| /* ---------------------------------------------------------------------------- |
| Copyright (c) 2018, Microsoft Research, Daan Leijen |
| This is free software; you can redistribute it and/or modify it under the |
| terms of the MIT license. A copy of the license can be found in the file |
| "LICENSE" at the root of this distribution. |
| -----------------------------------------------------------------------------*/ |
| |
| #include "mimalloc.h" |
| #include "mimalloc-internal.h" |
| |
| #include <string.h> // memset, memcpy |
| |
| // ------------------------------------------------------ |
| // Aligned Allocation |
| // ------------------------------------------------------ |
| |
| static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept { |
| // note: we don't require `size > offset`, we just guarantee that |
| // the address at offset is aligned regardless of the allocated size. |
| mi_assert(alignment > 0); |
| if (mi_unlikely(size > PTRDIFF_MAX)) return NULL; // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>) |
| if (mi_unlikely(alignment==0 || !_mi_is_power_of_two(alignment))) return NULL; // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>) |
| const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)` |
| |
| // try if there is a small block available with just the right alignment |
| const size_t padsize = size + MI_PADDING_SIZE; |
| if (mi_likely(padsize <= MI_SMALL_SIZE_MAX)) { |
| mi_page_t* page = _mi_heap_get_free_small_page(heap,padsize); |
| const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0; |
| if (mi_likely(page->free != NULL && is_aligned)) |
| { |
| #if MI_STAT>1 |
| mi_heap_stat_increase( heap, malloc, size); |
| #endif |
| void* p = _mi_page_malloc(heap,page,padsize); // TODO: inline _mi_page_malloc |
| mi_assert_internal(p != NULL); |
| mi_assert_internal(((uintptr_t)p + offset) % alignment == 0); |
| if (zero) _mi_block_zero_init(page,p,size); |
| return p; |
| } |
| } |
| |
| // use regular allocation if it is guaranteed to fit the alignment constraints |
| if (offset==0 && alignment<=padsize && padsize<=MI_MEDIUM_OBJ_SIZE_MAX && (padsize&align_mask)==0) { |
| void* p = _mi_heap_malloc_zero(heap, size, zero); |
| mi_assert_internal(p == NULL || ((uintptr_t)p % alignment) == 0); |
| return p; |
| } |
| |
| // otherwise over-allocate |
| void* p = _mi_heap_malloc_zero(heap, size + alignment - 1, zero); |
| if (p == NULL) return NULL; |
| |
| // .. and align within the allocation |
| uintptr_t adjust = alignment - (((uintptr_t)p + offset) & align_mask); |
| mi_assert_internal(adjust <= alignment); |
| void* aligned_p = (adjust == alignment ? p : (void*)((uintptr_t)p + adjust)); |
| if (aligned_p != p) mi_page_set_has_aligned(_mi_ptr_page(p), true); |
| mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0); |
| mi_assert_internal( p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p),_mi_ptr_page(aligned_p),aligned_p) ); |
| return aligned_p; |
| } |
| |
| |
| mi_decl_restrict void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { |
| return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, false); |
| } |
| |
| mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept { |
| return mi_heap_malloc_aligned_at(heap, size, alignment, 0); |
| } |
| |
| mi_decl_restrict void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { |
| return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, true); |
| } |
| |
| mi_decl_restrict void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept { |
| return mi_heap_zalloc_aligned_at(heap, size, alignment, 0); |
| } |
| |
| mi_decl_restrict void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { |
| size_t total; |
| if (mi_count_size_overflow(count, size, &total)) return NULL; |
| return mi_heap_zalloc_aligned_at(heap, total, alignment, offset); |
| } |
| |
| mi_decl_restrict void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept { |
| return mi_heap_calloc_aligned_at(heap,count,size,alignment,0); |
| } |
| |
| mi_decl_restrict void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { |
| return mi_heap_malloc_aligned_at(mi_get_default_heap(), size, alignment, offset); |
| } |
| |
| mi_decl_restrict void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { |
| return mi_heap_malloc_aligned(mi_get_default_heap(), size, alignment); |
| } |
| |
| mi_decl_restrict void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { |
| return mi_heap_zalloc_aligned_at(mi_get_default_heap(), size, alignment, offset); |
| } |
| |
| mi_decl_restrict void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { |
| return mi_heap_zalloc_aligned(mi_get_default_heap(), size, alignment); |
| } |
| |
| mi_decl_restrict void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { |
| return mi_heap_calloc_aligned_at(mi_get_default_heap(), count, size, alignment, offset); |
| } |
| |
| mi_decl_restrict void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept { |
| return mi_heap_calloc_aligned(mi_get_default_heap(), count, size, alignment); |
| } |
| |
| |
| static void* mi_heap_realloc_zero_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset, bool zero) mi_attr_noexcept { |
| mi_assert(alignment > 0); |
| if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero); |
| if (p == NULL) return mi_heap_malloc_zero_aligned_at(heap,newsize,alignment,offset,zero); |
| size_t size = mi_usable_size(p); |
| if (newsize <= size && newsize >= (size - (size / 2)) |
| && (((uintptr_t)p + offset) % alignment) == 0) { |
| return p; // reallocation still fits, is aligned and not more than 50% waste |
| } |
| else { |
| void* newp = mi_heap_malloc_aligned_at(heap,newsize,alignment,offset); |
| if (newp != NULL) { |
| if (zero && newsize > size) { |
| const mi_page_t* page = _mi_ptr_page(newp); |
| if (page->is_zero) { |
| // already zero initialized |
| mi_assert_expensive(mi_mem_is_zero(newp,newsize)); |
| } |
| else { |
| // also set last word in the previous allocation to zero to ensure any padding is zero-initialized |
| size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); |
| memset((uint8_t*)newp + start, 0, newsize - start); |
| } |
| } |
| memcpy(newp, p, (newsize > size ? size : newsize)); |
| mi_free(p); // only free if successful |
| } |
| return newp; |
| } |
| } |
| |
| static void* mi_heap_realloc_zero_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, bool zero) mi_attr_noexcept { |
| mi_assert(alignment > 0); |
| if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero); |
| size_t offset = ((uintptr_t)p % alignment); // use offset of previous allocation (p can be NULL) |
| return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,zero); |
| } |
| |
| void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { |
| return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,false); |
| } |
| |
| void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept { |
| return mi_heap_realloc_zero_aligned(heap,p,newsize,alignment,false); |
| } |
| |
| void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { |
| return mi_heap_realloc_zero_aligned_at(heap, p, newsize, alignment, offset, true); |
| } |
| |
| void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept { |
| return mi_heap_realloc_zero_aligned(heap, p, newsize, alignment, true); |
| } |
| |
| void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { |
| size_t total; |
| if (mi_count_size_overflow(newcount, size, &total)) return NULL; |
| return mi_heap_rezalloc_aligned_at(heap, p, total, alignment, offset); |
| } |
| |
| void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { |
| size_t total; |
| if (mi_count_size_overflow(newcount, size, &total)) return NULL; |
| return mi_heap_rezalloc_aligned(heap, p, total, alignment); |
| } |
| |
| void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { |
| return mi_heap_realloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset); |
| } |
| |
| void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { |
| return mi_heap_realloc_aligned(mi_get_default_heap(), p, newsize, alignment); |
| } |
| |
| void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { |
| return mi_heap_rezalloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset); |
| } |
| |
| void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { |
| return mi_heap_rezalloc_aligned(mi_get_default_heap(), p, newsize, alignment); |
| } |
| |
| void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { |
| return mi_heap_recalloc_aligned_at(mi_get_default_heap(), p, newcount, size, alignment, offset); |
| } |
| |
| void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { |
| return mi_heap_recalloc_aligned(mi_get_default_heap(), p, newcount, size, alignment); |
| } |
| |