blob: 03debd9454688745cc12777b0c3dc73ddce3edf9 [file] [log] [blame]
//! In-memory representation of compiled machine code, with labels and fixups to
//! refer to those labels. Handles constant-pool island insertion and also
//! veneer insertion for out-of-range jumps.
//!
//! This code exists to solve three problems:
//!
//! - Branch targets for forward branches are not known until later, when we
//! emit code in a single pass through the instruction structs.
//!
//! - On many architectures, address references or offsets have limited range.
//! For example, on AArch64, conditional branches can only target code +/- 1MB
//! from the branch itself.
//!
//! - The lowering of control flow from the CFG-with-edges produced by
//! [BlockLoweringOrder](super::BlockLoweringOrder), combined with many empty
//! edge blocks when the register allocator does not need to insert any
//! spills/reloads/moves in edge blocks, results in many suboptimal branch
//! patterns. The lowering also pays no attention to block order, and so
//! two-target conditional forms (cond-br followed by uncond-br) can often by
//! avoided because one of the targets is the fallthrough. There are several
//! cases here where we can simplify to use fewer branches.
//!
//! This "buffer" implements a single-pass code emission strategy (with a later
//! "fixup" pass, but only through recorded fixups, not all instructions). The
//! basic idea is:
//!
//! - Emit branches as they are, including two-target (cond/uncond) compound
//! forms, but with zero offsets and optimistically assuming the target will be
//! in range. Record the "fixup" for later. Targets are denoted instead by
//! symbolic "labels" that are then bound to certain offsets in the buffer as
//! we emit code. (Nominally, there is a label at the start of every basic
//! block.)
//!
//! - As we do this, track the offset in the buffer at which the first label
//! reference "goes out of range". We call this the "deadline". If we reach the
//! deadline and we still have not bound the label to which an unresolved branch
//! refers, we have a problem!
//!
//! - To solve this problem, we emit "islands" full of "veneers". An island is
//! simply a chunk of code inserted in the middle of the code actually produced
//! by the emitter (e.g., vcode iterating over instruction structs). The emitter
//! has some awareness of this: it either asks for an island between blocks, so
//! it is not accidentally executed, or else it emits a branch around the island
//! when all other options fail (see `Inst::EmitIsland` meta-instruction).
//!
//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
//! that implements a longer-range reference to a label. The idea is that, for
//! example, a branch with a limited range can branch to a "veneer" instead,
//! which is simply a branch in a form that can use a longer-range reference. On
//! AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
//! can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
//! conditional branch's label reference can be fixed up with a "veneer" to
//! achieve a longer range.
//!
//! - To implement all of this, we require the backend to provide a `LabelUse`
//! type that implements a trait. This is nominally an enum that records one of
//! several kinds of references to an offset in code -- basically, a relocation
//! type -- and will usually correspond to different instruction formats. The
//! `LabelUse` implementation specifies the maximum range, how to patch in the
//! actual label location when known, and how to generate a veneer to extend the
//! range.
//!
//! That satisfies label references, but we still may have suboptimal branch
//! patterns. To clean up the branches, we do a simple "peephole"-style
//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
//! informs the buffer of branches in the code and, in the case of conditionals,
//! the code that would have been emitted to invert this branch's condition. We
//! track the "latest branches": these are branches that are contiguous up to
//! the current offset. (If any code is emitted after a branch, that branch or
//! run of contiguous branches is no longer "latest".) The latest branches are
//! those that we can edit by simply truncating the buffer and doing something
//! else instead.
//!
//! To optimize branches, we implement several simple rules, and try to apply
//! them to the "latest branches" when possible:
//!
//! - A branch with a label target, when that label is bound to the ending
//! offset of the branch (the fallthrough location), can be removed altogether,
//! because the branch would have no effect).
//!
//! - An unconditional branch that starts at a label location, and branches to
//! another label, results in a "label alias": all references to the label bound
//! *to* this branch instruction are instead resolved to the *target* of the
//! branch instruction. This effectively removes empty blocks that just
//! unconditionally branch to the next block. We call this "branch threading".
//!
//! - A conditional followed by an unconditional, when the conditional branches
//! to the unconditional's fallthrough, results in (i) the truncation of the
//! unconditional, (ii) the inversion of the condition's condition, and (iii)
//! replacement of the conditional's target (using the original target of the
//! unconditional). This is a fancy way of saying "we can flip a two-target
//! conditional branch's taken/not-taken targets if it works better with our
//! fallthrough". To make this work, the emitter actually gives the buffer
//! *both* forms of every conditional branch: the true form is emitted into the
//! buffer, and the "inverted" machine-code bytes are provided as part of the
//! branch-fixup metadata.
//!
//! - An unconditional B preceded by another unconditional P, when B's label(s) have
//! been redirected to target(B), can be removed entirely. This is an extension
//! of the branch-threading optimization, and is valid because if we know there
//! will be no fallthrough into this branch instruction (the prior instruction
//! is an unconditional jump), and if we know we have successfully redirected
//! all labels, then this branch instruction is unreachable. Note that this
//! works because the redirection happens before the label is ever resolved
//! (fixups happen at island emission time, at which point latest-branches are
//! cleared, or at the end of emission), so we are sure to catch and redirect
//! all possible paths to this instruction.
//!
//! # Branch-optimization Correctness
//!
//! The branch-optimization mechanism depends on a few data structures with
//! invariants, which are always held outside the scope of top-level public
//! methods:
//!
//! - The latest-branches list. Each entry describes a span of the buffer
//! (start/end offsets), the label target, the corresponding fixup-list entry
//! index, and the bytes (must be the same length) for the inverted form, if
//! conditional. The list of labels that are bound to the start-offset of this
//! branch is *complete* (if any label has a resolved offset equal to `start`
//! and is not an alias, it must appear in this list) and *precise* (no label
//! in this list can be bound to another offset). No label in this list should
//! be an alias. No two branch ranges can overlap, and branches are in
//! ascending-offset order.
//!
//! - The labels-at-tail list. This contains all MachLabels that have been bound
//! to (whose resolved offsets are equal to) the tail offset of the buffer.
//! No label in this list should be an alias.
//!
//! - The label_offsets array, containing the bound offset of a label or
//! UNKNOWN. No label can be bound at an offset greater than the current
//! buffer tail.
//!
//! - The label_aliases array, containing another label to which a label is
//! bound or UNKNOWN. A label's resolved offset is the resolved offset
//! of the label it is aliased to, if this is set.
//!
//! We argue below, at each method, how the invariants in these data structures
//! are maintained (grep for "Post-invariant").
//!
//! Given these invariants, we argue why each optimization preserves execution
//! semantics below (grep for "Preserves execution semantics").
use crate::binemit::{Addend, CodeOffset, CodeSink, Reloc, StackMap};
use crate::ir::{ExternalName, Opcode, SourceLoc, TrapCode};
use crate::isa::unwind::UnwindInst;
use crate::machinst::{BlockIndex, MachInstLabelUse, VCodeConstant, VCodeConstants, VCodeInst};
use crate::timing;
use cranelift_entity::{entity_impl, SecondaryMap};
use log::trace;
use smallvec::SmallVec;
use std::mem;
use std::string::String;
/// A buffer of output to be produced, fixed up, and then emitted to a CodeSink
/// in bulk.
///
/// This struct uses `SmallVec`s to support small-ish function bodies without
/// any heap allocation. As such, it will be several kilobytes large. This is
/// likely fine as long as it is stack-allocated for function emission then
/// thrown away; but beware if many buffer objects are retained persistently.
pub struct MachBuffer<I: VCodeInst> {
/// The buffer contents, as raw bytes.
data: SmallVec<[u8; 1024]>,
/// Any relocations referring to this code. Note that only *external*
/// relocations are tracked here; references to labels within the buffer are
/// resolved before emission.
relocs: SmallVec<[MachReloc; 16]>,
/// Any trap records referring to this code.
traps: SmallVec<[MachTrap; 16]>,
/// Any call site records referring to this code.
call_sites: SmallVec<[MachCallSite; 16]>,
/// Any source location mappings referring to this code.
srclocs: SmallVec<[MachSrcLoc; 64]>,
/// Any stack maps referring to this code.
stack_maps: SmallVec<[MachStackMap; 8]>,
/// Any unwind info at a given location.
unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
/// The current source location in progress (after `start_srcloc()` and
/// before `end_srcloc()`). This is a (start_offset, src_loc) tuple.
cur_srcloc: Option<(CodeOffset, SourceLoc)>,
/// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
label_offsets: SmallVec<[CodeOffset; 16]>,
/// Label aliases: when one label points to an unconditional jump, and that
/// jump points to another label, we can redirect references to the first
/// label immediately to the second.
///
/// Invariant: we don't have label-alias cycles. We ensure this by,
/// before setting label A to alias label B, resolving B's alias
/// target (iteratively until a non-aliased label); if B is already
/// aliased to A, then we cannot alias A back to B.
label_aliases: SmallVec<[MachLabel; 16]>,
/// Constants that must be emitted at some point.
pending_constants: SmallVec<[MachLabelConstant; 16]>,
/// Fixups that must be performed after all code is emitted.
fixup_records: SmallVec<[MachLabelFixup<I>; 16]>,
/// Current deadline at which all constants are flushed and all code labels
/// are extended by emitting long-range jumps in an island. This flush
/// should be rare (e.g., on AArch64, the shortest-range PC-rel references
/// are +/- 1MB for conditional jumps and load-literal instructions), so
/// it's acceptable to track a minimum and flush-all rather than doing more
/// detailed "current minimum" / sort-by-deadline trickery.
island_deadline: CodeOffset,
/// How many bytes are needed in the worst case for an island, given all
/// pending constants and fixups.
island_worst_case_size: CodeOffset,
/// Latest branches, to facilitate in-place editing for better fallthrough
/// behavior and empty-block removal.
latest_branches: SmallVec<[MachBranch; 4]>,
/// All labels at the current offset (emission tail). This is lazily
/// cleared: it is actually accurate as long as the current offset is
/// `labels_at_tail_off`, but if `cur_offset()` has grown larger, it should
/// be considered as empty.
///
/// For correctness, this *must* be complete (i.e., the vector must contain
/// all labels whose offsets are resolved to the current tail), because we
/// rely on it to update labels when we truncate branches.
labels_at_tail: SmallVec<[MachLabel; 4]>,
/// The last offset at which `labels_at_tail` is valid. It is conceptually
/// always describing the tail of the buffer, but we do not clear
/// `labels_at_tail` eagerly when the tail grows, rather we lazily clear it
/// when the offset has grown past this (`labels_at_tail_off`) point.
/// Always <= `cur_offset()`.
labels_at_tail_off: CodeOffset,
/// Map used constants to their [MachLabel].
constant_labels: SecondaryMap<VCodeConstant, MachLabel>,
}
/// A `MachBuffer` once emission is completed: holds generated code and records,
/// without fixups. This allows the type to be independent of the backend.
pub struct MachBufferFinalized {
/// The buffer contents, as raw bytes.
pub data: SmallVec<[u8; 1024]>,
/// Any relocations referring to this code. Note that only *external*
/// relocations are tracked here; references to labels within the buffer are
/// resolved before emission.
relocs: SmallVec<[MachReloc; 16]>,
/// Any trap records referring to this code.
traps: SmallVec<[MachTrap; 16]>,
/// Any call site records referring to this code.
call_sites: SmallVec<[MachCallSite; 16]>,
/// Any source location mappings referring to this code.
srclocs: SmallVec<[MachSrcLoc; 64]>,
/// Any stack maps referring to this code.
stack_maps: SmallVec<[MachStackMap; 8]>,
/// Any unwind info at a given location.
pub unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
}
static UNKNOWN_LABEL_OFFSET: CodeOffset = 0xffff_ffff;
static UNKNOWN_LABEL: MachLabel = MachLabel(0xffff_ffff);
/// A label refers to some offset in a `MachBuffer`. It may not be resolved at
/// the point at which it is used by emitted code; the buffer records "fixups"
/// for references to the label, and will come back and patch the code
/// appropriately when the label's location is eventually known.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct MachLabel(u32);
entity_impl!(MachLabel);
impl MachLabel {
/// Get a label for a block. (The first N MachLabels are always reseved for
/// the N blocks in the vcode.)
pub fn from_block(bindex: BlockIndex) -> MachLabel {
MachLabel(bindex)
}
/// Get the numeric label index.
pub fn get(self) -> u32 {
self.0
}
/// Creates a string representing this label, for convenience.
pub fn to_string(&self) -> String {
format!("label{}", self.0)
}
}
impl Default for MachLabel {
fn default() -> Self {
UNKNOWN_LABEL
}
}
/// A stack map extent, when creating a stack map.
pub enum StackMapExtent {
/// The stack map starts at this instruction, and ends after the number of upcoming bytes
/// (note: this is a code offset diff).
UpcomingBytes(CodeOffset),
/// The stack map started at the given offset and ends at the current one. This helps
/// architectures where the instruction size has not a fixed length.
StartedAtOffset(CodeOffset),
}
impl<I: VCodeInst> MachBuffer<I> {
/// Create a new section, known to start at `start_offset` and with a size limited to
/// `length_limit`.
pub fn new() -> MachBuffer<I> {
MachBuffer {
data: SmallVec::new(),
relocs: SmallVec::new(),
traps: SmallVec::new(),
call_sites: SmallVec::new(),
srclocs: SmallVec::new(),
stack_maps: SmallVec::new(),
unwind_info: SmallVec::new(),
cur_srcloc: None,
label_offsets: SmallVec::new(),
label_aliases: SmallVec::new(),
pending_constants: SmallVec::new(),
fixup_records: SmallVec::new(),
island_deadline: UNKNOWN_LABEL_OFFSET,
island_worst_case_size: 0,
latest_branches: SmallVec::new(),
labels_at_tail: SmallVec::new(),
labels_at_tail_off: 0,
constant_labels: SecondaryMap::new(),
}
}
/// Debug-only: check invariants of labels and branch-records described
/// under "Branch-optimization Correctness" above.
#[cfg(debug)]
fn check_label_branch_invariants(&self) {
let cur_off = self.cur_offset();
// Check that every entry in latest_branches has *correct*
// labels_at_this_branch lists. We do not check completeness because
// that would require building a reverse index, which is too slow even
// for a debug invariant check.
let mut last_end = 0;
for b in &self.latest_branches {
debug_assert!(b.start < b.end);
debug_assert!(b.end <= cur_off);
debug_assert!(b.start >= last_end);
last_end = b.end;
for &l in &b.labels_at_this_branch {
debug_assert_eq!(self.resolve_label_offset(l), b.start);
debug_assert_eq!(self.label_aliases[l.0 as usize], UNKNOWN_LABEL);
}
}
// Check that every label is unresolved, or resolved at or before
// cur_offset. If at cur_offset, must be in `labels_at_tail`.
for (i, &off) in self.label_offsets.iter().enumerate() {
let label = MachLabel(i as u32);
debug_assert!(off == UNKNOWN_LABEL_OFFSET || off <= cur_off);
if off == cur_off {
debug_assert!(
self.labels_at_tail_off == cur_off && self.labels_at_tail.contains(&label)
);
}
}
// Check that every label in `labels_at_tail_off` is precise, i.e.,
// resolves to the cur offset.
debug_assert!(self.labels_at_tail_off <= cur_off);
if self.labels_at_tail_off == cur_off {
for &l in &self.labels_at_tail {
debug_assert_eq!(self.resolve_label_offset(l), cur_off);
debug_assert_eq!(self.label_aliases[l.0 as usize], UNKNOWN_LABEL);
}
}
}
#[cfg(not(debug))]
fn check_label_branch_invariants(&self) {
// Nothing.
}
/// Current offset from start of buffer.
pub fn cur_offset(&self) -> CodeOffset {
self.data.len() as CodeOffset
}
/// Add a byte.
pub fn put1(&mut self, value: u8) {
trace!("MachBuffer: put byte @ {}: {:x}", self.cur_offset(), value);
self.data.push(value);
// Post-invariant: conceptual-labels_at_tail contains a complete and
// precise list of labels bound at `cur_offset()`. We have advanced
// `cur_offset()`, hence if it had been equal to `labels_at_tail_off`
// before, it is not anymore (and it cannot become equal, because
// `labels_at_tail_off` is always <= `cur_offset()`). Thus the list is
// conceptually empty (even though it is only lazily cleared). No labels
// can be bound at this new offset (by invariant on `label_offsets`).
// Hence the invariant holds.
}
/// Add 2 bytes.
pub fn put2(&mut self, value: u16) {
trace!(
"MachBuffer: put 16-bit word @ {}: {:x}",
self.cur_offset(),
value
);
let bytes = value.to_le_bytes();
self.data.extend_from_slice(&bytes[..]);
// Post-invariant: as for `put1()`.
}
/// Add 4 bytes.
pub fn put4(&mut self, value: u32) {
trace!(
"MachBuffer: put 32-bit word @ {}: {:x}",
self.cur_offset(),
value
);
let bytes = value.to_le_bytes();
self.data.extend_from_slice(&bytes[..]);
// Post-invariant: as for `put1()`.
}
/// Add 8 bytes.
pub fn put8(&mut self, value: u64) {
trace!(
"MachBuffer: put 64-bit word @ {}: {:x}",
self.cur_offset(),
value
);
let bytes = value.to_le_bytes();
self.data.extend_from_slice(&bytes[..]);
// Post-invariant: as for `put1()`.
}
/// Add a slice of bytes.
pub fn put_data(&mut self, data: &[u8]) {
trace!(
"MachBuffer: put data @ {}: len {}",
self.cur_offset(),
data.len()
);
self.data.extend_from_slice(data);
// Post-invariant: as for `put1()`.
}
/// Reserve appended space and return a mutable slice referring to it.
pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
trace!("MachBuffer: put data @ {}: len {}", self.cur_offset(), len);
let off = self.data.len();
let new_len = self.data.len() + len;
self.data.resize(new_len, 0);
&mut self.data[off..]
// Post-invariant: as for `put1()`.
}
/// Align up to the given alignment.
pub fn align_to(&mut self, align_to: CodeOffset) {
trace!("MachBuffer: align to {}", align_to);
assert!(align_to.is_power_of_two());
while self.cur_offset() & (align_to - 1) != 0 {
self.put1(0);
}
// Post-invariant: as for `put1()`.
}
/// Allocate a `Label` to refer to some offset. May not be bound to a fixed
/// offset yet.
pub fn get_label(&mut self) -> MachLabel {
let l = self.label_offsets.len() as u32;
self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
self.label_aliases.push(UNKNOWN_LABEL);
trace!("MachBuffer: new label -> {:?}", MachLabel(l));
MachLabel(l)
// Post-invariant: the only mutation is to add a new label; it has no
// bound offset yet, so it trivially satisfies all invariants.
}
/// Reserve the first N MachLabels for blocks.
pub fn reserve_labels_for_blocks(&mut self, blocks: BlockIndex) {
trace!("MachBuffer: first {} labels are for blocks", blocks);
debug_assert!(self.label_offsets.is_empty());
self.label_offsets
.resize(blocks as usize, UNKNOWN_LABEL_OFFSET);
self.label_aliases.resize(blocks as usize, UNKNOWN_LABEL);
// Post-invariant: as for `get_label()`.
}
/// Reserve the next N MachLabels for constants.
pub fn reserve_labels_for_constants(&mut self, constants: &VCodeConstants) {
trace!(
"MachBuffer: next {} labels are for constants",
constants.len()
);
for c in constants.keys() {
self.constant_labels[c] = self.get_label();
}
// Post-invariant: as for `get_label()`.
}
/// Retrieve the reserved label for a constant.
pub fn get_label_for_constant(&self, constant: VCodeConstant) -> MachLabel {
self.constant_labels[constant]
}
/// Bind a label to the current offset. A label can only be bound once.
pub fn bind_label(&mut self, label: MachLabel) {
trace!(
"MachBuffer: bind label {:?} at offset {}",
label,
self.cur_offset()
);
debug_assert_eq!(self.label_offsets[label.0 as usize], UNKNOWN_LABEL_OFFSET);
debug_assert_eq!(self.label_aliases[label.0 as usize], UNKNOWN_LABEL);
let offset = self.cur_offset();
self.label_offsets[label.0 as usize] = offset;
self.lazily_clear_labels_at_tail();
self.labels_at_tail.push(label);
// Invariants hold: bound offset of label is <= cur_offset (in fact it
// is equal). If the `labels_at_tail` list was complete and precise
// before, it is still, because we have bound this label to the current
// offset and added it to the list (which contains all labels at the
// current offset).
self.check_label_branch_invariants();
self.optimize_branches();
// Post-invariant: by `optimize_branches()` (see argument there).
self.check_label_branch_invariants();
}
/// Lazily clear `labels_at_tail` if the tail offset has moved beyond the
/// offset that it applies to.
fn lazily_clear_labels_at_tail(&mut self) {
let offset = self.cur_offset();
if offset > self.labels_at_tail_off {
self.labels_at_tail_off = offset;
self.labels_at_tail.clear();
}
// Post-invariant: either labels_at_tail_off was at cur_offset, and
// state is untouched, or was less than cur_offset, in which case the
// labels_at_tail list was conceptually empty, and is now actually
// empty.
}
/// Resolve a label to an offset, if known. May return `UNKNOWN_LABEL_OFFSET`.
pub(crate) fn resolve_label_offset(&self, mut label: MachLabel) -> CodeOffset {
let mut iters = 0;
while self.label_aliases[label.0 as usize] != UNKNOWN_LABEL {
label = self.label_aliases[label.0 as usize];
// To protect against an infinite loop (despite our assurances to
// ourselves that the invariants make this impossible), assert out
// after 1M iterations. The number of basic blocks is limited
// in most contexts anyway so this should be impossible to hit with
// a legitimate input.
iters += 1;
assert!(iters < 1_000_000, "Unexpected cycle in label aliases");
}
self.label_offsets[label.0 as usize]
// Post-invariant: no mutations.
}
/// Emit a reference to the given label with the given reference type (i.e.,
/// branch-instruction format) at the current offset. This is like a
/// relocation, but handled internally.
///
/// This can be called before the branch is actually emitted; fixups will
/// not happen until an island is emitted or the buffer is finished.
pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
trace!(
"MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
offset,
label,
kind
);
// Add the fixup, and update the worst-case island size based on a
// veneer for this label use.
self.fixup_records.push(MachLabelFixup {
label,
offset,
kind,
});
if kind.supports_veneer() {
self.island_worst_case_size += kind.veneer_size();
self.island_worst_case_size &= !(I::LabelUse::ALIGN - 1);
}
let deadline = offset + kind.max_pos_range();
if deadline < self.island_deadline {
self.island_deadline = deadline;
}
// Post-invariant: no mutations to branches/labels data structures.
self.check_label_branch_invariants();
}
/// Inform the buffer of an unconditional branch at the given offset,
/// targetting the given label. May be used to optimize branches.
/// The last added label-use must correspond to this branch.
/// This must be called when the current offset is equal to `start`; i.e.,
/// before actually emitting the branch. This implies that for a branch that
/// uses a label and is eligible for optimizations by the MachBuffer, the
/// proper sequence is:
///
/// - Call `use_label_at_offset()` to emit the fixup record.
/// - Call `add_uncond_branch()` to make note of the branch.
/// - Emit the bytes for the branch's machine code.
///
/// Additional requirement: no labels may be bound between `start` and `end`
/// (exclusive on both ends).
pub fn add_uncond_branch(&mut self, start: CodeOffset, end: CodeOffset, target: MachLabel) {
assert!(self.cur_offset() == start);
debug_assert!(end > start);
assert!(!self.fixup_records.is_empty());
let fixup = self.fixup_records.len() - 1;
self.lazily_clear_labels_at_tail();
self.latest_branches.push(MachBranch {
start,
end,
target,
fixup,
inverted: None,
labels_at_this_branch: self.labels_at_tail.clone(),
});
// Post-invariant: we asserted branch start is current tail; the list of
// labels at branch is cloned from list of labels at current tail.
self.check_label_branch_invariants();
}
/// Inform the buffer of a conditional branch at the given offset,
/// targetting the given label. May be used to optimize branches.
/// The last added label-use must correspond to this branch.
///
/// Additional requirement: no labels may be bound between `start` and `end`
/// (exclusive on both ends).
pub fn add_cond_branch(
&mut self,
start: CodeOffset,
end: CodeOffset,
target: MachLabel,
inverted: &[u8],
) {
assert!(self.cur_offset() == start);
debug_assert!(end > start);
assert!(!self.fixup_records.is_empty());
debug_assert!(inverted.len() == (end - start) as usize);
let fixup = self.fixup_records.len() - 1;
let inverted = Some(SmallVec::from(inverted));
self.lazily_clear_labels_at_tail();
self.latest_branches.push(MachBranch {
start,
end,
target,
fixup,
inverted,
labels_at_this_branch: self.labels_at_tail.clone(),
});
// Post-invariant: we asserted branch start is current tail; labels at
// branch list is cloned from list of labels at current tail.
self.check_label_branch_invariants();
}
fn truncate_last_branch(&mut self) {
self.lazily_clear_labels_at_tail();
// Invariants hold at this point.
let b = self.latest_branches.pop().unwrap();
assert!(b.end == self.cur_offset());
// State:
// [PRE CODE]
// Offset b.start, b.labels_at_this_branch:
// [BRANCH CODE]
// cur_off, self.labels_at_tail -->
// (end of buffer)
self.data.truncate(b.start as usize);
self.fixup_records.truncate(b.fixup);
while let Some(mut last_srcloc) = self.srclocs.last_mut() {
if last_srcloc.end <= b.start {
break;
}
if last_srcloc.start < b.start {
last_srcloc.end = b.start;
break;
}
self.srclocs.pop();
}
// State:
// [PRE CODE]
// cur_off, Offset b.start, b.labels_at_this_branch:
// (end of buffer)
//
// self.labels_at_tail --> (past end of buffer)
let cur_off = self.cur_offset();
self.labels_at_tail_off = cur_off;
// State:
// [PRE CODE]
// cur_off, Offset b.start, b.labels_at_this_branch,
// self.labels_at_tail:
// (end of buffer)
//
// resolve_label_offset(l) for l in labels_at_tail:
// (past end of buffer)
trace!(
"truncate_last_branch: truncated {:?}; off now {}",
b,
cur_off
);
// Fix up resolved label offsets for labels at tail.
for &l in &self.labels_at_tail {
self.label_offsets[l.0 as usize] = cur_off;
}
// Old labels_at_this_branch are now at cur_off.
self.labels_at_tail
.extend(b.labels_at_this_branch.into_iter());
// Post-invariant: this operation is defined to truncate the buffer,
// which moves cur_off backward, and to move labels at the end of the
// buffer back to the start-of-branch offset.
//
// latest_branches satisfies all invariants:
// - it has no branches past the end of the buffer (branches are in
// order, we removed the last one, and we truncated the buffer to just
// before the start of that branch)
// - no labels were moved to lower offsets than the (new) cur_off, so
// the labels_at_this_branch list for any other branch need not change.
//
// labels_at_tail satisfies all invariants:
// - all labels that were at the tail after the truncated branch are
// moved backward to just before the branch, which becomes the new tail;
// thus every element in the list should remain (ensured by `.extend()`
// above).
// - all labels that refer to the new tail, which is the start-offset of
// the truncated branch, must be present. The `labels_at_this_branch`
// list in the truncated branch's record is a complete and precise list
// of exactly these labels; we append these to labels_at_tail.
// - labels_at_tail_off is at cur_off after truncation occurs, so the
// list is valid (not to be lazily cleared).
//
// The stated operation was performed:
// - For each label at the end of the buffer prior to this method, it
// now resolves to the new (truncated) end of the buffer: it must have
// been in `labels_at_tail` (this list is precise and complete, and
// the tail was at the end of the truncated branch on entry), and we
// iterate over this list and set `label_offsets` to the new tail.
// None of these labels could have been an alias (by invariant), so
// `label_offsets` is authoritative for each.
// - No other labels will be past the end of the buffer, because of the
// requirement that no labels be bound to the middle of branch ranges
// (see comments to `add_{cond,uncond}_branch()`).
// - The buffer is truncated to just before the last branch, and the
// fixup record referring to that last branch is removed.
self.check_label_branch_invariants();
}
fn optimize_branches(&mut self) {
self.lazily_clear_labels_at_tail();
// Invariants valid at this point.
trace!(
"enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
self.latest_branches,
self.labels_at_tail,
self.fixup_records
);
// We continue to munch on branches at the tail of the buffer until no
// more rules apply. Note that the loop only continues if a branch is
// actually truncated (or if labels are redirected away from a branch),
// so this always makes progress.
while let Some(b) = self.latest_branches.last() {
let cur_off = self.cur_offset();
trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
// If there has been any code emission since the end of the last branch or
// label definition, then there's nothing we can edit (because we
// don't move code once placed, only back up and overwrite), so
// clear the records and finish.
if b.end < cur_off {
break;
}
// Invariant: we are looking at a branch that ends at the tail of
// the buffer.
// For any branch, conditional or unconditional:
// - If the target is a label at the current offset, then remove
// the conditional branch, and reset all labels that targetted
// the current offset (end of branch) to the truncated
// end-of-code.
//
// Preserves execution semantics: a branch to its own fallthrough
// address is equivalent to a no-op; in both cases, nextPC is the
// fallthrough.
if self.resolve_label_offset(b.target) == cur_off {
trace!("branch with target == cur off; truncating");
self.truncate_last_branch();
continue;
}
// If latest is an unconditional branch:
//
// - If the branch's target is not its own start address, then for
// each label at the start of branch, make the label an alias of the
// branch target, and remove the label from the "labels at this
// branch" list.
//
// - Preserves execution semantics: an unconditional branch's
// only effect is to set PC to a new PC; this change simply
// collapses one step in the step-semantics.
//
// - Post-invariant: the labels that were bound to the start of
// this branch become aliases, so they must not be present in any
// labels-at-this-branch list or the labels-at-tail list. The
// labels are removed form the latest-branch record's
// labels-at-this-branch list, and are never placed in the
// labels-at-tail list. Furthermore, it is correct that they are
// not in either list, because they are now aliases, and labels
// that are aliases remain aliases forever.
//
// - If there is a prior unconditional branch that ends just before
// this one begins, and this branch has no labels bound to its
// start, then we can truncate this branch, because it is entirely
// unreachable (we have redirected all labels that make it
// reachable otherwise). Do so and continue around the loop.
//
// - Preserves execution semantics: the branch is unreachable,
// because execution can only flow into an instruction from the
// prior instruction's fallthrough or from a branch bound to that
// instruction's start offset. Unconditional branches have no
// fallthrough, so if the prior instruction is an unconditional
// branch, no fallthrough entry can happen. The
// labels-at-this-branch list is complete (by invariant), so if it
// is empty, then the instruction is entirely unreachable. Thus,
// it can be removed.
//
// - Post-invariant: ensured by truncate_last_branch().
//
// - If there is a prior conditional branch whose target label
// resolves to the current offset (branches around the
// unconditional branch), then remove the unconditional branch,
// and make the target of the unconditional the target of the
// conditional instead.
//
// - Preserves execution semantics: previously we had:
//
// L1:
// cond_br L2
// br L3
// L2:
// (end of buffer)
//
// by removing the last branch, we have:
//
// L1:
// cond_br L2
// L2:
// (end of buffer)
//
// we then fix up the records for the conditional branch to
// have:
//
// L1:
// cond_br.inverted L3
// L2:
//
// In the original code, control flow reaches L2 when the
// conditional branch's predicate is true, and L3 otherwise. In
// the optimized code, the same is true.
//
// - Post-invariant: all edits to latest_branches and
// labels_at_tail are performed by `truncate_last_branch()`,
// which maintains the invariants at each step.
if b.is_uncond() {
// Set any label equal to current branch's start as an alias of
// the branch's target, if the target is not the branch itself
// (i.e., an infinite loop).
//
// We cannot perform this aliasing if the target of this branch
// ultimately aliases back here; if so, we need to keep this
// branch, so break out of this loop entirely (and clear the
// latest-branches list below).
//
// Note that this check is what prevents cycles from forming in
// `self.label_aliases`. To see why, consider an arbitrary start
// state:
//
// label_aliases[L1] = L2, label_aliases[L2] = L3, ..., up to
// Ln, which is not aliased.
//
// We would create a cycle if we assigned label_aliases[Ln]
// = L1. Note that the below assignment is the only write
// to label_aliases.
//
// By our other invariants, we have that Ln (`l` below)
// resolves to the offset `b.start`, because it is in the
// set `b.labels_at_this_branch`.
//
// If L1 were already aliased, through some arbitrarily deep
// chain, to Ln, then it must also resolve to this offset
// `b.start`.
//
// By checking the resolution of `L1` against this offset,
// and aborting this branch-simplification if they are
// equal, we prevent the below assignment from ever creating
// a cycle.
if self.resolve_label_offset(b.target) != b.start {
let redirected = b.labels_at_this_branch.len();
for &l in &b.labels_at_this_branch {
trace!(
" -> label at start of branch {:?} redirected to target {:?}",
l,
b.target
);
self.label_aliases[l.0 as usize] = b.target;
// NOTE: we continue to ensure the invariant that labels
// pointing to tail of buffer are in `labels_at_tail`
// because we already ensured above that the last branch
// cannot have a target of `cur_off`; so we never have
// to put the label into `labels_at_tail` when moving it
// here.
}
// Maintain invariant: all branches have been redirected
// and are no longer pointing at the start of this branch.
let mut_b = self.latest_branches.last_mut().unwrap();
mut_b.labels_at_this_branch.clear();
if redirected > 0 {
trace!(" -> after label redirects, restarting loop");
continue;
}
} else {
break;
}
let b = self.latest_branches.last().unwrap();
// Examine any immediately preceding branch.
if self.latest_branches.len() > 1 {
let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
trace!(" -> more than one branch; prev_b = {:?}", prev_b);
// This uncond is immediately after another uncond; we
// should have already redirected labels to this uncond away
// (but check to be sure); so we can truncate this uncond.
if prev_b.is_uncond()
&& prev_b.end == b.start
&& b.labels_at_this_branch.is_empty()
{
trace!(" -> uncond follows another uncond; truncating");
self.truncate_last_branch();
continue;
}
// This uncond is immediately after a conditional, and the
// conditional's target is the end of this uncond, and we've
// already redirected labels to this uncond away; so we can
// truncate this uncond, flip the sense of the conditional, and
// set the conditional's target (in `latest_branches` and in
// `fixup_records`) to the uncond's target.
if prev_b.is_cond()
&& prev_b.end == b.start
&& self.resolve_label_offset(prev_b.target) == cur_off
{
trace!(" -> uncond follows a conditional, and conditional's target resolves to current offset");
// Save the target of the uncond (this becomes the
// target of the cond), and truncate the uncond.
let target = b.target;
let data = prev_b.inverted.clone().unwrap();
self.truncate_last_branch();
// Mutate the code and cond branch.
let off_before_edit = self.cur_offset();
let prev_b = self.latest_branches.last_mut().unwrap();
let not_inverted = SmallVec::from(
&self.data[(prev_b.start as usize)..(prev_b.end as usize)],
);
// Low-level edit: replaces bytes of branch with
// inverted form. cur_off remains the same afterward, so
// we do not need to modify label data structures.
self.data.truncate(prev_b.start as usize);
self.data.extend_from_slice(&data[..]);
// Save the original code as the inversion of the
// inverted branch, in case we later edit this branch
// again.
prev_b.inverted = Some(not_inverted);
self.fixup_records[prev_b.fixup].label = target;
trace!(" -> reassigning target of condbr to {:?}", target);
prev_b.target = target;
debug_assert_eq!(off_before_edit, self.cur_offset());
continue;
}
}
}
// If we couldn't do anything with the last branch, then break.
break;
}
self.purge_latest_branches();
trace!(
"leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
self.latest_branches,
self.labels_at_tail,
self.fixup_records
);
}
fn purge_latest_branches(&mut self) {
// All of our branch simplification rules work only if a branch ends at
// the tail of the buffer, with no following code; and branches are in
// order in latest_branches; so if the last entry ends prior to
// cur_offset, then clear all entries.
let cur_off = self.cur_offset();
if let Some(l) = self.latest_branches.last() {
if l.end < cur_off {
trace!("purge_latest_branches: removing branch {:?}", l);
self.latest_branches.clear();
}
}
// Post-invariant: no invariant requires any branch to appear in
// `latest_branches`; it is always optional. The list-clear above thus
// preserves all semantics.
}
/// Emit a constant at some point in the future, binding the given label to
/// its offset. The constant will be placed at most `max_distance` from the
/// current offset.
pub fn defer_constant(
&mut self,
label: MachLabel,
align: CodeOffset,
data: &[u8],
max_distance: CodeOffset,
) {
trace!(
"defer_constant: eventually emit {} bytes aligned to {} at label {:?}",
data.len(),
align,
label
);
let deadline = self.cur_offset().saturating_add(max_distance);
self.island_worst_case_size += data.len() as CodeOffset;
self.island_worst_case_size =
(self.island_worst_case_size + I::LabelUse::ALIGN - 1) & !(I::LabelUse::ALIGN - 1);
self.pending_constants.push(MachLabelConstant {
label,
align,
data: SmallVec::from(data),
});
if deadline < self.island_deadline {
self.island_deadline = deadline;
}
}
/// Is an island needed within the next N bytes?
pub fn island_needed(&self, distance: CodeOffset) -> bool {
let worst_case_end_of_island = self.cur_offset() + distance + self.island_worst_case_size;
worst_case_end_of_island > self.island_deadline
}
/// Emit all pending constants and veneers. Should only be called if
/// `island_needed()` returns true, i.e., if we actually reach a deadline:
/// otherwise, unnecessary veneers may be inserted.
pub fn emit_island(&mut self) {
// We're going to purge fixups, so no latest-branch editing can happen
// anymore.
self.latest_branches.clear();
let pending_constants = mem::replace(&mut self.pending_constants, SmallVec::new());
for MachLabelConstant { label, align, data } in pending_constants.into_iter() {
self.align_to(align);
self.bind_label(label);
self.put_data(&data[..]);
}
let fixup_records = mem::replace(&mut self.fixup_records, SmallVec::new());
let mut new_fixups = SmallVec::new();
for MachLabelFixup {
label,
offset,
kind,
} in fixup_records.into_iter()
{
trace!(
"emit_island: fixup for label {:?} at offset {} kind {:?}",
label,
offset,
kind
);
// We eagerly perform fixups whose label targets are known, if not out
// of range, to avoid unnecessary veneers.
let label_offset = self.resolve_label_offset(label);
let known = label_offset != UNKNOWN_LABEL_OFFSET;
let in_range = if known {
if label_offset >= offset {
(label_offset - offset) <= kind.max_pos_range()
} else {
(offset - label_offset) <= kind.max_neg_range()
}
} else {
false
};
trace!(
" -> label_offset = {}, known = {}, in_range = {} (pos {} neg {})",
label_offset,
known,
in_range,
kind.max_pos_range(),
kind.max_neg_range()
);
let start = offset as usize;
let end = (offset + kind.patch_size()) as usize;
if in_range {
debug_assert!(known); // implied by in_range.
let slice = &mut self.data[start..end];
trace!("patching in-range!");
kind.patch(slice, offset, label_offset);
} else if !known && !kind.supports_veneer() {
// Nothing for now. Keep it for next round.
new_fixups.push(MachLabelFixup {
label,
offset,
kind,
});
} else if !in_range && kind.supports_veneer() {
// Allocate space for a veneer in the island.
self.align_to(I::LabelUse::ALIGN);
let veneer_offset = self.cur_offset();
trace!("making a veneer at {}", veneer_offset);
let slice = &mut self.data[start..end];
// Patch the original label use to refer to the veneer.
trace!(
"patching original at offset {} to veneer offset {}",
offset,
veneer_offset
);
kind.patch(slice, offset, veneer_offset);
// Generate the veneer.
let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
let (veneer_fixup_off, veneer_label_use) =
kind.generate_veneer(veneer_slice, veneer_offset);
trace!(
"generated veneer; fixup offset {}, label_use {:?}",
veneer_fixup_off,
veneer_label_use
);
// If the label is known (but was just out of range), do the
// veneer label-use fixup now too; otherwise, save it for later.
if known {
let start = veneer_fixup_off as usize;
let end = (veneer_fixup_off + veneer_label_use.patch_size()) as usize;
let veneer_slice = &mut self.data[start..end];
trace!("doing veneer fixup right away too");
veneer_label_use.patch(veneer_slice, veneer_fixup_off, label_offset);
} else {
new_fixups.push(MachLabelFixup {
label,
offset: veneer_fixup_off,
kind: veneer_label_use,
});
}
} else {
panic!(
"Cannot support label-use {:?} (known = {}, in-range = {})",
kind, known, in_range
);
}
}
self.fixup_records = new_fixups;
self.island_deadline = UNKNOWN_LABEL_OFFSET;
}
/// Finish any deferred emissions and/or fixups.
pub fn finish(mut self) -> MachBufferFinalized {
let _tt = timing::vcode_emit_finish();
while !self.pending_constants.is_empty() || !self.fixup_records.is_empty() {
// `emit_island()` will emit any pending veneers and constants, and
// as a side-effect, will also take care of any fixups with resolved
// labels eagerly.
self.emit_island();
}
// Ensure that all labels have been fixed up after the last island is emitted. This is a
// full (release-mode) assert because an unresolved label means the emitted code is
// incorrect.
assert!(self.fixup_records.is_empty());
let mut srclocs = self.srclocs;
srclocs.sort_by_key(|entry| entry.start);
MachBufferFinalized {
data: self.data,
relocs: self.relocs,
traps: self.traps,
call_sites: self.call_sites,
srclocs,
stack_maps: self.stack_maps,
unwind_info: self.unwind_info,
}
}
/// Add an external relocation at the current offset.
pub fn add_reloc(
&mut self,
srcloc: SourceLoc,
kind: Reloc,
name: &ExternalName,
addend: Addend,
) {
let name = name.clone();
self.relocs.push(MachReloc {
offset: self.data.len() as CodeOffset,
srcloc,
kind,
name,
addend,
});
}
/// Add a trap record at the current offset.
pub fn add_trap(&mut self, srcloc: SourceLoc, code: TrapCode) {
self.traps.push(MachTrap {
offset: self.data.len() as CodeOffset,
srcloc,
code,
});
}
/// Add a call-site record at the current offset.
pub fn add_call_site(&mut self, srcloc: SourceLoc, opcode: Opcode) {
self.call_sites.push(MachCallSite {
ret_addr: self.data.len() as CodeOffset,
srcloc,
opcode,
});
}
/// Add an unwind record at the current offset.
pub fn add_unwind(&mut self, unwind: UnwindInst) {
self.unwind_info.push((self.cur_offset(), unwind));
}
/// Set the `SourceLoc` for code from this offset until the offset at the
/// next call to `end_srcloc()`.
pub fn start_srcloc(&mut self, loc: SourceLoc) {
self.cur_srcloc = Some((self.cur_offset(), loc));
}
/// Mark the end of the `SourceLoc` segment started at the last
/// `start_srcloc()` call.
pub fn end_srcloc(&mut self) {
let (start, loc) = self
.cur_srcloc
.take()
.expect("end_srcloc() called without start_srcloc()");
let end = self.cur_offset();
// Skip zero-length extends.
debug_assert!(end >= start);
if end > start {
self.srclocs.push(MachSrcLoc { start, end, loc });
}
}
/// Add stack map metadata for this program point: a set of stack offsets
/// (from SP upward) that contain live references.
///
/// The `offset_to_fp` value is the offset from the nominal SP (at which the `stack_offsets`
/// are based) and the FP value. By subtracting `offset_to_fp` from each `stack_offsets`
/// element, one can obtain live-reference offsets from FP instead.
pub fn add_stack_map(&mut self, extent: StackMapExtent, stack_map: StackMap) {
let (start, end) = match extent {
StackMapExtent::UpcomingBytes(insn_len) => {
let start_offset = self.cur_offset();
(start_offset, start_offset + insn_len)
}
StackMapExtent::StartedAtOffset(start_offset) => {
let end_offset = self.cur_offset();
debug_assert!(end_offset >= start_offset);
(start_offset, end_offset)
}
};
self.stack_maps.push(MachStackMap {
offset: start,
offset_end: end,
stack_map,
});
}
}
impl MachBufferFinalized {
/// Get a list of source location mapping tuples in sorted-by-start-offset order.
pub fn get_srclocs_sorted(&self) -> &[MachSrcLoc] {
&self.srclocs[..]
}
/// Get the total required size for the code.
pub fn total_size(&self) -> CodeOffset {
self.data.len() as CodeOffset
}
/// Emit this buffer to the given CodeSink.
pub fn emit<CS: CodeSink>(&self, sink: &mut CS) {
// N.B.: we emit every section into the .text section as far as
// the `CodeSink` is concerned; we do not bother to segregate
// the contents into the actual program text, the jumptable and the
// rodata (constant pool). This allows us to generate code assuming
// that these will not be relocated relative to each other, and avoids
// having to designate each section as belonging in one of the three
// fixed categories defined by `CodeSink`. If this becomes a problem
// later (e.g. because of memory permissions or similar), we can
// add this designation and segregate the output; take care, however,
// to add the appropriate relocations in this case.
let mut next_reloc = 0;
let mut next_trap = 0;
let mut next_call_site = 0;
for (idx, byte) in self.data.iter().enumerate() {
while next_reloc < self.relocs.len()
&& self.relocs[next_reloc].offset == idx as CodeOffset
{
let reloc = &self.relocs[next_reloc];
sink.reloc_external(reloc.srcloc, reloc.kind, &reloc.name, reloc.addend);
next_reloc += 1;
}
while next_trap < self.traps.len() && self.traps[next_trap].offset == idx as CodeOffset
{
let trap = &self.traps[next_trap];
sink.trap(trap.code, trap.srcloc);
next_trap += 1;
}
while next_call_site < self.call_sites.len()
&& self.call_sites[next_call_site].ret_addr == idx as CodeOffset
{
let call_site = &self.call_sites[next_call_site];
sink.add_call_site(call_site.opcode, call_site.srcloc);
next_call_site += 1;
}
sink.put1(*byte);
}
sink.begin_jumptables();
sink.begin_rodata();
sink.end_codegen();
}
/// Get the stack map metadata for this code.
pub fn stack_maps(&self) -> &[MachStackMap] {
&self.stack_maps[..]
}
}
/// A constant that is deferred to the next constant-pool opportunity.
struct MachLabelConstant {
/// This label will refer to the constant's offset.
label: MachLabel,
/// Required alignment.
align: CodeOffset,
/// This data will be emitted when able.
data: SmallVec<[u8; 16]>,
}
/// A fixup to perform on the buffer once code is emitted. Fixups always refer
/// to labels and patch the code based on label offsets. Hence, they are like
/// relocations, but internal to one buffer.
#[derive(Debug)]
struct MachLabelFixup<I: VCodeInst> {
/// The label whose offset controls this fixup.
label: MachLabel,
/// The offset to fix up / patch to refer to this label.
offset: CodeOffset,
/// The kind of fixup. This is architecture-specific; each architecture may have,
/// e.g., several types of branch instructions, each with differently-sized
/// offset fields and different places within the instruction to place the
/// bits.
kind: I::LabelUse,
}
/// A relocation resulting from a compilation.
struct MachReloc {
/// The offset at which the relocation applies, *relative to the
/// containing section*.
offset: CodeOffset,
/// The original source location.
srcloc: SourceLoc,
/// The kind of relocation.
kind: Reloc,
/// The external symbol / name to which this relocation refers.
name: ExternalName,
/// The addend to add to the symbol value.
addend: i64,
}
/// A trap record resulting from a compilation.
struct MachTrap {
/// The offset at which the trap instruction occurs, *relative to the
/// containing section*.
offset: CodeOffset,
/// The original source location.
srcloc: SourceLoc,
/// The trap code.
code: TrapCode,
}
/// A call site record resulting from a compilation.
struct MachCallSite {
/// The offset of the call's return address, *relative to the containing section*.
ret_addr: CodeOffset,
/// The original source location.
srcloc: SourceLoc,
/// The call's opcode.
opcode: Opcode,
}
/// A source-location mapping resulting from a compilation.
#[derive(Clone, Debug)]
pub struct MachSrcLoc {
/// The start of the region of code corresponding to a source location.
/// This is relative to the start of the function, not to the start of the
/// section.
pub start: CodeOffset,
/// The end of the region of code corresponding to a source location.
/// This is relative to the start of the section, not to the start of the
/// section.
pub end: CodeOffset,
/// The source location.
pub loc: SourceLoc,
}
/// Record of stack map metadata: stack offsets containing references.
#[derive(Clone, Debug)]
pub struct MachStackMap {
/// The code offset at which this stack map applies.
pub offset: CodeOffset,
/// The code offset just past the "end" of the instruction: that is, the
/// offset of the first byte of the following instruction, or equivalently,
/// the start offset plus the instruction length.
pub offset_end: CodeOffset,
/// The stack map itself.
pub stack_map: StackMap,
}
/// Record of branch instruction in the buffer, to facilitate editing.
#[derive(Clone, Debug)]
struct MachBranch {
start: CodeOffset,
end: CodeOffset,
target: MachLabel,
fixup: usize,
inverted: Option<SmallVec<[u8; 8]>>,
/// All labels pointing to the start of this branch. For correctness, this
/// *must* be complete (i.e., must contain all labels whose resolved offsets
/// are at the start of this branch): we rely on being able to redirect all
/// labels that could jump to this branch before removing it, if it is
/// otherwise unreachable.
labels_at_this_branch: SmallVec<[MachLabel; 4]>,
}
impl MachBranch {
fn is_cond(&self) -> bool {
self.inverted.is_some()
}
fn is_uncond(&self) -> bool {
self.inverted.is_none()
}
}
// We use an actual instruction definition to do tests, so we depend on the `arm64` feature here.
#[cfg(all(test, feature = "arm64"))]
mod test {
use super::*;
use crate::ir::{ConstantOffset, Function, JumpTable, Value};
use crate::isa::aarch64::inst::xreg;
use crate::isa::aarch64::inst::{BranchTarget, CondBrKind, EmitInfo, Inst};
use crate::isa::TargetIsa;
use crate::machinst::MachInstEmit;
use crate::settings;
use std::default::Default;
use std::vec::Vec;
fn label(n: u32) -> MachLabel {
MachLabel::from_block(n)
}
fn target(n: u32) -> BranchTarget {
BranchTarget::Label(label(n))
}
#[test]
fn test_elide_jump_to_next() {
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = Default::default();
buf.reserve_labels_for_blocks(2);
buf.bind_label(label(0));
let inst = Inst::Jump { dest: target(1) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1));
let buf = buf.finish();
assert_eq!(0, buf.total_size());
}
#[test]
fn test_elide_trivial_jump_blocks() {
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = Default::default();
buf.reserve_labels_for_blocks(4);
buf.bind_label(label(0));
let inst = Inst::CondBr {
kind: CondBrKind::NotZero(xreg(0)),
taken: target(1),
not_taken: target(2),
};
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1));
let inst = Inst::Jump { dest: target(3) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(2));
let inst = Inst::Jump { dest: target(3) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(3));
let buf = buf.finish();
assert_eq!(0, buf.total_size());
}
#[test]
fn test_flip_cond() {
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = Default::default();
buf.reserve_labels_for_blocks(4);
buf.bind_label(label(0));
let inst = Inst::CondBr {
kind: CondBrKind::NotZero(xreg(0)),
taken: target(1),
not_taken: target(2),
};
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1));
let inst = Inst::Udf {
trap_code: TrapCode::Interrupt,
};
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(2));
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(3));
let buf = buf.finish();
let mut buf2 = MachBuffer::new();
let mut state = Default::default();
let inst = Inst::TrapIf {
kind: CondBrKind::NotZero(xreg(0)),
trap_code: TrapCode::Interrupt,
};
inst.emit(&mut buf2, &info, &mut state);
let inst = Inst::Nop4;
inst.emit(&mut buf2, &info, &mut state);
let buf2 = buf2.finish();
assert_eq!(buf.data, buf2.data);
}
#[test]
fn test_island() {
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = Default::default();
buf.reserve_labels_for_blocks(4);
buf.bind_label(label(0));
let inst = Inst::CondBr {
kind: CondBrKind::NotZero(xreg(0)),
taken: target(2),
not_taken: target(3),
};
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1));
while buf.cur_offset() < 2000000 {
if buf.island_needed(0) {
buf.emit_island();
}
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
}
buf.bind_label(label(2));
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(3));
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
let buf = buf.finish();
assert_eq!(2000000 + 8, buf.total_size());
let mut buf2 = MachBuffer::new();
let mut state = Default::default();
let inst = Inst::CondBr {
kind: CondBrKind::NotZero(xreg(0)),
taken: BranchTarget::ResolvedOffset(1048576 - 4),
not_taken: BranchTarget::ResolvedOffset(2000000 + 4 - 4),
};
inst.emit(&mut buf2, &info, &mut state);
let buf2 = buf2.finish();
assert_eq!(&buf.data[0..8], &buf2.data[..]);
}
#[test]
fn test_island_backward() {
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = Default::default();
buf.reserve_labels_for_blocks(4);
buf.bind_label(label(0));
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1));
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(2));
while buf.cur_offset() < 2000000 {
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
}
buf.bind_label(label(3));
let inst = Inst::CondBr {
kind: CondBrKind::NotZero(xreg(0)),
taken: target(0),
not_taken: target(1),
};
inst.emit(&mut buf, &info, &mut state);
let buf = buf.finish();
assert_eq!(2000000 + 12, buf.total_size());
let mut buf2 = MachBuffer::new();
let mut state = Default::default();
let inst = Inst::CondBr {
kind: CondBrKind::NotZero(xreg(0)),
taken: BranchTarget::ResolvedOffset(8),
not_taken: BranchTarget::ResolvedOffset(4 - (2000000 + 4)),
};
inst.emit(&mut buf2, &info, &mut state);
let inst = Inst::Jump {
dest: BranchTarget::ResolvedOffset(-(2000000 + 8)),
};
inst.emit(&mut buf2, &info, &mut state);
let buf2 = buf2.finish();
assert_eq!(&buf.data[2000000..], &buf2.data[..]);
}
#[test]
fn test_multiple_redirect() {
// label0:
// cbz x0, label1
// b label2
// label1:
// b label3
// label2:
// nop
// nop
// b label0
// label3:
// b label4
// label4:
// b label5
// label5:
// b label7
// label6:
// nop
// label7:
// ret
//
// -- should become:
//
// label0:
// cbz x0, label7
// label2:
// nop
// nop
// b label0
// label6:
// nop
// label7:
// ret
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = Default::default();
buf.reserve_labels_for_blocks(8);
buf.bind_label(label(0));
let inst = Inst::CondBr {
kind: CondBrKind::Zero(xreg(0)),
taken: target(1),
not_taken: target(2),
};
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1));
let inst = Inst::Jump { dest: target(3) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(2));
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
inst.emit(&mut buf, &info, &mut state);
let inst = Inst::Jump { dest: target(0) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(3));
let inst = Inst::Jump { dest: target(4) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(4));
let inst = Inst::Jump { dest: target(5) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(5));
let inst = Inst::Jump { dest: target(7) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(6));
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(7));
let inst = Inst::Ret;
inst.emit(&mut buf, &info, &mut state);
let buf = buf.finish();
let golden_data = vec![
0xa0, 0x00, 0x00, 0xb4, // cbz x0, 0x14
0x1f, 0x20, 0x03, 0xd5, // nop
0x1f, 0x20, 0x03, 0xd5, // nop
0xfd, 0xff, 0xff, 0x17, // b 0
0x1f, 0x20, 0x03, 0xd5, // nop
0xc0, 0x03, 0x5f, 0xd6, // ret
];
assert_eq!(&golden_data[..], &buf.data[..]);
}
#[test]
fn test_handle_branch_cycle() {
// label0:
// b label1
// label1:
// b label2
// label2:
// b label3
// label3:
// b label4
// label4:
// b label1 // note: not label0 (to make it interesting).
//
// -- should become:
//
// label0, label1, ..., label4:
// b label0
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = Default::default();
buf.reserve_labels_for_blocks(5);
buf.bind_label(label(0));
let inst = Inst::Jump { dest: target(1) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1));
let inst = Inst::Jump { dest: target(2) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(2));
let inst = Inst::Jump { dest: target(3) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(3));
let inst = Inst::Jump { dest: target(4) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(4));
let inst = Inst::Jump { dest: target(1) };
inst.emit(&mut buf, &info, &mut state);
let buf = buf.finish();
let golden_data = vec![
0x00, 0x00, 0x00, 0x14, // b 0
];
assert_eq!(&golden_data[..], &buf.data[..]);
}
#[test]
fn metadata_records() {
let mut buf = MachBuffer::<Inst>::new();
buf.reserve_labels_for_blocks(1);
buf.bind_label(label(0));
buf.put1(1);
buf.add_trap(SourceLoc::default(), TrapCode::HeapOutOfBounds);
buf.put1(2);
buf.add_trap(SourceLoc::default(), TrapCode::IntegerOverflow);
buf.add_trap(SourceLoc::default(), TrapCode::IntegerDivisionByZero);
buf.add_call_site(SourceLoc::default(), Opcode::Call);
buf.add_reloc(
SourceLoc::default(),
Reloc::Abs4,
&ExternalName::user(0, 0),
0,
);
buf.put1(3);
buf.add_reloc(
SourceLoc::default(),
Reloc::Abs8,
&ExternalName::user(1, 1),
1,
);
buf.put1(4);
let buf = buf.finish();
#[derive(Default)]
struct TestCodeSink {
offset: CodeOffset,
traps: Vec<(CodeOffset, TrapCode)>,
callsites: Vec<(CodeOffset, Opcode)>,
relocs: Vec<(CodeOffset, Reloc)>,
}
impl CodeSink for TestCodeSink {
fn offset(&self) -> CodeOffset {
self.offset
}
fn put1(&mut self, _: u8) {
self.offset += 1;
}
fn put2(&mut self, _: u16) {
self.offset += 2;
}
fn put4(&mut self, _: u32) {
self.offset += 4;
}
fn put8(&mut self, _: u64) {
self.offset += 8;
}
fn reloc_external(&mut self, _: SourceLoc, r: Reloc, _: &ExternalName, _: Addend) {
self.relocs.push((self.offset, r));
}
fn reloc_constant(&mut self, _: Reloc, _: ConstantOffset) {}
fn reloc_jt(&mut self, _: Reloc, _: JumpTable) {}
fn trap(&mut self, t: TrapCode, _: SourceLoc) {
self.traps.push((self.offset, t));
}
fn begin_jumptables(&mut self) {}
fn begin_rodata(&mut self) {}
fn end_codegen(&mut self) {}
fn add_stack_map(&mut self, _: &[Value], _: &Function, _: &dyn TargetIsa) {}
fn add_call_site(&mut self, op: Opcode, _: SourceLoc) {
self.callsites.push((self.offset, op));
}
}
let mut sink = TestCodeSink::default();
buf.emit(&mut sink);
assert_eq!(sink.offset, 4);
assert_eq!(
sink.traps,
vec![
(1, TrapCode::HeapOutOfBounds),
(2, TrapCode::IntegerOverflow),
(2, TrapCode::IntegerDivisionByZero)
]
);
assert_eq!(sink.callsites, vec![(2, Opcode::Call),]);
assert_eq!(sink.relocs, vec![(2, Reloc::Abs4), (3, Reloc::Abs8)]);
}
}