorageClass(g, llvm::DLLStorageClass::DllImport); |
| } |
| } |
| } |
| } |
| |
| if self.use_dll_storage_attrs && self.tcx.is_dllimport_foreign_item(def_id) { |
| // For foreign (native) libs we know the exact storage type to use. |
| unsafe { |
| llvm::LLVMSetDLLStorageClass(g, llvm::DLLStorageClass::DllImport); |
| } |
| } |
| |
| unsafe { |
| if self.should_assume_dso_local(g, true) { |
| llvm::LLVMRustSetDSOLocal(g, true); |
| } |
| } |
| |
| self.instances.borrow_mut().insert(instance, g); |
| g |
| } |
| } |
| |
| impl StaticMethods for CodegenCx<'ll, 'tcx> { |
| fn static_addr_of(&self, cv: &'ll Value, align: Align, kind: Option<&str>) -> &'ll Value { |
| if let Some(&gv) = self.const_globals.borrow().get(&cv) { |
| unsafe { |
| // Upgrade the alignment in cases where the same constant is used with different |
| // alignment requirements |
| let llalign = align.bytes() as u32; |
| if llalign > llvm::LLVMGetAlignment(gv) { |
| llvm::LLVMSetAlignment(gv, llalign); |
| } |
| } |
| return gv; |
| } |
| let gv = self.static_addr_of_mut(cv, align, kind); |
| unsafe { |
| llvm::LLVMSetGlobalConstant(gv, True); |
| } |
| self.const_globals.borrow_mut().insert(cv, gv); |
| gv |
| } |
| |
| fn codegen_static(&self, def_id: DefId, is_mutable: bool) { |
| unsafe { |
| let attrs = self.tcx.codegen_fn_attrs(def_id); |
| |
| let (v, alloc) = match codegen_static_initializer(&self, def_id) { |
| Ok(v) => v, |
| // Error has already been reported |
| Err(_) => return, |
| }; |
| |
| let g = self.get_static(def_id); |
| |
| // boolean SSA values are i1, but they have to be stored in i8 slots, |
| // otherwise some LLVM optimization passes don't work as expected |
| let mut val_llty = self.val_ty(v); |
| let v = if val_llty == self.type_i1() { |
| val_llty = self.type_i8(); |
| llvm::LLVMConstZExt(v, val_llty) |
| } else { |
| v |
| }; |
| |
| let instance = Instance::mono(self.tcx, def_id); |
| let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all()); |
| let llty = self.layout_of(ty).llvm_type(self); |
| let g = if val_llty == llty { |
| g |
| } else { |
| // If we created the global with the wrong type, |
| // correct the type. |
| let name = llvm::get_value_name(g).to_vec(); |
| llvm::set_value_name(g, b""); |
| |
| let linkage = llvm::LLVMRustGetLinkage(g); |
| let visibility = llvm::LLVMRustGetVisibility(g); |
| |
| let new_g = llvm::LLVMRustGetOrInsertGlobal( |
| self.llmod, |
| name.as_ptr().cast(), |
| name.len(), |
| val_llty, |
| ); |
| |
| llvm::LLVMRustSetLinkage(new_g, linkage); |
| llvm::LLVMRustSetVisibility(new_g, visibility); |
| |
| // To avoid breaking any invariants, we leave around the old |
| // global for the moment; we'll replace all references to it |
| // with the new global later. (See base::codegen_backend.) |
| self.statics_to_rauw.borrow_mut().push((g, new_g)); |
| new_g |
| }; |
| set_global_alignment(&self, g, self.align_of(ty)); |
| llvm::LLVMSetInitializer(g, v); |
| |
| if self.should_assume_dso_local(g, true) { |
| llvm::LLVMRustSetDSOLocal(g, true); |
| } |
| |
| // As an optimization, all shared statics which do not have interior |
| // mutability are placed into read-only memory. |
| if !is_mutable && self.type_is_freeze(ty) { |
| llvm::LLVMSetGlobalConstant(g, llvm::True); |
| } |
| |
| debuginfo::create_global_var_metadata(&self, def_id, g); |
| |
| if attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) { |
| llvm::set_thread_local_mode(g, self.tls_model); |
| |
| // Do not allow LLVM to change the alignment of a TLS on macOS. |
| // |
| // By default a global's alignment can be freely increased. |
| // This allows LLVM to generate more performant instructions |
| // e.g., using load-aligned into a SIMD register. |
| // |
| // However, on macOS 10.10 or below, the dynamic linker does not |
| // respect any alignment given on the TLS (radar 24221680). |
| // This will violate the alignment assumption, and causing segfault at runtime. |
| // |
| // This bug is very easy to trigger. In `println!` and `panic!`, |
| // the `LOCAL_STDOUT`/`LOCAL_STDERR` handles are stored in a TLS, |
| // which the values would be `mem::replace`d on initialization. |
| // The implementation of `mem::replace` will use SIMD |
| // whenever the size is 32 bytes or higher. LLVM notices SIMD is used |
| // and tries to align `LOCAL_STDOUT`/`LOCAL_STDERR` to a 32-byte boundary, |
| // which macOS's dyld disregarded and causing crashes |
| // (see issues #51794, #51758, #50867, #48866 and #44056). |
| // |
| // To workaround the bug, we trick LLVM into not increasing |
| // the global's alignment by explicitly assigning a section to it |
| // (equivalent to automatically generating a `#[link_section]` attribute). |
| // See the comment in the `GlobalValue::canIncreaseAlignment()` function |
| // of `lib/IR/Globals.cpp` for why this works. |
| // |
| // When the alignment is not increased, the optimized `mem::replace` |
| // will use load-unaligned instructions instead, and thus avoiding the crash. |
| // |
| // We could remove this hack whenever we decide to drop macOS 10.10 support. |
| if self.tcx.sess.target.is_like_osx { |
| // The `inspect` method is okay here because we checked relocations, and |
| // because we are doing this access to inspect the final interpreter state |
| // (not as part of the interpreter execution). |
| // |
| // FIXME: This check requires that the (arbitrary) value of undefined bytes |
| // happens to be zero. Instead, we should only check the value of defined bytes |
| // and set all undefined bytes to zero if this allocation is headed for the |
| // BSS. |
| let all_bytes_are_zero = alloc.relocations().is_empty() |
| && alloc |
| .inspect_with_uninit_and_ptr_outside_interpreter(0..alloc.len()) |
| .iter() |
| .all(|&byte| byte == 0); |
| |
| let sect_name = if all_bytes_are_zero { |
| cstr!("__DATA,__thread_bss") |
| } else { |
| cstr!("__DATA,__thread_data") |
| }; |
| llvm::LLVMSetSection(g, sect_name.as_ptr()); |
| } |
| } |
| |
| // Wasm statics with custom link sections get special treatment as they |
| // go into custom sections of the wasm executable. |
| if self.tcx.sess.opts.target_triple.triple().starts_with("wasm32") { |
| if let Some(section) = attrs.link_section { |
| let section = llvm::LLVMMDStringInContext( |
| self.llcx, |
| section.as_str().as_ptr().cast(), |
| section.as_str().len() as c_uint, |
| ); |
| assert!(alloc.relocations().is_empty()); |
| |
| // The `inspect` method is okay here because we checked relocations, and |
| // because we are doing this access to inspect the final interpreter state (not |
| // as part of the interpreter execution). |
| let bytes = |
| alloc.inspect_with_uninit_and_ptr_outside_interpreter(0..alloc.len()); |
| let alloc = llvm::LLVMMDStringInContext( |
| self.llcx, |
| bytes.as_ptr().cast(), |
| bytes.len() as c_uint, |
| ); |
| let data = [section, alloc]; |
| let meta = llvm::LLVMMDNodeInContext(self.llcx, data.as_ptr(), 2); |
| llvm::LLVMAddNamedMetadataOperand( |
| self.llmod, |
| "wasm.custom_sections\0".as_ptr().cast(), |
| meta, |
| ); |
| } |
| } else { |
| base::set_link_section(g, &attrs); |
| } |
| |
| if attrs.flags.contains(CodegenFnAttrFlags::USED) { |
| self.add_used_global(g); |
| } |
| } |
| } |
| |
| /// Add a global value to a list to be stored in the `llvm.used` variable, an array of i8*. |
| fn add_used_global(&self, global: &'ll Value) { |
| let cast = unsafe { llvm::LLVMConstPointerCast(global, self.type_i8p()) }; |
| self.used_statics.borrow_mut().push(cast); |
| } |
| } |