blob: 8dec643255f64e600e93292349014a7b97e2559d [file] [log] [blame]
//! Generic hashing support.
//!
//! This module provides a generic way to compute the [hash] of a value.
//! Hashes are most commonly used with [`HashMap`] and [`HashSet`].
//!
//! [hash]: https://en.wikipedia.org/wiki/Hash_function
//! [`HashMap`]: ../../std/collections/struct.HashMap.html
//! [`HashSet`]: ../../std/collections/struct.HashSet.html
//!
//! The simplest way to make a type hashable is to use `#[derive(Hash)]`:
//!
//! # Examples
//!
//! ```rust
//! use std::collections::hash_map::DefaultHasher;
//! use std::hash::{Hash, Hasher};
//!
//! #[derive(Hash)]
//! struct Person {
//! id: u32,
//! name: String,
//! phone: u64,
//! }
//!
//! let person1 = Person {
//! id: 5,
//! name: "Janet".to_string(),
//! phone: 555_666_7777,
//! };
//! let person2 = Person {
//! id: 5,
//! name: "Bob".to_string(),
//! phone: 555_666_7777,
//! };
//!
//! assert!(calculate_hash(&person1) != calculate_hash(&person2));
//!
//! fn calculate_hash<T: Hash>(t: &T) -> u64 {
//! let mut s = DefaultHasher::new();
//! t.hash(&mut s);
//! s.finish()
//! }
//! ```
//!
//! If you need more control over how a value is hashed, you need to implement
//! the [`Hash`] trait:
//!
//! ```rust
//! use std::collections::hash_map::DefaultHasher;
//! use std::hash::{Hash, Hasher};
//!
//! struct Person {
//! id: u32,
//! # #[allow(dead_code)]
//! name: String,
//! phone: u64,
//! }
//!
//! impl Hash for Person {
//! fn hash<H: Hasher>(&self, state: &mut H) {
//! self.id.hash(state);
//! self.phone.hash(state);
//! }
//! }
//!
//! let person1 = Person {
//! id: 5,
//! name: "Janet".to_string(),
//! phone: 555_666_7777,
//! };
//! let person2 = Person {
//! id: 5,
//! name: "Bob".to_string(),
//! phone: 555_666_7777,
//! };
//!
//! assert_eq!(calculate_hash(&person1), calculate_hash(&person2));
//!
//! fn calculate_hash<T: Hash>(t: &T) -> u64 {
//! let mut s = DefaultHasher::new();
//! t.hash(&mut s);
//! s.finish()
//! }
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
use crate::fmt;
use crate::marker;
#[stable(feature = "rust1", since = "1.0.0")]
#[allow(deprecated)]
pub use self::sip::SipHasher;
#[unstable(feature = "hashmap_internals", issue = "none")]
#[allow(deprecated)]
#[doc(hidden)]
pub use self::sip::SipHasher13;
mod sip;
/// A hashable type.
///
/// Types implementing `Hash` are able to be [`hash`]ed with an instance of
/// [`Hasher`].
///
/// ## Implementing `Hash`
///
/// You can derive `Hash` with `#[derive(Hash)]` if all fields implement `Hash`.
/// The resulting hash will be the combination of the values from calling
/// [`hash`] on each field.
///
/// ```
/// #[derive(Hash)]
/// struct Rustacean {
/// name: String,
/// country: String,
/// }
/// ```
///
/// If you need more control over how a value is hashed, you can of course
/// implement the `Hash` trait yourself:
///
/// ```
/// use std::hash::{Hash, Hasher};
///
/// struct Person {
/// id: u32,
/// name: String,
/// phone: u64,
/// }
///
/// impl Hash for Person {
/// fn hash<H: Hasher>(&self, state: &mut H) {
/// self.id.hash(state);
/// self.phone.hash(state);
/// }
/// }
/// ```
///
/// ## `Hash` and `Eq`
///
/// When implementing both `Hash` and [`Eq`], it is important that the following
/// property holds:
///
/// ```text
/// k1 == k2 -> hash(k1) == hash(k2)
/// ```
///
/// In other words, if two keys are equal, their hashes must also be equal.
/// [`HashMap`] and [`HashSet`] both rely on this behavior.
///
/// Thankfully, you won't need to worry about upholding this property when
/// deriving both [`Eq`] and `Hash` with `#[derive(PartialEq, Eq, Hash)]`.
///
/// [`HashMap`]: ../../std/collections/struct.HashMap.html
/// [`HashSet`]: ../../std/collections/struct.HashSet.html
/// [`hash`]: Hash::hash
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Hash {
/// Feeds this value into the given [`Hasher`].
///
/// # Examples
///
/// ```
/// use std::collections::hash_map::DefaultHasher;
/// use std::hash::{Hash, Hasher};
///
/// let mut hasher = DefaultHasher::new();
/// 7920.hash(&mut hasher);
/// println!("Hash is {:x}!", hasher.finish());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn hash<H: Hasher>(&self, state: &mut H);
/// Feeds a slice of this type into the given [`Hasher`].
///
/// This method is meant as a convenience, but its implementation is
/// also explicitly left unspecified. It isn't guaranteed to be
/// equivalent to repeated calls of [`hash`] and implementations of
/// [`Hash`] should keep that in mind and call [`hash`] themselves
/// if the slice isn't treated as a whole unit in the [`PartialEq`]
/// implementation.
///
/// For example, a [`VecDeque`] implementation might naïvely call
/// [`as_slices`] and then [`hash_slice`] on each slice, but this
/// is wrong since the two slices can change with a call to
/// [`make_contiguous`] without affecting the [`PartialEq`]
/// result. Since these slices aren't treated as singular
/// units, and instead part of a larger deque, this method cannot
/// be used.
///
/// # Examples
///
/// ```
/// use std::collections::hash_map::DefaultHasher;
/// use std::hash::{Hash, Hasher};
///
/// let mut hasher = DefaultHasher::new();
/// let numbers = [6, 28, 496, 8128];
/// Hash::hash_slice(&numbers, &mut hasher);
/// println!("Hash is {:x}!", hasher.finish());
/// ```
///
/// [`VecDeque`]: ../../std/collections/struct.VecDeque.html
/// [`as_slices`]: ../../std/collections/struct.VecDeque.html#method.as_slices
/// [`make_contiguous`]: ../../std/collections/struct.VecDeque.html#method.make_contiguous
/// [`hash`]: Hash::hash
/// [`hash_slice`]: Hash::hash_slice
#[stable(feature = "hash_slice", since = "1.3.0")]
fn hash_slice<H: Hasher>(data: &[Self], state: &mut H)
where
Self: Sized,
{
for piece in data {
piece.hash(state);
}
}
}
// Separate module to reexport the macro `Hash` from prelude without the trait `Hash`.
pub(crate) mod macros {
/// Derive macro generating an impl of the trait `Hash`.
#[rustc_builtin_macro]
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
#[allow_internal_unstable(core_intrinsics)]
pub macro Hash($item:item) {
/* compiler built-in */
}
}
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
#[doc(inline)]
pub use macros::Hash;
/// A trait for hashing an arbitrary stream of bytes.
///
/// Instances of `Hasher` usually represent state that is changed while hashing
/// data.
///
/// `Hasher` provides a fairly basic interface for retrieving the generated hash
/// (with [`finish`]), and writing integers as well as slices of bytes into an
/// instance (with [`write`] and [`write_u8`] etc.). Most of the time, `Hasher`
/// instances are used in conjunction with the [`Hash`] trait.
///
/// This trait makes no assumptions about how the various `write_*` methods are
/// defined and implementations of [`Hash`] should not assume that they work one
/// way or another. You cannot assume, for example, that a [`write_u32`] call is
/// equivalent to four calls of [`write_u8`].
///
/// # Examples
///
/// ```
/// use std::collections::hash_map::DefaultHasher;
/// use std::hash::Hasher;
///
/// let mut hasher = DefaultHasher::new();
///
/// hasher.write_u32(1989);
/// hasher.write_u8(11);
/// hasher.write_u8(9);
/// hasher.write(b"Huh?");
///
/// println!("Hash is {:x}!", hasher.finish());
/// ```
///
/// [`finish`]: Hasher::finish
/// [`write`]: Hasher::write
/// [`write_u8`]: Hasher::write_u8
/// [`write_u32`]: Hasher::write_u32
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Hasher {
/// Returns the hash value for the values written so far.
///
/// Despite its name, the method does not reset the hasher’s internal
/// state. Additional [`write`]s will continue from the current value.
/// If you need to start a fresh hash value, you will have to create
/// a new hasher.
///
/// # Examples
///
/// ```
/// use std::collections::hash_map::DefaultHasher;
/// use std::hash::Hasher;
///
/// let mut hasher = DefaultHasher::new();
/// hasher.write(b"Cool!");
///
/// println!("Hash is {:x}!", hasher.finish());
/// ```
///
/// [`write`]: Hasher::write
#[stable(feature = "rust1", since = "1.0.0")]
fn finish(&self) -> u64;
/// Writes some data into this `Hasher`.
///
/// # Examples
///
/// ```
/// use std::collections::hash_map::DefaultHasher;
/// use std::hash::Hasher;
///
/// let mut hasher = DefaultHasher::new();
/// let data = [0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef];
///
/// hasher.write(&data);
///
/// println!("Hash is {:x}!", hasher.finish());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn write(&mut self, bytes: &[u8]);
/// Writes a single `u8` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_u8(&mut self, i: u8) {
self.write(&[i])
}
/// Writes a single `u16` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_u16(&mut self, i: u16) {
self.write(&i.to_ne_bytes())
}
/// Writes a single `u32` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_u32(&mut self, i: u32) {
self.write(&i.to_ne_bytes())
}
/// Writes a single `u64` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_u64(&mut self, i: u64) {
self.write(&i.to_ne_bytes())
}
/// Writes a single `u128` into this hasher.
#[inline]
#[stable(feature = "i128", since = "1.26.0")]
fn write_u128(&mut self, i: u128) {
self.write(&i.to_ne_bytes())
}
/// Writes a single `usize` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_usize(&mut self, i: usize) {
self.write(&i.to_ne_bytes())
}
/// Writes a single `i8` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_i8(&mut self, i: i8) {
self.write_u8(i as u8)
}
/// Writes a single `i16` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_i16(&mut self, i: i16) {
self.write_u16(i as u16)
}
/// Writes a single `i32` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_i32(&mut self, i: i32) {
self.write_u32(i as u32)
}
/// Writes a single `i64` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_i64(&mut self, i: i64) {
self.write_u64(i as u64)
}
/// Writes a single `i128` into this hasher.
#[inline]
#[stable(feature = "i128", since = "1.26.0")]
fn write_i128(&mut self, i: i128) {
self.write_u128(i as u128)
}
/// Writes a single `isize` into this hasher.
#[inline]
#[stable(feature = "hasher_write", since = "1.3.0")]
fn write_isize(&mut self, i: isize) {
self.write_usize(i as usize)
}
}
#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
impl<H: Hasher + ?Sized> Hasher for &mut H {
fn finish(&self) -> u64 {
(**self).finish()
}
fn write(&mut self, bytes: &[u8]) {
(**self).write(bytes)
}
fn write_u8(&mut self, i: u8) {
(**self).write_u8(i)
}
fn write_u16(&mut self, i: u16) {
(**self).write_u16(i)
}
fn write_u32(&mut self, i: u32) {
(**self).write_u32(i)
}
fn write_u64(&mut self, i: u64) {
(**self).write_u64(i)
}
fn write_u128(&mut self, i: u128) {
(**self).write_u128(i)
}
fn write_usize(&mut self, i: usize) {
(**self).write_usize(i)
}
fn write_i8(&mut self, i: i8) {
(**self).write_i8(i)
}
fn write_i16(&mut self, i: i16) {
(**self).write_i16(i)
}
fn write_i32(&mut self, i: i32) {
(**self).write_i32(i)
}
fn write_i64(&mut self, i: i64) {
(**self).write_i64(i)
}
fn write_i128(&mut self, i: i128) {
(**self).write_i128(i)
}
fn write_isize(&mut self, i: isize) {
(**self).write_isize(i)
}
}
/// A trait for creating instances of [`Hasher`].
///
/// A `BuildHasher` is typically used (e.g., by [`HashMap`]) to create
/// [`Hasher`]s for each key such that they are hashed independently of one
/// another, since [`Hasher`]s contain state.
///
/// For each instance of `BuildHasher`, the [`Hasher`]s created by
/// [`build_hasher`] should be identical. That is, if the same stream of bytes
/// is fed into each hasher, the same output will also be generated.
///
/// # Examples
///
/// ```
/// use std::collections::hash_map::RandomState;
/// use std::hash::{BuildHasher, Hasher};
///
/// let s = RandomState::new();
/// let mut hasher_1 = s.build_hasher();
/// let mut hasher_2 = s.build_hasher();
///
/// hasher_1.write_u32(8128);
/// hasher_2.write_u32(8128);
///
/// assert_eq!(hasher_1.finish(), hasher_2.finish());
/// ```
///
/// [`build_hasher`]: BuildHasher::build_hasher
/// [`HashMap`]: ../../std/collections/struct.HashMap.html
#[stable(since = "1.7.0", feature = "build_hasher")]
pub trait BuildHasher {
/// Type of the hasher that will be created.
#[stable(since = "1.7.0", feature = "build_hasher")]
type Hasher: Hasher;
/// Creates a new hasher.
///
/// Each call to `build_hasher` on the same instance should produce identical
/// [`Hasher`]s.
///
/// # Examples
///
/// ```
/// use std::collections::hash_map::RandomState;
/// use std::hash::BuildHasher;
///
/// let s = RandomState::new();
/// let new_s = s.build_hasher();
/// ```
#[stable(since = "1.7.0", feature = "build_hasher")]
fn build_hasher(&self) -> Self::Hasher;
/// Calculates the hash of a single value.
///
/// This is intended as a convenience for code which *consumes* hashes, such
/// as the implementation of a hash table or in unit tests that check
/// whether a custom [`Hash`] implementation behaves as expected.
///
/// This must not be used in any code which *creates* hashes, such as in an
/// implementation of [`Hash`]. The way to create a combined hash of
/// multiple values is to call [`Hash::hash`] multiple times using the same
/// [`Hasher`], not to call this method repeatedly and combine the results.
///
/// # Example
///
/// ```
/// #![feature(build_hasher_simple_hash_one)]
///
/// use std::cmp::{max, min};
/// use std::hash::{BuildHasher, Hash, Hasher};
/// struct OrderAmbivalentPair<T: Ord>(T, T);
/// impl<T: Ord + Hash> Hash for OrderAmbivalentPair<T> {
/// fn hash<H: Hasher>(&self, hasher: &mut H) {
/// min(&self.0, &self.1).hash(hasher);
/// max(&self.0, &self.1).hash(hasher);
/// }
/// }
///
/// // Then later, in a `#[test]` for the type...
/// let bh = std::collections::hash_map::RandomState::new();
/// assert_eq!(
/// bh.hash_one(OrderAmbivalentPair(1, 2)),
/// bh.hash_one(OrderAmbivalentPair(2, 1))
/// );
/// assert_eq!(
/// bh.hash_one(OrderAmbivalentPair(10, 2)),
/// bh.hash_one(&OrderAmbivalentPair(2, 10))
/// );
/// ```
#[unstable(feature = "build_hasher_simple_hash_one", issue = "86161")]
fn hash_one<T: Hash>(&self, x: T) -> u64
where
Self: Sized,
{
let mut hasher = self.build_hasher();
x.hash(&mut hasher);
hasher.finish()
}
}
/// Used to create a default [`BuildHasher`] instance for types that implement
/// [`Hasher`] and [`Default`].
///
/// `BuildHasherDefault<H>` can be used when a type `H` implements [`Hasher`] and
/// [`Default`], and you need a corresponding [`BuildHasher`] instance, but none is
/// defined.
///
/// Any `BuildHasherDefault` is [zero-sized]. It can be created with
/// [`default`][method.default]. When using `BuildHasherDefault` with [`HashMap`] or
/// [`HashSet`], this doesn't need to be done, since they implement appropriate
/// [`Default`] instances themselves.
///
/// # Examples
///
/// Using `BuildHasherDefault` to specify a custom [`BuildHasher`] for
/// [`HashMap`]:
///
/// ```
/// use std::collections::HashMap;
/// use std::hash::{BuildHasherDefault, Hasher};
///
/// #[derive(Default)]
/// struct MyHasher;
///
/// impl Hasher for MyHasher {
/// fn write(&mut self, bytes: &[u8]) {
/// // Your hashing algorithm goes here!
/// unimplemented!()
/// }
///
/// fn finish(&self) -> u64 {
/// // Your hashing algorithm goes here!
/// unimplemented!()
/// }
/// }
///
/// type MyBuildHasher = BuildHasherDefault<MyHasher>;
///
/// let hash_map = HashMap::<u32, u32, MyBuildHasher>::default();
/// ```
///
/// [method.default]: BuildHasherDefault::default
/// [`HashMap`]: ../../std/collections/struct.HashMap.html
/// [`HashSet`]: ../../std/collections/struct.HashSet.html
/// [zero-sized]: https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts
#[stable(since = "1.7.0", feature = "build_hasher")]
pub struct BuildHasherDefault<H>(marker::PhantomData<H>);
#[stable(since = "1.9.0", feature = "core_impl_debug")]
impl<H> fmt::Debug for BuildHasherDefault<H> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("BuildHasherDefault").finish()
}
}
#[stable(since = "1.7.0", feature = "build_hasher")]
impl<H: Default + Hasher> BuildHasher for BuildHasherDefault<H> {
type Hasher = H;
fn build_hasher(&self) -> H {
H::default()
}
}
#[stable(since = "1.7.0", feature = "build_hasher")]
impl<H> Clone for BuildHasherDefault<H> {
fn clone(&self) -> BuildHasherDefault<H> {
BuildHasherDefault(marker::PhantomData)
}
}
#[stable(since = "1.7.0", feature = "build_hasher")]
impl<H> Default for BuildHasherDefault<H> {
fn default() -> BuildHasherDefault<H> {
BuildHasherDefault(marker::PhantomData)
}
}
#[stable(since = "1.29.0", feature = "build_hasher_eq")]
impl<H> PartialEq for BuildHasherDefault<H> {
fn eq(&self, _other: &BuildHasherDefault<H>) -> bool {
true
}
}
#[stable(since = "1.29.0", feature = "build_hasher_eq")]
impl<H> Eq for BuildHasherDefault<H> {}
mod impls {
use crate::mem;
use crate::slice;
use super::*;
macro_rules! impl_write {
($(($ty:ident, $meth:ident),)*) => {$(
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for $ty {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
state.$meth(*self)
}
#[inline]
fn hash_slice<H: Hasher>(data: &[$ty], state: &mut H) {
let newlen = data.len() * mem::size_of::<$ty>();
let ptr = data.as_ptr() as *const u8;
// SAFETY: `ptr` is valid and aligned, as this macro is only used
// for numeric primitives which have no padding. The new slice only
// spans across `data` and is never mutated, and its total size is the
// same as the original `data` so it can't be over `isize::MAX`.
state.write(unsafe { slice::from_raw_parts(ptr, newlen) })
}
}
)*}
}
impl_write! {
(u8, write_u8),
(u16, write_u16),
(u32, write_u32),
(u64, write_u64),
(usize, write_usize),
(i8, write_i8),
(i16, write_i16),
(i32, write_i32),
(i64, write_i64),
(isize, write_isize),
(u128, write_u128),
(i128, write_i128),
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for bool {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u8(*self as u8)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for char {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u32(*self as u32)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for str {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
state.write(self.as_bytes());
state.write_u8(0xff)
}
}
#[stable(feature = "never_hash", since = "1.29.0")]
impl Hash for ! {
#[inline]
fn hash<H: Hasher>(&self, _: &mut H) {
*self
}
}
macro_rules! impl_hash_tuple {
() => (
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for () {
#[inline]
fn hash<H: Hasher>(&self, _state: &mut H) {}
}
);
( $($name:ident)+) => (
#[stable(feature = "rust1", since = "1.0.0")]
impl<$($name: Hash),+> Hash for ($($name,)+) where last_type!($($name,)+): ?Sized {
#[allow(non_snake_case)]
#[inline]
fn hash<S: Hasher>(&self, state: &mut S) {
let ($(ref $name,)+) = *self;
$($name.hash(state);)+
}
}
);
}
macro_rules! last_type {
($a:ident,) => { $a };
($a:ident, $($rest_a:ident,)+) => { last_type!($($rest_a,)+) };
}
impl_hash_tuple! {}
impl_hash_tuple! { A }
impl_hash_tuple! { A B }
impl_hash_tuple! { A B C }
impl_hash_tuple! { A B C D }
impl_hash_tuple! { A B C D E }
impl_hash_tuple! { A B C D E F }
impl_hash_tuple! { A B C D E F G }
impl_hash_tuple! { A B C D E F G H }
impl_hash_tuple! { A B C D E F G H I }
impl_hash_tuple! { A B C D E F G H I J }
impl_hash_tuple! { A B C D E F G H I J K }
impl_hash_tuple! { A B C D E F G H I J K L }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash> Hash for [T] {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
self.len().hash(state);
Hash::hash_slice(self, state)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for &T {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for &mut T {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Hash for *const T {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
let (address, metadata) = self.to_raw_parts();
state.write_usize(address as usize);
metadata.hash(state);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Hash for *mut T {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
let (address, metadata) = self.to_raw_parts();
state.write_usize(address as usize);
metadata.hash(state);
}
}
}