| mod level; |
| pub(crate) use self::level::Expiration; |
| use self::level::Level; |
| |
| mod stack; |
| pub(crate) use self::stack::Stack; |
| |
| use std::borrow::Borrow; |
| use std::usize; |
| |
| /// Timing wheel implementation. |
| /// |
| /// This type provides the hashed timing wheel implementation that backs `Timer` |
| /// and `DelayQueue`. |
| /// |
| /// The structure is generic over `T: Stack`. This allows handling timeout data |
| /// being stored on the heap or in a slab. In order to support the latter case, |
| /// the slab must be passed into each function allowing the implementation to |
| /// lookup timer entries. |
| /// |
| /// See `Timer` documentation for some implementation notes. |
| #[derive(Debug)] |
| pub(crate) struct Wheel<T> { |
| /// The number of milliseconds elapsed since the wheel started. |
| elapsed: u64, |
| |
| /// Timer wheel. |
| /// |
| /// Levels: |
| /// |
| /// * 1 ms slots / 64 ms range |
| /// * 64 ms slots / ~ 4 sec range |
| /// * ~ 4 sec slots / ~ 4 min range |
| /// * ~ 4 min slots / ~ 4 hr range |
| /// * ~ 4 hr slots / ~ 12 day range |
| /// * ~ 12 day slots / ~ 2 yr range |
| levels: Vec<Level<T>>, |
| } |
| |
| /// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots |
| /// each, the timer is able to track time up to 2 years into the future with a |
| /// precision of 1 millisecond. |
| const NUM_LEVELS: usize = 6; |
| |
| /// The maximum duration of a delay |
| const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1; |
| |
| #[derive(Debug)] |
| pub(crate) enum InsertError { |
| Elapsed, |
| Invalid, |
| } |
| |
| impl<T> Wheel<T> |
| where |
| T: Stack, |
| { |
| /// Create a new timing wheel |
| pub(crate) fn new() -> Wheel<T> { |
| let levels = (0..NUM_LEVELS).map(Level::new).collect(); |
| |
| Wheel { elapsed: 0, levels } |
| } |
| |
| /// Return the number of milliseconds that have elapsed since the timing |
| /// wheel's creation. |
| pub(crate) fn elapsed(&self) -> u64 { |
| self.elapsed |
| } |
| |
| /// Insert an entry into the timing wheel. |
| /// |
| /// # Arguments |
| /// |
| /// * `when`: is the instant at which the entry should be fired. It is |
| /// represented as the number of milliseconds since the creation |
| /// of the timing wheel. |
| /// |
| /// * `item`: The item to insert into the wheel. |
| /// |
| /// * `store`: The slab or `()` when using heap storage. |
| /// |
| /// # Return |
| /// |
| /// Returns `Ok` when the item is successfully inserted, `Err` otherwise. |
| /// |
| /// `Err(Elapsed)` indicates that `when` represents an instant that has |
| /// already passed. In this case, the caller should fire the timeout |
| /// immediately. |
| /// |
| /// `Err(Invalid)` indicates an invalid `when` argument as been supplied. |
| pub(crate) fn insert( |
| &mut self, |
| when: u64, |
| item: T::Owned, |
| store: &mut T::Store, |
| ) -> Result<(), (T::Owned, InsertError)> { |
| if when <= self.elapsed { |
| return Err((item, InsertError::Elapsed)); |
| } else if when - self.elapsed > MAX_DURATION { |
| return Err((item, InsertError::Invalid)); |
| } |
| |
| // Get the level at which the entry should be stored |
| let level = self.level_for(when); |
| |
| self.levels[level].add_entry(when, item, store); |
| |
| debug_assert!({ |
| self.levels[level] |
| .next_expiration(self.elapsed) |
| .map(|e| e.deadline >= self.elapsed) |
| .unwrap_or(true) |
| }); |
| |
| Ok(()) |
| } |
| |
| /// Remove `item` from the timing wheel. |
| pub(crate) fn remove(&mut self, item: &T::Borrowed, store: &mut T::Store) { |
| let when = T::when(item, store); |
| |
| assert!( |
| self.elapsed <= when, |
| "elapsed={}; when={}", |
| self.elapsed, |
| when |
| ); |
| |
| let level = self.level_for(when); |
| |
| self.levels[level].remove_entry(when, item, store); |
| } |
| |
| /// Instant at which to poll |
| pub(crate) fn poll_at(&self) -> Option<u64> { |
| self.next_expiration().map(|expiration| expiration.deadline) |
| } |
| |
| /// Advances the timer up to the instant represented by `now`. |
| pub(crate) fn poll(&mut self, now: u64, store: &mut T::Store) -> Option<T::Owned> { |
| loop { |
| let expiration = self.next_expiration().and_then(|expiration| { |
| if expiration.deadline > now { |
| None |
| } else { |
| Some(expiration) |
| } |
| }); |
| |
| match expiration { |
| Some(ref expiration) => { |
| if let Some(item) = self.poll_expiration(expiration, store) { |
| return Some(item); |
| } |
| |
| self.set_elapsed(expiration.deadline); |
| } |
| None => { |
| // in this case the poll did not indicate an expiration |
| // _and_ we were not able to find a next expiration in |
| // the current list of timers. advance to the poll's |
| // current time and do nothing else. |
| self.set_elapsed(now); |
| return None; |
| } |
| } |
| } |
| } |
| |
| /// Returns the instant at which the next timeout expires. |
| fn next_expiration(&self) -> Option<Expiration> { |
| // Check all levels |
| for level in 0..NUM_LEVELS { |
| if let Some(expiration) = self.levels[level].next_expiration(self.elapsed) { |
| // There cannot be any expirations at a higher level that happen |
| // before this one. |
| debug_assert!(self.no_expirations_before(level + 1, expiration.deadline)); |
| |
| return Some(expiration); |
| } |
| } |
| |
| None |
| } |
| |
| /// Used for debug assertions |
| fn no_expirations_before(&self, start_level: usize, before: u64) -> bool { |
| let mut res = true; |
| |
| for l2 in start_level..NUM_LEVELS { |
| if let Some(e2) = self.levels[l2].next_expiration(self.elapsed) { |
| if e2.deadline < before { |
| res = false; |
| } |
| } |
| } |
| |
| res |
| } |
| |
| /// iteratively find entries that are between the wheel's current |
| /// time and the expiration time. for each in that population either |
| /// return it for notification (in the case of the last level) or tier |
| /// it down to the next level (in all other cases). |
| pub(crate) fn poll_expiration( |
| &mut self, |
| expiration: &Expiration, |
| store: &mut T::Store, |
| ) -> Option<T::Owned> { |
| while let Some(item) = self.pop_entry(expiration, store) { |
| if expiration.level == 0 { |
| debug_assert_eq!(T::when(item.borrow(), store), expiration.deadline); |
| |
| return Some(item); |
| } else { |
| let when = T::when(item.borrow(), store); |
| |
| let next_level = expiration.level - 1; |
| |
| self.levels[next_level].add_entry(when, item, store); |
| } |
| } |
| |
| None |
| } |
| |
| fn set_elapsed(&mut self, when: u64) { |
| assert!( |
| self.elapsed <= when, |
| "elapsed={:?}; when={:?}", |
| self.elapsed, |
| when |
| ); |
| |
| if when > self.elapsed { |
| self.elapsed = when; |
| } |
| } |
| |
| fn pop_entry(&mut self, expiration: &Expiration, store: &mut T::Store) -> Option<T::Owned> { |
| self.levels[expiration.level].pop_entry_slot(expiration.slot, store) |
| } |
| |
| fn level_for(&self, when: u64) -> usize { |
| level_for(self.elapsed, when) |
| } |
| } |
| |
| fn level_for(elapsed: u64, when: u64) -> usize { |
| const SLOT_MASK: u64 = (1 << 6) - 1; |
| |
| // Mask in the trailing bits ignored by the level calculation in order to cap |
| // the possible leading zeros |
| let masked = elapsed ^ when | SLOT_MASK; |
| |
| let leading_zeros = masked.leading_zeros() as usize; |
| let significant = 63 - leading_zeros; |
| significant / 6 |
| } |
| |
| #[cfg(all(test, not(loom)))] |
| mod test { |
| use super::*; |
| |
| #[test] |
| fn test_level_for() { |
| for pos in 0..64 { |
| assert_eq!( |
| 0, |
| level_for(0, pos), |
| "level_for({}) -- binary = {:b}", |
| pos, |
| pos |
| ); |
| } |
| |
| for level in 1..5 { |
| for pos in level..64 { |
| let a = pos * 64_usize.pow(level as u32); |
| assert_eq!( |
| level, |
| level_for(0, a as u64), |
| "level_for({}) -- binary = {:b}", |
| a, |
| a |
| ); |
| |
| if pos > level { |
| let a = a - 1; |
| assert_eq!( |
| level, |
| level_for(0, a as u64), |
| "level_for({}) -- binary = {:b}", |
| a, |
| a |
| ); |
| } |
| |
| if pos < 64 { |
| let a = a + 1; |
| assert_eq!( |
| level, |
| level_for(0, a as u64), |
| "level_for({}) -- binary = {:b}", |
| a, |
| a |
| ); |
| } |
| } |
| } |
| } |
| } |