| use crate::traits::query::evaluate_obligation::InferCtxtExt as _; |
| use crate::traits::query::outlives_bounds::InferCtxtExt as _; |
| use crate::traits::{self, TraitEngine, TraitEngineExt}; |
| |
| use rustc_hir as hir; |
| use rustc_hir::def_id::DefId; |
| use rustc_hir::lang_items::LangItem; |
| use rustc_infer::infer::outlives::env::OutlivesEnvironment; |
| use rustc_infer::traits::ObligationCause; |
| use rustc_middle::arena::ArenaAllocatable; |
| use rustc_middle::infer::canonical::{Canonical, CanonicalizedQueryResponse, QueryResponse}; |
| use rustc_middle::traits::query::Fallible; |
| use rustc_middle::ty::subst::SubstsRef; |
| use rustc_middle::ty::ToPredicate; |
| use rustc_middle::ty::WithConstness; |
| use rustc_middle::ty::{self, Ty, TypeFoldable}; |
| use rustc_span::{Span, DUMMY_SP}; |
| |
| use std::fmt::Debug; |
| |
| pub use rustc_infer::infer::*; |
| |
| pub trait InferCtxtExt<'tcx> { |
| fn type_is_copy_modulo_regions( |
| &self, |
| param_env: ty::ParamEnv<'tcx>, |
| ty: Ty<'tcx>, |
| span: Span, |
| ) -> bool; |
| |
| fn partially_normalize_associated_types_in<T>( |
| &self, |
| cause: ObligationCause<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| value: T, |
| ) -> InferOk<'tcx, T> |
| where |
| T: TypeFoldable<'tcx>; |
| |
| /// Check whether a `ty` implements given trait(trait_def_id). |
| /// The inputs are: |
| /// |
| /// - the def-id of the trait |
| /// - the self type |
| /// - the *other* type parameters of the trait, excluding the self-type |
| /// - the parameter environment |
| fn type_implements_trait( |
| &self, |
| trait_def_id: DefId, |
| ty: Ty<'tcx>, |
| params: SubstsRef<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ) -> traits::EvaluationResult; |
| } |
| impl<'cx, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'cx, 'tcx> { |
| fn type_is_copy_modulo_regions( |
| &self, |
| param_env: ty::ParamEnv<'tcx>, |
| ty: Ty<'tcx>, |
| span: Span, |
| ) -> bool { |
| let ty = self.resolve_vars_if_possible(ty); |
| |
| if !(param_env, ty).needs_infer() { |
| return ty.is_copy_modulo_regions(self.tcx.at(span), param_env); |
| } |
| |
| let copy_def_id = self.tcx.require_lang_item(LangItem::Copy, None); |
| |
| // This can get called from typeck (by euv), and `moves_by_default` |
| // rightly refuses to work with inference variables, but |
| // moves_by_default has a cache, which we want to use in other |
| // cases. |
| traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, copy_def_id, span) |
| } |
| |
| /// Normalizes associated types in `value`, potentially returning |
| /// new obligations that must further be processed. |
| fn partially_normalize_associated_types_in<T>( |
| &self, |
| cause: ObligationCause<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| value: T, |
| ) -> InferOk<'tcx, T> |
| where |
| T: TypeFoldable<'tcx>, |
| { |
| debug!("partially_normalize_associated_types_in(value={:?})", value); |
| let mut selcx = traits::SelectionContext::new(self); |
| let traits::Normalized { value, obligations } = |
| traits::normalize(&mut selcx, param_env, cause, value); |
| debug!( |
| "partially_normalize_associated_types_in: result={:?} predicates={:?}", |
| value, obligations |
| ); |
| InferOk { value, obligations } |
| } |
| |
| fn type_implements_trait( |
| &self, |
| trait_def_id: DefId, |
| ty: Ty<'tcx>, |
| params: SubstsRef<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ) -> traits::EvaluationResult { |
| debug!( |
| "type_implements_trait: trait_def_id={:?}, type={:?}, params={:?}, param_env={:?}", |
| trait_def_id, ty, params, param_env |
| ); |
| |
| let trait_ref = |
| ty::TraitRef { def_id: trait_def_id, substs: self.tcx.mk_substs_trait(ty, params) }; |
| |
| let obligation = traits::Obligation { |
| cause: traits::ObligationCause::dummy(), |
| param_env, |
| recursion_depth: 0, |
| predicate: trait_ref.without_const().to_predicate(self.tcx), |
| }; |
| self.evaluate_obligation_no_overflow(&obligation) |
| } |
| } |
| |
| pub trait InferCtxtBuilderExt<'tcx> { |
| fn enter_canonical_trait_query<K, R>( |
| &mut self, |
| canonical_key: &Canonical<'tcx, K>, |
| operation: impl FnOnce(&InferCtxt<'_, 'tcx>, &mut dyn TraitEngine<'tcx>, K) -> Fallible<R>, |
| ) -> Fallible<CanonicalizedQueryResponse<'tcx, R>> |
| where |
| K: TypeFoldable<'tcx>, |
| R: Debug + TypeFoldable<'tcx>, |
| Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>; |
| } |
| |
| impl<'tcx> InferCtxtBuilderExt<'tcx> for InferCtxtBuilder<'tcx> { |
| /// The "main method" for a canonicalized trait query. Given the |
| /// canonical key `canonical_key`, this method will create a new |
| /// inference context, instantiate the key, and run your operation |
| /// `op`. The operation should yield up a result (of type `R`) as |
| /// well as a set of trait obligations that must be fully |
| /// satisfied. These obligations will be processed and the |
| /// canonical result created. |
| /// |
| /// Returns `NoSolution` in the event of any error. |
| /// |
| /// (It might be mildly nicer to implement this on `TyCtxt`, and |
| /// not `InferCtxtBuilder`, but that is a bit tricky right now. |
| /// In part because we would need a `for<'tcx>` sort of |
| /// bound for the closure and in part because it is convenient to |
| /// have `'tcx` be free on this function so that we can talk about |
| /// `K: TypeFoldable<'tcx>`.) |
| fn enter_canonical_trait_query<K, R>( |
| &mut self, |
| canonical_key: &Canonical<'tcx, K>, |
| operation: impl FnOnce(&InferCtxt<'_, 'tcx>, &mut dyn TraitEngine<'tcx>, K) -> Fallible<R>, |
| ) -> Fallible<CanonicalizedQueryResponse<'tcx, R>> |
| where |
| K: TypeFoldable<'tcx>, |
| R: Debug + TypeFoldable<'tcx>, |
| Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>, |
| { |
| self.enter_with_canonical( |
| DUMMY_SP, |
| canonical_key, |
| |ref infcx, key, canonical_inference_vars| { |
| let mut fulfill_cx = <dyn TraitEngine<'_>>::new(infcx.tcx); |
| let value = operation(infcx, &mut *fulfill_cx, key)?; |
| infcx.make_canonicalized_query_response( |
| canonical_inference_vars, |
| value, |
| &mut *fulfill_cx, |
| ) |
| }, |
| ) |
| } |
| } |
| |
| pub trait OutlivesEnvironmentExt<'tcx> { |
| fn add_implied_bounds( |
| &mut self, |
| infcx: &InferCtxt<'a, 'tcx>, |
| fn_sig_tys: &[Ty<'tcx>], |
| body_id: hir::HirId, |
| span: Span, |
| ); |
| } |
| |
| impl<'tcx> OutlivesEnvironmentExt<'tcx> for OutlivesEnvironment<'tcx> { |
| /// This method adds "implied bounds" into the outlives environment. |
| /// Implied bounds are outlives relationships that we can deduce |
| /// on the basis that certain types must be well-formed -- these are |
| /// either the types that appear in the function signature or else |
| /// the input types to an impl. For example, if you have a function |
| /// like |
| /// |
| /// ``` |
| /// fn foo<'a, 'b, T>(x: &'a &'b [T]) { } |
| /// ``` |
| /// |
| /// we can assume in the caller's body that `'b: 'a` and that `T: |
| /// 'b` (and hence, transitively, that `T: 'a`). This method would |
| /// add those assumptions into the outlives-environment. |
| /// |
| /// Tests: `src/test/ui/regions/regions-free-region-ordering-*.rs` |
| fn add_implied_bounds( |
| &mut self, |
| infcx: &InferCtxt<'a, 'tcx>, |
| fn_sig_tys: &[Ty<'tcx>], |
| body_id: hir::HirId, |
| span: Span, |
| ) { |
| debug!("add_implied_bounds()"); |
| |
| for &ty in fn_sig_tys { |
| let ty = infcx.resolve_vars_if_possible(ty); |
| debug!("add_implied_bounds: ty = {}", ty); |
| let implied_bounds = infcx.implied_outlives_bounds(self.param_env, body_id, ty, span); |
| self.add_outlives_bounds(Some(infcx), implied_bounds) |
| } |
| } |
| } |