blob: 37d2231c34ff87e0b13647a93036fc554b617668 [file] [log] [blame]
// Currently, rust warns when an unsafe fn contains an unsafe {} block. However,
// in the future, this will change to the reverse. For now, suppress this
// warning and generally stick with being explicit about unsafety.
#![allow(unused_unsafe)]
#![cfg_attr(not(feature = "rt"), allow(dead_code))]
//! Time driver
mod entry;
pub(self) use self::entry::{EntryList, TimerEntry, TimerHandle, TimerShared};
mod handle;
pub(crate) use self::handle::Handle;
mod wheel;
pub(super) mod sleep;
use crate::loom::sync::atomic::{AtomicBool, Ordering};
use crate::loom::sync::{Arc, Mutex};
use crate::park::{Park, Unpark};
use crate::time::error::Error;
use crate::time::{Clock, Duration, Instant};
use std::convert::TryInto;
use std::fmt;
use std::{num::NonZeroU64, ptr::NonNull, task::Waker};
/// Time implementation that drives [`Sleep`][sleep], [`Interval`][interval], and [`Timeout`][timeout].
///
/// A `Driver` instance tracks the state necessary for managing time and
/// notifying the [`Sleep`][sleep] instances once their deadlines are reached.
///
/// It is expected that a single instance manages many individual [`Sleep`][sleep]
/// instances. The `Driver` implementation is thread-safe and, as such, is able
/// to handle callers from across threads.
///
/// After creating the `Driver` instance, the caller must repeatedly call `park`
/// or `park_timeout`. The time driver will perform no work unless `park` or
/// `park_timeout` is called repeatedly.
///
/// The driver has a resolution of one millisecond. Any unit of time that falls
/// between milliseconds are rounded up to the next millisecond.
///
/// When an instance is dropped, any outstanding [`Sleep`][sleep] instance that has not
/// elapsed will be notified with an error. At this point, calling `poll` on the
/// [`Sleep`][sleep] instance will result in panic.
///
/// # Implementation
///
/// The time driver is based on the [paper by Varghese and Lauck][paper].
///
/// A hashed timing wheel is a vector of slots, where each slot handles a time
/// slice. As time progresses, the timer walks over the slot for the current
/// instant, and processes each entry for that slot. When the timer reaches the
/// end of the wheel, it starts again at the beginning.
///
/// The implementation maintains six wheels arranged in a set of levels. As the
/// levels go up, the slots of the associated wheel represent larger intervals
/// of time. At each level, the wheel has 64 slots. Each slot covers a range of
/// time equal to the wheel at the lower level. At level zero, each slot
/// represents one millisecond of time.
///
/// The wheels are:
///
/// * Level 0: 64 x 1 millisecond slots.
/// * Level 1: 64 x 64 millisecond slots.
/// * Level 2: 64 x ~4 second slots.
/// * Level 3: 64 x ~4 minute slots.
/// * Level 4: 64 x ~4 hour slots.
/// * Level 5: 64 x ~12 day slots.
///
/// When the timer processes entries at level zero, it will notify all the
/// `Sleep` instances as their deadlines have been reached. For all higher
/// levels, all entries will be redistributed across the wheel at the next level
/// down. Eventually, as time progresses, entries with [`Sleep`][sleep] instances will
/// either be canceled (dropped) or their associated entries will reach level
/// zero and be notified.
///
/// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
/// [sleep]: crate::time::Sleep
/// [timeout]: crate::time::Timeout
/// [interval]: crate::time::Interval
#[derive(Debug)]
pub(crate) struct Driver<P: Park + 'static> {
/// Timing backend in use
time_source: ClockTime,
/// Shared state
handle: Handle,
/// Parker to delegate to
park: P,
// When `true`, a call to `park_timeout` should immediately return and time
// should not advance. One reason for this to be `true` is if the task
// passed to `Runtime::block_on` called `task::yield_now()`.
//
// While it may look racy, it only has any effect when the clock is paused
// and pausing the clock is restricted to a single-threaded runtime.
#[cfg(feature = "test-util")]
did_wake: Arc<AtomicBool>,
}
/// A structure which handles conversion from Instants to u64 timestamps.
#[derive(Debug, Clone)]
pub(self) struct ClockTime {
clock: super::clock::Clock,
start_time: Instant,
}
impl ClockTime {
pub(self) fn new(clock: Clock) -> Self {
Self {
start_time: clock.now(),
clock,
}
}
pub(self) fn deadline_to_tick(&self, t: Instant) -> u64 {
// Round up to the end of a ms
self.instant_to_tick(t + Duration::from_nanos(999_999))
}
pub(self) fn instant_to_tick(&self, t: Instant) -> u64 {
// round up
let dur: Duration = t
.checked_duration_since(self.start_time)
.unwrap_or_else(|| Duration::from_secs(0));
let ms = dur.as_millis();
ms.try_into().expect("Duration too far into the future")
}
pub(self) fn tick_to_duration(&self, t: u64) -> Duration {
Duration::from_millis(t)
}
pub(self) fn now(&self) -> u64 {
self.instant_to_tick(self.clock.now())
}
}
/// Timer state shared between `Driver`, `Handle`, and `Registration`.
struct Inner {
// The state is split like this so `Handle` can access `is_shutdown` without locking the mutex
pub(super) state: Mutex<InnerState>,
/// True if the driver is being shutdown
pub(super) is_shutdown: AtomicBool,
}
/// Time state shared which must be protected by a `Mutex`
struct InnerState {
/// Timing backend in use
time_source: ClockTime,
/// The last published timer `elapsed` value.
elapsed: u64,
/// The earliest time at which we promise to wake up without unparking
next_wake: Option<NonZeroU64>,
/// Timer wheel
wheel: wheel::Wheel,
/// Unparker that can be used to wake the time driver
unpark: Box<dyn Unpark>,
}
// ===== impl Driver =====
impl<P> Driver<P>
where
P: Park + 'static,
{
/// Creates a new `Driver` instance that uses `park` to block the current
/// thread and `time_source` to get the current time and convert to ticks.
///
/// Specifying the source of time is useful when testing.
pub(crate) fn new(park: P, clock: Clock) -> Driver<P> {
let time_source = ClockTime::new(clock);
let inner = Inner::new(time_source.clone(), Box::new(park.unpark()));
Driver {
time_source,
handle: Handle::new(Arc::new(inner)),
park,
#[cfg(feature = "test-util")]
did_wake: Arc::new(AtomicBool::new(false)),
}
}
/// Returns a handle to the timer.
///
/// The `Handle` is how `Sleep` instances are created. The `Sleep` instances
/// can either be created directly or the `Handle` instance can be passed to
/// `with_default`, setting the timer as the default timer for the execution
/// context.
pub(crate) fn handle(&self) -> Handle {
self.handle.clone()
}
fn park_internal(&mut self, limit: Option<Duration>) -> Result<(), P::Error> {
let mut lock = self.handle.get().state.lock();
assert!(!self.handle.is_shutdown());
let next_wake = lock.wheel.next_expiration_time();
lock.next_wake =
next_wake.map(|t| NonZeroU64::new(t).unwrap_or_else(|| NonZeroU64::new(1).unwrap()));
drop(lock);
match next_wake {
Some(when) => {
let now = self.time_source.now();
// Note that we effectively round up to 1ms here - this avoids
// very short-duration microsecond-resolution sleeps that the OS
// might treat as zero-length.
let mut duration = self.time_source.tick_to_duration(when.saturating_sub(now));
if duration > Duration::from_millis(0) {
if let Some(limit) = limit {
duration = std::cmp::min(limit, duration);
}
self.park_timeout(duration)?;
} else {
self.park.park_timeout(Duration::from_secs(0))?;
}
}
None => {
if let Some(duration) = limit {
self.park_timeout(duration)?;
} else {
self.park.park()?;
}
}
}
// Process pending timers after waking up
self.handle.process();
Ok(())
}
cfg_test_util! {
fn park_timeout(&mut self, duration: Duration) -> Result<(), P::Error> {
let clock = &self.time_source.clock;
if clock.is_paused() {
self.park.park_timeout(Duration::from_secs(0))?;
// If the time driver was woken, then the park completed
// before the "duration" elapsed (usually caused by a
// yield in `Runtime::block_on`). In this case, we don't
// advance the clock.
if !self.did_wake() {
// Simulate advancing time
clock.advance(duration);
}
} else {
self.park.park_timeout(duration)?;
}
Ok(())
}
fn did_wake(&self) -> bool {
self.did_wake.swap(false, Ordering::SeqCst)
}
}
cfg_not_test_util! {
fn park_timeout(&mut self, duration: Duration) -> Result<(), P::Error> {
self.park.park_timeout(duration)
}
}
}
impl Handle {
/// Runs timer related logic, and returns the next wakeup time
pub(self) fn process(&self) {
let now = self.time_source().now();
self.process_at_time(now)
}
pub(self) fn process_at_time(&self, now: u64) {
let mut waker_list: [Option<Waker>; 32] = Default::default();
let mut waker_idx = 0;
let mut lock = self.get().lock();
assert!(now >= lock.elapsed);
while let Some(entry) = lock.wheel.poll(now) {
debug_assert!(unsafe { entry.is_pending() });
// SAFETY: We hold the driver lock, and just removed the entry from any linked lists.
if let Some(waker) = unsafe { entry.fire(Ok(())) } {
waker_list[waker_idx] = Some(waker);
waker_idx += 1;
if waker_idx == waker_list.len() {
// Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped.
drop(lock);
for waker in waker_list.iter_mut() {
waker.take().unwrap().wake();
}
waker_idx = 0;
lock = self.get().lock();
}
}
}
// Update the elapsed cache
lock.elapsed = lock.wheel.elapsed();
lock.next_wake = lock
.wheel
.poll_at()
.map(|t| NonZeroU64::new(t).unwrap_or_else(|| NonZeroU64::new(1).unwrap()));
drop(lock);
for waker in waker_list[0..waker_idx].iter_mut() {
waker.take().unwrap().wake();
}
}
/// Removes a registered timer from the driver.
///
/// The timer will be moved to the cancelled state. Wakers will _not_ be
/// invoked. If the timer is already completed, this function is a no-op.
///
/// This function always acquires the driver lock, even if the entry does
/// not appear to be registered.
///
/// SAFETY: The timer must not be registered with some other driver, and
/// `add_entry` must not be called concurrently.
pub(self) unsafe fn clear_entry(&self, entry: NonNull<TimerShared>) {
unsafe {
let mut lock = self.get().lock();
if entry.as_ref().might_be_registered() {
lock.wheel.remove(entry);
}
entry.as_ref().handle().fire(Ok(()));
}
}
/// Removes and re-adds an entry to the driver.
///
/// SAFETY: The timer must be either unregistered, or registered with this
/// driver. No other threads are allowed to concurrently manipulate the
/// timer at all (the current thread should hold an exclusive reference to
/// the `TimerEntry`)
pub(self) unsafe fn reregister(&self, new_tick: u64, entry: NonNull<TimerShared>) {
let waker = unsafe {
let mut lock = self.get().lock();
// We may have raced with a firing/deregistration, so check before
// deregistering.
if unsafe { entry.as_ref().might_be_registered() } {
lock.wheel.remove(entry);
}
// Now that we have exclusive control of this entry, mint a handle to reinsert it.
let entry = entry.as_ref().handle();
if self.is_shutdown() {
unsafe { entry.fire(Err(crate::time::error::Error::shutdown())) }
} else {
entry.set_expiration(new_tick);
// Note: We don't have to worry about racing with some other resetting
// thread, because add_entry and reregister require exclusive control of
// the timer entry.
match unsafe { lock.wheel.insert(entry) } {
Ok(when) => {
if lock
.next_wake
.map(|next_wake| when < next_wake.get())
.unwrap_or(true)
{
lock.unpark.unpark();
}
None
}
Err((entry, super::error::InsertError::Elapsed)) => unsafe {
entry.fire(Ok(()))
},
}
}
// Must release lock before invoking waker to avoid the risk of deadlock.
};
// The timer was fired synchronously as a result of the reregistration.
// Wake the waker; this is needed because we might reset _after_ a poll,
// and otherwise the task won't be awoken to poll again.
if let Some(waker) = waker {
waker.wake();
}
}
}
impl<P> Park for Driver<P>
where
P: Park + 'static,
{
type Unpark = TimerUnpark<P>;
type Error = P::Error;
fn unpark(&self) -> Self::Unpark {
TimerUnpark::new(self)
}
fn park(&mut self) -> Result<(), Self::Error> {
self.park_internal(None)
}
fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
self.park_internal(Some(duration))
}
fn shutdown(&mut self) {
if self.handle.is_shutdown() {
return;
}
self.handle.get().is_shutdown.store(true, Ordering::SeqCst);
// Advance time forward to the end of time.
self.handle.process_at_time(u64::MAX);
self.park.shutdown();
}
}
impl<P> Drop for Driver<P>
where
P: Park + 'static,
{
fn drop(&mut self) {
self.shutdown();
}
}
pub(crate) struct TimerUnpark<P: Park + 'static> {
inner: P::Unpark,
#[cfg(feature = "test-util")]
did_wake: Arc<AtomicBool>,
}
impl<P: Park + 'static> TimerUnpark<P> {
fn new(driver: &Driver<P>) -> TimerUnpark<P> {
TimerUnpark {
inner: driver.park.unpark(),
#[cfg(feature = "test-util")]
did_wake: driver.did_wake.clone(),
}
}
}
impl<P: Park + 'static> Unpark for TimerUnpark<P> {
fn unpark(&self) {
#[cfg(feature = "test-util")]
self.did_wake.store(true, Ordering::SeqCst);
self.inner.unpark();
}
}
// ===== impl Inner =====
impl Inner {
pub(self) fn new(time_source: ClockTime, unpark: Box<dyn Unpark>) -> Self {
Inner {
state: Mutex::new(InnerState {
time_source,
elapsed: 0,
next_wake: None,
unpark,
wheel: wheel::Wheel::new(),
}),
is_shutdown: AtomicBool::new(false),
}
}
/// Locks the driver's inner structure
pub(super) fn lock(&self) -> crate::loom::sync::MutexGuard<'_, InnerState> {
self.state.lock()
}
// Check whether the driver has been shutdown
pub(super) fn is_shutdown(&self) -> bool {
self.is_shutdown.load(Ordering::SeqCst)
}
}
impl fmt::Debug for Inner {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Inner").finish()
}
}
#[cfg(test)]
mod tests;