| /* ---------------------------------------------------------------------------- |
| Copyright (c) 2018-2021, Microsoft Research, Daan Leijen |
| This is free software; you can redistribute it and/or modify it under the |
| terms of the MIT license. A copy of the license can be found in the file |
| "LICENSE" at the root of this distribution. |
| -----------------------------------------------------------------------------*/ |
| #pragma once |
| #ifndef MIMALLOC_INTERNAL_H |
| #define MIMALLOC_INTERNAL_H |
| |
| #include "mimalloc-types.h" |
| |
| #if (MI_DEBUG>0) |
| #define mi_trace_message(...) _mi_trace_message(__VA_ARGS__) |
| #else |
| #define mi_trace_message(...) |
| #endif |
| |
| #define MI_CACHE_LINE 64 |
| #if defined(_MSC_VER) |
| #pragma warning(disable:4127) // suppress constant conditional warning (due to MI_SECURE paths) |
| #define mi_decl_noinline __declspec(noinline) |
| #define mi_decl_thread __declspec(thread) |
| #define mi_decl_cache_align __declspec(align(MI_CACHE_LINE)) |
| #elif (defined(__GNUC__) && (__GNUC__>=3)) // includes clang and icc |
| #define mi_decl_noinline __attribute__((noinline)) |
| #define mi_decl_thread __thread |
| #define mi_decl_cache_align __attribute__((aligned(MI_CACHE_LINE))) |
| #else |
| #define mi_decl_noinline |
| #define mi_decl_thread __thread // hope for the best :-) |
| #define mi_decl_cache_align |
| #endif |
| |
| // "options.c" |
| void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message); |
| void _mi_fprintf(mi_output_fun* out, void* arg, const char* fmt, ...); |
| void _mi_warning_message(const char* fmt, ...); |
| void _mi_verbose_message(const char* fmt, ...); |
| void _mi_trace_message(const char* fmt, ...); |
| void _mi_options_init(void); |
| void _mi_error_message(int err, const char* fmt, ...); |
| |
| // random.c |
| void _mi_random_init(mi_random_ctx_t* ctx); |
| void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx); |
| uintptr_t _mi_random_next(mi_random_ctx_t* ctx); |
| uintptr_t _mi_heap_random_next(mi_heap_t* heap); |
| uintptr_t _os_random_weak(uintptr_t extra_seed); |
| static inline uintptr_t _mi_random_shuffle(uintptr_t x); |
| |
| // init.c |
| extern mi_decl_cache_align mi_stats_t _mi_stats_main; |
| extern mi_decl_cache_align const mi_page_t _mi_page_empty; |
| bool _mi_is_main_thread(void); |
| bool _mi_preloading(); // true while the C runtime is not ready |
| |
| // os.c |
| size_t _mi_os_page_size(void); |
| void _mi_os_init(void); // called from process init |
| void* _mi_os_alloc(size_t size, mi_stats_t* stats); // to allocate thread local data |
| void _mi_os_free(void* p, size_t size, mi_stats_t* stats); // to free thread local data |
| size_t _mi_os_good_alloc_size(size_t size); |
| |
| // memory.c |
| void* _mi_mem_alloc_aligned(size_t size, size_t alignment, bool* commit, bool* large, bool* is_pinned, bool* is_zero, size_t* id, mi_os_tld_t* tld); |
| void _mi_mem_free(void* p, size_t size, size_t id, bool fully_committed, bool any_reset, mi_os_tld_t* tld); |
| |
| bool _mi_mem_reset(void* p, size_t size, mi_os_tld_t* tld); |
| bool _mi_mem_unreset(void* p, size_t size, bool* is_zero, mi_os_tld_t* tld); |
| bool _mi_mem_commit(void* p, size_t size, bool* is_zero, mi_os_tld_t* tld); |
| bool _mi_mem_protect(void* addr, size_t size); |
| bool _mi_mem_unprotect(void* addr, size_t size); |
| |
| void _mi_mem_collect(mi_os_tld_t* tld); |
| |
| // "segment.c" |
| mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_wsize, mi_segments_tld_t* tld, mi_os_tld_t* os_tld); |
| void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld); |
| void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld); |
| uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size, size_t* pre_size); // page start for any page |
| void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block); |
| |
| void _mi_segment_thread_collect(mi_segments_tld_t* tld); |
| void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld); |
| void _mi_abandoned_await_readers(void); |
| |
| |
| |
| // "page.c" |
| void* _mi_malloc_generic(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc; |
| |
| void _mi_page_retire(mi_page_t* page); // free the page if there are no other pages with many free blocks |
| void _mi_page_unfull(mi_page_t* page); |
| void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page |
| void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread... |
| void _mi_heap_delayed_free(mi_heap_t* heap); |
| void _mi_heap_collect_retired(mi_heap_t* heap, bool force); |
| |
| void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never); |
| size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append); |
| void _mi_deferred_free(mi_heap_t* heap, bool force); |
| |
| void _mi_page_free_collect(mi_page_t* page,bool force); |
| void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page); // callback from segments |
| |
| size_t _mi_bin_size(uint8_t bin); // for stats |
| uint8_t _mi_bin(size_t size); // for stats |
| |
| // "heap.c" |
| void _mi_heap_destroy_pages(mi_heap_t* heap); |
| void _mi_heap_collect_abandon(mi_heap_t* heap); |
| void _mi_heap_set_default_direct(mi_heap_t* heap); |
| |
| // "stats.c" |
| void _mi_stats_done(mi_stats_t* stats); |
| |
| mi_msecs_t _mi_clock_now(void); |
| mi_msecs_t _mi_clock_end(mi_msecs_t start); |
| mi_msecs_t _mi_clock_start(void); |
| |
| // "alloc.c" |
| void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept; // called from `_mi_malloc_generic` |
| void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero); |
| void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero); |
| mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p); |
| bool _mi_free_delayed_block(mi_block_t* block); |
| void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size); |
| |
| #if MI_DEBUG>1 |
| bool _mi_page_is_valid(mi_page_t* page); |
| #endif |
| |
| |
| // ------------------------------------------------------ |
| // Branches |
| // ------------------------------------------------------ |
| |
| #if defined(__GNUC__) || defined(__clang__) |
| #define mi_unlikely(x) __builtin_expect((x),0) |
| #define mi_likely(x) __builtin_expect((x),1) |
| #else |
| #define mi_unlikely(x) (x) |
| #define mi_likely(x) (x) |
| #endif |
| |
| #ifndef __has_builtin |
| #define __has_builtin(x) 0 |
| #endif |
| |
| |
| /* ----------------------------------------------------------- |
| Error codes passed to `_mi_fatal_error` |
| All are recoverable but EFAULT is a serious error and aborts by default in secure mode. |
| For portability define undefined error codes using common Unix codes: |
| <https://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Errors/unix_system_errors.html> |
| ----------------------------------------------------------- */ |
| #include <errno.h> |
| #ifndef EAGAIN // double free |
| #define EAGAIN (11) |
| #endif |
| #ifndef ENOMEM // out of memory |
| #define ENOMEM (12) |
| #endif |
| #ifndef EFAULT // corrupted free-list or meta-data |
| #define EFAULT (14) |
| #endif |
| #ifndef EINVAL // trying to free an invalid pointer |
| #define EINVAL (22) |
| #endif |
| #ifndef EOVERFLOW // count*size overflow |
| #define EOVERFLOW (75) |
| #endif |
| |
| |
| /* ----------------------------------------------------------- |
| Inlined definitions |
| ----------------------------------------------------------- */ |
| #define UNUSED(x) (void)(x) |
| #if (MI_DEBUG>0) |
| #define UNUSED_RELEASE(x) |
| #else |
| #define UNUSED_RELEASE(x) UNUSED(x) |
| #endif |
| |
| #define MI_INIT4(x) x(),x(),x(),x() |
| #define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x) |
| #define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x) |
| #define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x) |
| #define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x) |
| #define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x) |
| #define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x) |
| |
| |
| // Is `x` a power of two? (0 is considered a power of two) |
| static inline bool _mi_is_power_of_two(uintptr_t x) { |
| return ((x & (x - 1)) == 0); |
| } |
| |
| // Align upwards |
| static inline uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) { |
| mi_assert_internal(alignment != 0); |
| uintptr_t mask = alignment - 1; |
| if ((alignment & mask) == 0) { // power of two? |
| return ((sz + mask) & ~mask); |
| } |
| else { |
| return (((sz + mask)/alignment)*alignment); |
| } |
| } |
| |
| // Divide upwards: `s <= _mi_divide_up(s,d)*d < s+d`. |
| static inline uintptr_t _mi_divide_up(uintptr_t size, size_t divider) { |
| mi_assert_internal(divider != 0); |
| return (divider == 0 ? size : ((size + divider - 1) / divider)); |
| } |
| |
| // Is memory zero initialized? |
| static inline bool mi_mem_is_zero(void* p, size_t size) { |
| for (size_t i = 0; i < size; i++) { |
| if (((uint8_t*)p)[i] != 0) return false; |
| } |
| return true; |
| } |
| |
| // Align a byte size to a size in _machine words_, |
| // i.e. byte size == `wsize*sizeof(void*)`. |
| static inline size_t _mi_wsize_from_size(size_t size) { |
| mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t)); |
| return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t); |
| } |
| |
| // Does malloc satisfy the alignment constraints already? |
| static inline bool mi_malloc_satisfies_alignment(size_t alignment, size_t size) { |
| return (alignment == sizeof(void*) || (alignment == MI_MAX_ALIGN_SIZE && size > (MI_MAX_ALIGN_SIZE/2))); |
| } |
| |
| // Overflow detecting multiply |
| #if __has_builtin(__builtin_umul_overflow) || __GNUC__ >= 5 |
| #include <limits.h> // UINT_MAX, ULONG_MAX |
| #if defined(_CLOCK_T) // for Illumos |
| #undef _CLOCK_T |
| #endif |
| static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) { |
| #if (SIZE_MAX == UINT_MAX) |
| return __builtin_umul_overflow(count, size, total); |
| #elif (SIZE_MAX == ULONG_MAX) |
| return __builtin_umull_overflow(count, size, total); |
| #else |
| return __builtin_umulll_overflow(count, size, total); |
| #endif |
| } |
| #else /* __builtin_umul_overflow is unavailable */ |
| static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) { |
| #define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX) |
| *total = count * size; |
| return ((size >= MI_MUL_NO_OVERFLOW || count >= MI_MUL_NO_OVERFLOW) |
| && size > 0 && (SIZE_MAX / size) < count); |
| } |
| #endif |
| |
| // Safe multiply `count*size` into `total`; return `true` on overflow. |
| static inline bool mi_count_size_overflow(size_t count, size_t size, size_t* total) { |
| if (count==1) { // quick check for the case where count is one (common for C++ allocators) |
| *total = size; |
| return false; |
| } |
| else if (mi_unlikely(mi_mul_overflow(count, size, total))) { |
| _mi_error_message(EOVERFLOW, "allocation request is too large (%zu * %zu bytes)\n", count, size); |
| *total = SIZE_MAX; |
| return true; |
| } |
| else return false; |
| } |
| |
| |
| /* ---------------------------------------------------------------------------------------- |
| The thread local default heap: `_mi_get_default_heap` returns the thread local heap. |
| On most platforms (Windows, Linux, FreeBSD, NetBSD, etc), this just returns a |
| __thread local variable (`_mi_heap_default`). With the initial-exec TLS model this ensures |
| that the storage will always be available (allocated on the thread stacks). |
| On some platforms though we cannot use that when overriding `malloc` since the underlying |
| TLS implementation (or the loader) will call itself `malloc` on a first access and recurse. |
| We try to circumvent this in an efficient way: |
| - macOSX : we use an unused TLS slot from the OS allocated slots (MI_TLS_SLOT). On OSX, the |
| loader itself calls `malloc` even before the modules are initialized. |
| - OpenBSD: we use an unused slot from the pthread block (MI_TLS_PTHREAD_SLOT_OFS). |
| - DragonFly: the uniqueid use is buggy but kept for reference. |
| ------------------------------------------------------------------------------------------- */ |
| |
| extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap |
| extern bool _mi_process_is_initialized; |
| mi_heap_t* _mi_heap_main_get(void); // statically allocated main backing heap |
| |
| #if defined(MI_MALLOC_OVERRIDE) |
| #if defined(__APPLE__) // macOS |
| #define MI_TLS_SLOT 89 // seems unused? |
| // other possible unused ones are 9, 29, __PTK_FRAMEWORK_JAVASCRIPTCORE_KEY4 (94), __PTK_FRAMEWORK_GC_KEY9 (112) and __PTK_FRAMEWORK_OLDGC_KEY9 (89) |
| // see <https://github.com/rweichler/substrate/blob/master/include/pthread_machdep.h> |
| #elif defined(__OpenBSD__) |
| // use end bytes of a name; goes wrong if anyone uses names > 23 characters (ptrhread specifies 16) |
| // see <https://github.com/openbsd/src/blob/master/lib/libc/include/thread_private.h#L371> |
| #define MI_TLS_PTHREAD_SLOT_OFS (6*sizeof(int) + 4*sizeof(void*) + 24) |
| #elif defined(__DragonFly__) |
| #warning "mimalloc is not working correctly on DragonFly yet." |
| //#define MI_TLS_PTHREAD_SLOT_OFS (4 + 1*sizeof(void*)) // offset `uniqueid` (also used by gdb?) <https://github.com/DragonFlyBSD/DragonFlyBSD/blob/master/lib/libthread_xu/thread/thr_private.h#L458> |
| #endif |
| #endif |
| |
| #if defined(MI_TLS_SLOT) |
| static inline void* mi_tls_slot(size_t slot) mi_attr_noexcept; // forward declaration |
| #elif defined(MI_TLS_PTHREAD_SLOT_OFS) |
| #include <pthread.h> |
| static inline mi_heap_t** mi_tls_pthread_heap_slot(void) { |
| pthread_t self = pthread_self(); |
| #if defined(__DragonFly__) |
| if (self==NULL) { |
| mi_heap_t* pheap_main = _mi_heap_main_get(); |
| return &pheap_main; |
| } |
| #endif |
| return (mi_heap_t**)((uint8_t*)self + MI_TLS_PTHREAD_SLOT_OFS); |
| } |
| #elif defined(MI_TLS_PTHREAD) |
| #include <pthread.h> |
| extern pthread_key_t _mi_heap_default_key; |
| #endif |
| |
| // Default heap to allocate from (if not using TLS- or pthread slots). |
| // Do not use this directly but use through `mi_heap_get_default()` (or the unchecked `mi_get_default_heap`). |
| // This thread local variable is only used when neither MI_TLS_SLOT, MI_TLS_PTHREAD, or MI_TLS_PTHREAD_SLOT_OFS are defined. |
| // However, on the Apple M1 we do use the address of this variable as the unique thread-id (issue #356). |
| extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate from |
| |
| static inline mi_heap_t* mi_get_default_heap(void) { |
| #if defined(MI_TLS_SLOT) |
| mi_heap_t* heap = (mi_heap_t*)mi_tls_slot(MI_TLS_SLOT); |
| return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap); |
| #elif defined(MI_TLS_PTHREAD_SLOT_OFS) |
| mi_heap_t* heap = *mi_tls_pthread_heap_slot(); |
| return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap); |
| #elif defined(MI_TLS_PTHREAD) |
| mi_heap_t* heap = (mi_unlikely(_mi_heap_default_key == (pthread_key_t)(-1)) ? _mi_heap_main_get() : (mi_heap_t*)pthread_getspecific(_mi_heap_default_key)); |
| return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap); |
| #else |
| #if defined(MI_TLS_RECURSE_GUARD) |
| if (mi_unlikely(!_mi_process_is_initialized)) return _mi_heap_main_get(); |
| #endif |
| return _mi_heap_default; |
| #endif |
| } |
| |
| static inline bool mi_heap_is_default(const mi_heap_t* heap) { |
| return (heap == mi_get_default_heap()); |
| } |
| |
| static inline bool mi_heap_is_backing(const mi_heap_t* heap) { |
| return (heap->tld->heap_backing == heap); |
| } |
| |
| static inline bool mi_heap_is_initialized(mi_heap_t* heap) { |
| mi_assert_internal(heap != NULL); |
| return (heap != &_mi_heap_empty); |
| } |
| |
| static inline uintptr_t _mi_ptr_cookie(const void* p) { |
| extern mi_heap_t _mi_heap_main; |
| mi_assert_internal(_mi_heap_main.cookie != 0); |
| return ((uintptr_t)p ^ _mi_heap_main.cookie); |
| } |
| |
| /* ----------------------------------------------------------- |
| Pages |
| ----------------------------------------------------------- */ |
| |
| static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) { |
| mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE)); |
| const size_t idx = _mi_wsize_from_size(size); |
| mi_assert_internal(idx < MI_PAGES_DIRECT); |
| return heap->pages_free_direct[idx]; |
| } |
| |
| // Get the page belonging to a certain size class |
| static inline mi_page_t* _mi_get_free_small_page(size_t size) { |
| return _mi_heap_get_free_small_page(mi_get_default_heap(), size); |
| } |
| |
| // Segment that contains the pointer |
| static inline mi_segment_t* _mi_ptr_segment(const void* p) { |
| // mi_assert_internal(p != NULL); |
| return (mi_segment_t*)((uintptr_t)p & ~MI_SEGMENT_MASK); |
| } |
| |
| // Segment belonging to a page |
| static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) { |
| mi_segment_t* segment = _mi_ptr_segment(page); |
| mi_assert_internal(segment == NULL || page == &segment->pages[page->segment_idx]); |
| return segment; |
| } |
| |
| // used internally |
| static inline uintptr_t _mi_segment_page_idx_of(const mi_segment_t* segment, const void* p) { |
| // if (segment->page_size > MI_SEGMENT_SIZE) return &segment->pages[0]; // huge pages |
| ptrdiff_t diff = (uint8_t*)p - (uint8_t*)segment; |
| mi_assert_internal(diff >= 0 && (size_t)diff < MI_SEGMENT_SIZE); |
| uintptr_t idx = (uintptr_t)diff >> segment->page_shift; |
| mi_assert_internal(idx < segment->capacity); |
| mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM || idx == 0); |
| return idx; |
| } |
| |
| // Get the page containing the pointer |
| static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const void* p) { |
| uintptr_t idx = _mi_segment_page_idx_of(segment, p); |
| return &((mi_segment_t*)segment)->pages[idx]; |
| } |
| |
| // Quick page start for initialized pages |
| static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) { |
| const size_t bsize = page->xblock_size; |
| mi_assert_internal(bsize > 0 && (bsize%sizeof(void*)) == 0); |
| return _mi_segment_page_start(segment, page, bsize, page_size, NULL); |
| } |
| |
| // Get the page containing the pointer |
| static inline mi_page_t* _mi_ptr_page(void* p) { |
| return _mi_segment_page_of(_mi_ptr_segment(p), p); |
| } |
| |
| // Get the block size of a page (special cased for huge objects) |
| static inline size_t mi_page_block_size(const mi_page_t* page) { |
| const size_t bsize = page->xblock_size; |
| mi_assert_internal(bsize > 0); |
| if (mi_likely(bsize < MI_HUGE_BLOCK_SIZE)) { |
| return bsize; |
| } |
| else { |
| size_t psize; |
| _mi_segment_page_start(_mi_page_segment(page), page, bsize, &psize, NULL); |
| return psize; |
| } |
| } |
| |
| // Get the usable block size of a page without fixed padding. |
| // This may still include internal padding due to alignment and rounding up size classes. |
| static inline size_t mi_page_usable_block_size(const mi_page_t* page) { |
| return mi_page_block_size(page) - MI_PADDING_SIZE; |
| } |
| |
| |
| // Thread free access |
| static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) { |
| return (mi_block_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & ~3); |
| } |
| |
| static inline mi_delayed_t mi_page_thread_free_flag(const mi_page_t* page) { |
| return (mi_delayed_t)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & 3); |
| } |
| |
| // Heap access |
| static inline mi_heap_t* mi_page_heap(const mi_page_t* page) { |
| return (mi_heap_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xheap)); |
| } |
| |
| static inline void mi_page_set_heap(mi_page_t* page, mi_heap_t* heap) { |
| mi_assert_internal(mi_page_thread_free_flag(page) != MI_DELAYED_FREEING); |
| mi_atomic_store_release(&page->xheap,(uintptr_t)heap); |
| } |
| |
| // Thread free flag helpers |
| static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) { |
| return (mi_block_t*)(tf & ~0x03); |
| } |
| static inline mi_delayed_t mi_tf_delayed(mi_thread_free_t tf) { |
| return (mi_delayed_t)(tf & 0x03); |
| } |
| static inline mi_thread_free_t mi_tf_make(mi_block_t* block, mi_delayed_t delayed) { |
| return (mi_thread_free_t)((uintptr_t)block | (uintptr_t)delayed); |
| } |
| static inline mi_thread_free_t mi_tf_set_delayed(mi_thread_free_t tf, mi_delayed_t delayed) { |
| return mi_tf_make(mi_tf_block(tf),delayed); |
| } |
| static inline mi_thread_free_t mi_tf_set_block(mi_thread_free_t tf, mi_block_t* block) { |
| return mi_tf_make(block, mi_tf_delayed(tf)); |
| } |
| |
| // are all blocks in a page freed? |
| // note: needs up-to-date used count, (as the `xthread_free` list may not be empty). see `_mi_page_collect_free`. |
| static inline bool mi_page_all_free(const mi_page_t* page) { |
| mi_assert_internal(page != NULL); |
| return (page->used == 0); |
| } |
| |
| // are there any available blocks? |
| static inline bool mi_page_has_any_available(const mi_page_t* page) { |
| mi_assert_internal(page != NULL && page->reserved > 0); |
| return (page->used < page->reserved || (mi_page_thread_free(page) != NULL)); |
| } |
| |
| // are there immediately available blocks, i.e. blocks available on the free list. |
| static inline bool mi_page_immediate_available(const mi_page_t* page) { |
| mi_assert_internal(page != NULL); |
| return (page->free != NULL); |
| } |
| |
| // is more than 7/8th of a page in use? |
| static inline bool mi_page_mostly_used(const mi_page_t* page) { |
| if (page==NULL) return true; |
| uint16_t frac = page->reserved / 8U; |
| return (page->reserved - page->used <= frac); |
| } |
| |
| static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) { |
| return &((mi_heap_t*)heap)->pages[_mi_bin(size)]; |
| } |
| |
| |
| |
| //----------------------------------------------------------- |
| // Page flags |
| //----------------------------------------------------------- |
| static inline bool mi_page_is_in_full(const mi_page_t* page) { |
| return page->flags.x.in_full; |
| } |
| |
| static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) { |
| page->flags.x.in_full = in_full; |
| } |
| |
| static inline bool mi_page_has_aligned(const mi_page_t* page) { |
| return page->flags.x.has_aligned; |
| } |
| |
| static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) { |
| page->flags.x.has_aligned = has_aligned; |
| } |
| |
| |
| /* ------------------------------------------------------------------- |
| Encoding/Decoding the free list next pointers |
| |
| This is to protect against buffer overflow exploits where the |
| free list is mutated. Many hardened allocators xor the next pointer `p` |
| with a secret key `k1`, as `p^k1`. This prevents overwriting with known |
| values but might be still too weak: if the attacker can guess |
| the pointer `p` this can reveal `k1` (since `p^k1^p == k1`). |
| Moreover, if multiple blocks can be read as well, the attacker can |
| xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot |
| about the pointers (and subsequently `k1`). |
| |
| Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<<k1)+k1`. |
| Since these operations are not associative, the above approaches do not |
| work so well any more even if the `p` can be guesstimated. For example, |
| for the read case we can subtract two entries to discard the `+k1` term, |
| but that leads to `((p1^k2)<<<k1) - ((p2^k2)<<<k1)` at best. |
| We include the left-rotation since xor and addition are otherwise linear |
| in the lowest bit. Finally, both keys are unique per page which reduces |
| the re-use of keys by a large factor. |
| |
| We also pass a separate `null` value to be used as `NULL` or otherwise |
| `(k2<<<k1)+k1` would appear (too) often as a sentinel value. |
| ------------------------------------------------------------------- */ |
| |
| static inline bool mi_is_in_same_segment(const void* p, const void* q) { |
| return (_mi_ptr_segment(p) == _mi_ptr_segment(q)); |
| } |
| |
| static inline bool mi_is_in_same_page(const void* p, const void* q) { |
| mi_segment_t* segmentp = _mi_ptr_segment(p); |
| mi_segment_t* segmentq = _mi_ptr_segment(q); |
| if (segmentp != segmentq) return false; |
| uintptr_t idxp = _mi_segment_page_idx_of(segmentp, p); |
| uintptr_t idxq = _mi_segment_page_idx_of(segmentq, q); |
| return (idxp == idxq); |
| } |
| |
| static inline uintptr_t mi_rotl(uintptr_t x, uintptr_t shift) { |
| shift %= MI_INTPTR_BITS; |
| return (shift==0 ? x : ((x << shift) | (x >> (MI_INTPTR_BITS - shift)))); |
| } |
| static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) { |
| shift %= MI_INTPTR_BITS; |
| return (shift==0 ? x : ((x >> shift) | (x << (MI_INTPTR_BITS - shift)))); |
| } |
| |
| static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) { |
| void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]); |
| return (mi_unlikely(p==null) ? NULL : p); |
| } |
| |
| static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) { |
| uintptr_t x = (uintptr_t)(mi_unlikely(p==NULL) ? null : p); |
| return mi_rotl(x ^ keys[1], keys[0]) + keys[0]; |
| } |
| |
| static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) { |
| #ifdef MI_ENCODE_FREELIST |
| return (mi_block_t*)mi_ptr_decode(null, block->next, keys); |
| #else |
| UNUSED(keys); UNUSED(null); |
| return (mi_block_t*)block->next; |
| #endif |
| } |
| |
| static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, const uintptr_t* keys) { |
| #ifdef MI_ENCODE_FREELIST |
| block->next = mi_ptr_encode(null, next, keys); |
| #else |
| UNUSED(keys); UNUSED(null); |
| block->next = (mi_encoded_t)next; |
| #endif |
| } |
| |
| static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) { |
| #ifdef MI_ENCODE_FREELIST |
| mi_block_t* next = mi_block_nextx(page,block,page->keys); |
| // check for free list corruption: is `next` at least in the same page? |
| // TODO: check if `next` is `page->block_size` aligned? |
| if (mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next))) { |
| _mi_error_message(EFAULT, "corrupted free list entry of size %zub at %p: value 0x%zx\n", mi_page_block_size(page), block, (uintptr_t)next); |
| next = NULL; |
| } |
| return next; |
| #else |
| UNUSED(page); |
| return mi_block_nextx(page,block,NULL); |
| #endif |
| } |
| |
| static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) { |
| #ifdef MI_ENCODE_FREELIST |
| mi_block_set_nextx(page,block,next, page->keys); |
| #else |
| UNUSED(page); |
| mi_block_set_nextx(page,block,next,NULL); |
| #endif |
| } |
| |
| // ------------------------------------------------------------------- |
| // Fast "random" shuffle |
| // ------------------------------------------------------------------- |
| |
| static inline uintptr_t _mi_random_shuffle(uintptr_t x) { |
| if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros |
| #if (MI_INTPTR_SIZE==8) |
| // by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c> |
| x ^= x >> 30; |
| x *= 0xbf58476d1ce4e5b9UL; |
| x ^= x >> 27; |
| x *= 0x94d049bb133111ebUL; |
| x ^= x >> 31; |
| #elif (MI_INTPTR_SIZE==4) |
| // by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/> |
| x ^= x >> 16; |
| x *= 0x7feb352dUL; |
| x ^= x >> 15; |
| x *= 0x846ca68bUL; |
| x ^= x >> 16; |
| #endif |
| return x; |
| } |
| |
| // ------------------------------------------------------------------- |
| // Optimize numa node access for the common case (= one node) |
| // ------------------------------------------------------------------- |
| |
| int _mi_os_numa_node_get(mi_os_tld_t* tld); |
| size_t _mi_os_numa_node_count_get(void); |
| |
| extern _Atomic(size_t) _mi_numa_node_count; |
| static inline int _mi_os_numa_node(mi_os_tld_t* tld) { |
| if (mi_likely(mi_atomic_load_relaxed(&_mi_numa_node_count) == 1)) return 0; |
| else return _mi_os_numa_node_get(tld); |
| } |
| static inline size_t _mi_os_numa_node_count(void) { |
| const size_t count = mi_atomic_load_relaxed(&_mi_numa_node_count); |
| if (mi_likely(count>0)) return count; |
| else return _mi_os_numa_node_count_get(); |
| } |
| |
| |
| // ------------------------------------------------------------------- |
| // Getting the thread id should be performant as it is called in the |
| // fast path of `_mi_free` and we specialize for various platforms. |
| // ------------------------------------------------------------------- |
| #if defined(_WIN32) |
| #define WIN32_LEAN_AND_MEAN |
| #include <windows.h> |
| static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept { |
| // Windows: works on Intel and ARM in both 32- and 64-bit |
| return (uintptr_t)NtCurrentTeb(); |
| } |
| |
| #elif defined(__GNUC__) && \ |
| (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__)) |
| |
| // TLS register on x86 is in the FS or GS register, see: https://akkadia.org/drepper/tls.pdf |
| static inline void* mi_tls_slot(size_t slot) mi_attr_noexcept { |
| void* res; |
| const size_t ofs = (slot*sizeof(void*)); |
| #if defined(__i386__) |
| __asm__("movl %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // 32-bit always uses GS |
| #elif defined(__APPLE__) && defined(__x86_64__) |
| __asm__("movq %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 macOSX uses GS |
| #elif defined(__x86_64__) && (MI_INTPTR_SIZE==4) |
| __asm__("movl %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x32 ABI |
| #elif defined(__x86_64__) |
| __asm__("movq %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 Linux, BSD uses FS |
| #elif defined(__arm__) |
| void** tcb; UNUSED(ofs); |
| __asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb)); |
| res = tcb[slot]; |
| #elif defined(__aarch64__) |
| void** tcb; UNUSED(ofs); |
| #if defined(__APPLE__) // M1, issue #343 |
| __asm__ volatile ("mrs %0, tpidrro_el0" : "=r" (tcb)); |
| tcb = (void**)((uintptr_t)tcb & ~0x07UL); // clear lower 3 bits |
| #else |
| __asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb)); |
| #endif |
| res = tcb[slot]; |
| #endif |
| return res; |
| } |
| |
| // setting is only used on macOSX for now |
| static inline void mi_tls_slot_set(size_t slot, void* value) mi_attr_noexcept { |
| const size_t ofs = (slot*sizeof(void*)); |
| #if defined(__i386__) |
| __asm__("movl %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // 32-bit always uses GS |
| #elif defined(__APPLE__) && defined(__x86_64__) |
| __asm__("movq %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 macOSX uses GS |
| #elif defined(__x86_64__) && (MI_INTPTR_SIZE==4) |
| __asm__("movl %1,%%fs:%1" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x32 ABI |
| #elif defined(__x86_64__) |
| __asm__("movq %1,%%fs:%1" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 Linux, BSD uses FS |
| #elif defined(__arm__) |
| void** tcb; UNUSED(ofs); |
| __asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb)); |
| tcb[slot] = value; |
| #elif defined(__aarch64__) |
| void** tcb; UNUSED(ofs); |
| #if defined(__APPLE__) // M1, issue #343 |
| __asm__ volatile ("mrs %0, tpidrro_el0" : "=r" (tcb)); |
| tcb = (void**)((uintptr_t)tcb & ~0x07UL); // clear lower 3 bits |
| #else |
| __asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb)); |
| #endif |
| tcb[slot] = value; |
| #endif |
| } |
| |
| static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept { |
| #if defined(__BIONIC__) && (defined(__arm__) || defined(__aarch64__)) |
| // on Android, slot 1 is the thread ID (pointer to pthread internal struct) |
| return (uintptr_t)mi_tls_slot(1); |
| #else |
| // in all our other targets, slot 0 is the pointer to the thread control block |
| return (uintptr_t)mi_tls_slot(0); |
| #endif |
| } |
| #else |
| // otherwise use standard C |
| static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept { |
| return (uintptr_t)&_mi_heap_default; |
| } |
| #endif |
| |
| // ----------------------------------------------------------------------- |
| // Count bits: trailing or leading zeros (with MI_INTPTR_BITS on all zero) |
| // ----------------------------------------------------------------------- |
| |
| #if defined(__GNUC__) |
| |
| #include <limits.h> // LONG_MAX |
| #define MI_HAVE_FAST_BITSCAN |
| static inline size_t mi_clz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| #if (INTPTR_MAX == LONG_MAX) |
| return __builtin_clzl(x); |
| #else |
| return __builtin_clzll(x); |
| #endif |
| } |
| static inline size_t mi_ctz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| #if (INTPTR_MAX == LONG_MAX) |
| return __builtin_ctzl(x); |
| #else |
| return __builtin_ctzll(x); |
| #endif |
| } |
| |
| #elif defined(_MSC_VER) |
| |
| #include <limits.h> // LONG_MAX |
| #define MI_HAVE_FAST_BITSCAN |
| static inline size_t mi_clz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| unsigned long idx; |
| #if (INTPTR_MAX == LONG_MAX) |
| _BitScanReverse(&idx, x); |
| #else |
| _BitScanReverse64(&idx, x); |
| #endif |
| return ((MI_INTPTR_BITS - 1) - idx); |
| } |
| static inline size_t mi_ctz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| unsigned long idx; |
| #if (INTPTR_MAX == LONG_MAX) |
| _BitScanForward(&idx, x); |
| #else |
| _BitScanForward64(&idx, x); |
| #endif |
| return idx; |
| } |
| |
| #else |
| static inline size_t mi_ctz32(uint32_t x) { |
| // de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf> |
| static const unsigned char debruijn[32] = { |
| 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, |
| 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 |
| }; |
| if (x==0) return 32; |
| return debruijn[((x & -(int32_t)x) * 0x077CB531UL) >> 27]; |
| } |
| static inline size_t mi_clz32(uint32_t x) { |
| // de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf> |
| static const uint8_t debruijn[32] = { |
| 31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, 13, 9, 6, 28, 1, |
| 23, 19, 11, 3, 16, 14, 7, 24, 12, 4, 8, 25, 5, 26, 27, 0 |
| }; |
| if (x==0) return 32; |
| x |= x >> 1; |
| x |= x >> 2; |
| x |= x >> 4; |
| x |= x >> 8; |
| x |= x >> 16; |
| return debruijn[(uint32_t)(x * 0x07C4ACDDUL) >> 27]; |
| } |
| |
| static inline size_t mi_clz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| #if (MI_INTPTR_BITS <= 32) |
| return mi_clz32((uint32_t)x); |
| #else |
| size_t count = mi_clz32((uint32_t)(x >> 32)); |
| if (count < 32) return count; |
| return (32 + mi_clz32((uint32_t)x)); |
| #endif |
| } |
| static inline size_t mi_ctz(uintptr_t x) { |
| if (x==0) return MI_INTPTR_BITS; |
| #if (MI_INTPTR_BITS <= 32) |
| return mi_ctz32((uint32_t)x); |
| #else |
| size_t count = mi_ctz32((uint32_t)x); |
| if (count < 32) return count; |
| return (32 + mi_ctz32((uint32_t)(x>>32))); |
| #endif |
| } |
| |
| #endif |
| |
| // "bit scan reverse": Return index of the highest bit (or MI_INTPTR_BITS if `x` is zero) |
| static inline size_t mi_bsr(uintptr_t x) { |
| return (x==0 ? MI_INTPTR_BITS : MI_INTPTR_BITS - 1 - mi_clz(x)); |
| } |
| |
| |
| // --------------------------------------------------------------------------------- |
| // Provide our own `_mi_memcpy` for potential performance optimizations. |
| // |
| // For now, only on Windows with msvc/clang-cl we optimize to `rep movsb` if |
| // we happen to run on x86/x64 cpu's that have "fast short rep movsb" (FSRM) support |
| // (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017). See also issue #201 and pr #253. |
| // --------------------------------------------------------------------------------- |
| |
| #if defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64)) |
| #include <intrin.h> |
| #include <string.h> |
| extern bool _mi_cpu_has_fsrm; |
| static inline void _mi_memcpy(void* dst, const void* src, size_t n) { |
| if (_mi_cpu_has_fsrm) { |
| __movsb((unsigned char*)dst, (const unsigned char*)src, n); |
| } |
| else { |
| memcpy(dst, src, n); // todo: use noinline? |
| } |
| } |
| #else |
| #include <string.h> |
| static inline void _mi_memcpy(void* dst, const void* src, size_t n) { |
| memcpy(dst, src, n); |
| } |
| #endif |
| |
| |
| // ------------------------------------------------------------------------------- |
| // The `_mi_memcpy_aligned` can be used if the pointers are machine-word aligned |
| // This is used for example in `mi_realloc`. |
| // ------------------------------------------------------------------------------- |
| |
| #if (__GNUC__ >= 4) || defined(__clang__) |
| // On GCC/CLang we provide a hint that the pointers are word aligned. |
| #include <string.h> |
| static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) { |
| mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0)); |
| void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE); |
| const void* asrc = __builtin_assume_aligned(src, MI_INTPTR_SIZE); |
| memcpy(adst, asrc, n); |
| } |
| #else |
| // Default fallback on `_mi_memcpy` |
| static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) { |
| mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0)); |
| _mi_memcpy(dst, src, n); |
| } |
| #endif |
| |
| |
| #endif |