| /* ---------------------------------------------------------------------------- |
| Copyright (c) 2018, Microsoft Research, Daan Leijen |
| This is free software; you can redistribute it and/or modify it under the |
| terms of the MIT license. A copy of the license can be found in the file |
| "LICENSE" at the root of this distribution. |
| -----------------------------------------------------------------------------*/ |
| #ifndef _DEFAULT_SOURCE |
| #define _DEFAULT_SOURCE // ensure mmap flags are defined |
| #endif |
| |
| #if defined(__sun) |
| // illumos provides new mman.h api when any of these are defined |
| // otherwise the old api based on caddr_t which predates the void pointers one. |
| // stock solaris provides only the former, chose to atomically to discard those |
| // flags only here rather than project wide tough. |
| #undef _XOPEN_SOURCE |
| #undef _POSIX_C_SOURCE |
| #endif |
| #include "mimalloc.h" |
| #include "mimalloc-internal.h" |
| #include "mimalloc-atomic.h" |
| |
| #include <string.h> // strerror |
| |
| #ifdef _MSC_VER |
| #pragma warning(disable:4996) // strerror |
| #endif |
| |
| |
| #if defined(_WIN32) |
| #include <Windows.h> |
| #elif defined(__wasi__) |
| // stdlib.h is all we need, and has already been included in mimalloc.h |
| #else |
| #include <sys/mman.h> // mmap |
| #include <unistd.h> // sysconf |
| #if defined(__linux__) |
| #include <features.h> |
| #if defined(__GLIBC__) |
| #include <linux/mman.h> // linux mmap flags |
| #else |
| #include <sys/mman.h> |
| #endif |
| #endif |
| #if defined(__APPLE__) |
| #include <TargetConditionals.h> |
| #if !TARGET_IOS_IPHONE && !TARGET_IOS_SIMULATOR |
| #include <mach/vm_statistics.h> |
| #endif |
| #endif |
| #if defined(__HAIKU__) |
| #define madvise posix_madvise |
| #define MADV_DONTNEED POSIX_MADV_DONTNEED |
| #endif |
| #endif |
| |
| /* ----------------------------------------------------------- |
| Initialization. |
| On windows initializes support for aligned allocation and |
| large OS pages (if MIMALLOC_LARGE_OS_PAGES is true). |
| ----------------------------------------------------------- */ |
| bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats); |
| |
| static void* mi_align_up_ptr(void* p, size_t alignment) { |
| return (void*)_mi_align_up((uintptr_t)p, alignment); |
| } |
| |
| static uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) { |
| return (sz / alignment) * alignment; |
| } |
| |
| static void* mi_align_down_ptr(void* p, size_t alignment) { |
| return (void*)_mi_align_down((uintptr_t)p, alignment); |
| } |
| |
| // page size (initialized properly in `os_init`) |
| static size_t os_page_size = 4096; |
| |
| // minimal allocation granularity |
| static size_t os_alloc_granularity = 4096; |
| |
| // if non-zero, use large page allocation |
| static size_t large_os_page_size = 0; |
| |
| // OS (small) page size |
| size_t _mi_os_page_size() { |
| return os_page_size; |
| } |
| |
| // if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB) |
| size_t _mi_os_large_page_size() { |
| return (large_os_page_size != 0 ? large_os_page_size : _mi_os_page_size()); |
| } |
| |
| static bool use_large_os_page(size_t size, size_t alignment) { |
| // if we have access, check the size and alignment requirements |
| if (large_os_page_size == 0 || !mi_option_is_enabled(mi_option_large_os_pages)) return false; |
| return ((size % large_os_page_size) == 0 && (alignment % large_os_page_size) == 0); |
| } |
| |
| // round to a good OS allocation size (bounded by max 12.5% waste) |
| size_t _mi_os_good_alloc_size(size_t size) { |
| size_t align_size; |
| if (size < 512*KiB) align_size = _mi_os_page_size(); |
| else if (size < 2*MiB) align_size = 64*KiB; |
| else if (size < 8*MiB) align_size = 256*KiB; |
| else if (size < 32*MiB) align_size = 1*MiB; |
| else align_size = 4*MiB; |
| if (size >= (SIZE_MAX - align_size)) return size; // possible overflow? |
| return _mi_align_up(size, align_size); |
| } |
| |
| #if defined(_WIN32) |
| // We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016. |
| // So, we need to look it up dynamically to run on older systems. (use __stdcall for 32-bit compatibility) |
| // NtAllocateVirtualAllocEx is used for huge OS page allocation (1GiB) |
| // |
| // We hide MEM_EXTENDED_PARAMETER to compile with older SDK's. |
| #include <winternl.h> |
| typedef PVOID (__stdcall *PVirtualAlloc2)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, /* MEM_EXTENDED_PARAMETER* */ void*, ULONG); |
| typedef NTSTATUS (__stdcall *PNtAllocateVirtualMemoryEx)(HANDLE, PVOID*, SIZE_T*, ULONG, ULONG, /* MEM_EXTENDED_PARAMETER* */ PVOID, ULONG); |
| static PVirtualAlloc2 pVirtualAlloc2 = NULL; |
| static PNtAllocateVirtualMemoryEx pNtAllocateVirtualMemoryEx = NULL; |
| |
| // Similarly, GetNumaProcesorNodeEx is only supported since Windows 7 |
| #if (_WIN32_WINNT < 0x601) // before Win7 |
| typedef struct _PROCESSOR_NUMBER { WORD Group; BYTE Number; BYTE Reserved; } PROCESSOR_NUMBER, *PPROCESSOR_NUMBER; |
| #endif |
| typedef VOID (__stdcall *PGetCurrentProcessorNumberEx)(PPROCESSOR_NUMBER ProcNumber); |
| typedef BOOL (__stdcall *PGetNumaProcessorNodeEx)(PPROCESSOR_NUMBER Processor, PUSHORT NodeNumber); |
| typedef BOOL (__stdcall* PGetNumaNodeProcessorMaskEx)(USHORT Node, PGROUP_AFFINITY ProcessorMask); |
| static PGetCurrentProcessorNumberEx pGetCurrentProcessorNumberEx = NULL; |
| static PGetNumaProcessorNodeEx pGetNumaProcessorNodeEx = NULL; |
| static PGetNumaNodeProcessorMaskEx pGetNumaNodeProcessorMaskEx = NULL; |
| |
| static bool mi_win_enable_large_os_pages() |
| { |
| if (large_os_page_size > 0) return true; |
| |
| // Try to see if large OS pages are supported |
| // To use large pages on Windows, we first need access permission |
| // Set "Lock pages in memory" permission in the group policy editor |
| // <https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643> |
| unsigned long err = 0; |
| HANDLE token = NULL; |
| BOOL ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token); |
| if (ok) { |
| TOKEN_PRIVILEGES tp; |
| ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid); |
| if (ok) { |
| tp.PrivilegeCount = 1; |
| tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; |
| ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0); |
| if (ok) { |
| err = GetLastError(); |
| ok = (err == ERROR_SUCCESS); |
| if (ok) { |
| large_os_page_size = GetLargePageMinimum(); |
| } |
| } |
| } |
| CloseHandle(token); |
| } |
| if (!ok) { |
| if (err == 0) err = GetLastError(); |
| _mi_warning_message("cannot enable large OS page support, error %lu\n", err); |
| } |
| return (ok!=0); |
| } |
| |
| void _mi_os_init(void) { |
| // get the page size |
| SYSTEM_INFO si; |
| GetSystemInfo(&si); |
| if (si.dwPageSize > 0) os_page_size = si.dwPageSize; |
| if (si.dwAllocationGranularity > 0) os_alloc_granularity = si.dwAllocationGranularity; |
| // get the VirtualAlloc2 function |
| HINSTANCE hDll; |
| hDll = LoadLibrary(TEXT("kernelbase.dll")); |
| if (hDll != NULL) { |
| // use VirtualAlloc2FromApp if possible as it is available to Windows store apps |
| pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2FromApp"); |
| if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2"); |
| FreeLibrary(hDll); |
| } |
| // NtAllocateVirtualMemoryEx is used for huge page allocation |
| hDll = LoadLibrary(TEXT("ntdll.dll")); |
| if (hDll != NULL) { |
| pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)(void (*)(void))GetProcAddress(hDll, "NtAllocateVirtualMemoryEx"); |
| FreeLibrary(hDll); |
| } |
| // Try to use Win7+ numa API |
| hDll = LoadLibrary(TEXT("kernel32.dll")); |
| if (hDll != NULL) { |
| pGetCurrentProcessorNumberEx = (PGetCurrentProcessorNumberEx)(void (*)(void))GetProcAddress(hDll, "GetCurrentProcessorNumberEx"); |
| pGetNumaProcessorNodeEx = (PGetNumaProcessorNodeEx)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNodeEx"); |
| pGetNumaNodeProcessorMaskEx = (PGetNumaNodeProcessorMaskEx)(void (*)(void))GetProcAddress(hDll, "GetNumaNodeProcessorMaskEx"); |
| FreeLibrary(hDll); |
| } |
| if (mi_option_is_enabled(mi_option_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) { |
| mi_win_enable_large_os_pages(); |
| } |
| } |
| #elif defined(__wasi__) |
| void _mi_os_init() { |
| os_page_size = 0x10000; // WebAssembly has a fixed page size: 64KB |
| os_alloc_granularity = 16; |
| } |
| #else |
| void _mi_os_init() { |
| // get the page size |
| long result = sysconf(_SC_PAGESIZE); |
| if (result > 0) { |
| os_page_size = (size_t)result; |
| os_alloc_granularity = os_page_size; |
| } |
| large_os_page_size = 2*MiB; // TODO: can we query the OS for this? |
| } |
| #endif |
| |
| |
| /* ----------------------------------------------------------- |
| Raw allocation on Windows (VirtualAlloc) and Unix's (mmap). |
| ----------------------------------------------------------- */ |
| |
| static bool mi_os_mem_free(void* addr, size_t size, bool was_committed, mi_stats_t* stats) |
| { |
| if (addr == NULL || size == 0) return true; // || _mi_os_is_huge_reserved(addr) |
| bool err = false; |
| #if defined(_WIN32) |
| err = (VirtualFree(addr, 0, MEM_RELEASE) == 0); |
| #elif defined(__wasi__) |
| err = 0; // WebAssembly's heap cannot be shrunk |
| #else |
| err = (munmap(addr, size) == -1); |
| #endif |
| if (was_committed) _mi_stat_decrease(&stats->committed, size); |
| _mi_stat_decrease(&stats->reserved, size); |
| if (err) { |
| _mi_warning_message("munmap failed: %s, addr 0x%8li, size %lu\n", strerror(errno), (size_t)addr, size); |
| return false; |
| } |
| else { |
| return true; |
| } |
| } |
| |
| static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size); |
| |
| #ifdef _WIN32 |
| static void* mi_win_virtual_allocx(void* addr, size_t size, size_t try_alignment, DWORD flags) { |
| #if (MI_INTPTR_SIZE >= 8) |
| // on 64-bit systems, try to use the virtual address area after 4TiB for 4MiB aligned allocations |
| void* hint; |
| if (addr == NULL && (hint = mi_os_get_aligned_hint(try_alignment,size)) != NULL) { |
| void* p = VirtualAlloc(hint, size, flags, PAGE_READWRITE); |
| if (p != NULL) return p; |
| DWORD err = GetLastError(); |
| if (err != ERROR_INVALID_ADDRESS && // If linked with multiple instances, we may have tried to allocate at an already allocated area (#210) |
| err != ERROR_INVALID_PARAMETER) { // Windows7 instability (#230) |
| return NULL; |
| } |
| // fall through |
| } |
| #endif |
| #if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS) |
| // on modern Windows try use VirtualAlloc2 for aligned allocation |
| if (try_alignment > 0 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) { |
| MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 }; |
| reqs.Alignment = try_alignment; |
| MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} }; |
| param.Type = MemExtendedParameterAddressRequirements; |
| param.Pointer = &reqs; |
| return (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, ¶m, 1); |
| } |
| #endif |
| // last resort |
| return VirtualAlloc(addr, size, flags, PAGE_READWRITE); |
| } |
| |
| static void* mi_win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only, bool allow_large, bool* is_large) { |
| mi_assert_internal(!(large_only && !allow_large)); |
| static _Atomic(uintptr_t) large_page_try_ok; // = 0; |
| void* p = NULL; |
| if ((large_only || use_large_os_page(size, try_alignment)) |
| && allow_large && (flags&MEM_COMMIT)!=0 && (flags&MEM_RESERVE)!=0) { |
| uintptr_t try_ok = mi_atomic_load_acquire(&large_page_try_ok); |
| if (!large_only && try_ok > 0) { |
| // if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive. |
| // therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times. |
| mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1); |
| } |
| else { |
| // large OS pages must always reserve and commit. |
| *is_large = true; |
| p = mi_win_virtual_allocx(addr, size, try_alignment, flags | MEM_LARGE_PAGES); |
| if (large_only) return p; |
| // fall back to non-large page allocation on error (`p == NULL`). |
| if (p == NULL) { |
| mi_atomic_store_release(&large_page_try_ok,10UL); // on error, don't try again for the next N allocations |
| } |
| } |
| } |
| if (p == NULL) { |
| *is_large = ((flags&MEM_LARGE_PAGES) != 0); |
| p = mi_win_virtual_allocx(addr, size, try_alignment, flags); |
| } |
| if (p == NULL) { |
| _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: %i, address: %p, large only: %d, allow large: %d)\n", size, GetLastError(), addr, large_only, allow_large); |
| } |
| return p; |
| } |
| |
| #elif defined(__wasi__) |
| static void* mi_wasm_heap_grow(size_t size, size_t try_alignment) { |
| uintptr_t base = __builtin_wasm_memory_size(0) * _mi_os_page_size(); |
| uintptr_t aligned_base = _mi_align_up(base, (uintptr_t) try_alignment); |
| size_t alloc_size = _mi_align_up( aligned_base - base + size, _mi_os_page_size()); |
| mi_assert(alloc_size >= size && (alloc_size % _mi_os_page_size()) == 0); |
| if (alloc_size < size) return NULL; |
| if (__builtin_wasm_memory_grow(0, alloc_size / _mi_os_page_size()) == SIZE_MAX) { |
| errno = ENOMEM; |
| return NULL; |
| } |
| return (void*)aligned_base; |
| } |
| #else |
| #define MI_OS_USE_MMAP |
| static void* mi_unix_mmapx(void* addr, size_t size, size_t try_alignment, int protect_flags, int flags, int fd) { |
| void* p = NULL; |
| #if (MI_INTPTR_SIZE >= 8) && !defined(MAP_ALIGNED) |
| // on 64-bit systems, use the virtual address area after 4TiB for 4MiB aligned allocations |
| void* hint; |
| if (addr == NULL && (hint = mi_os_get_aligned_hint(try_alignment, size)) != NULL) { |
| p = mmap(hint,size,protect_flags,flags,fd,0); |
| if (p==MAP_FAILED) p = NULL; // fall back to regular mmap |
| } |
| #else |
| UNUSED(try_alignment); |
| UNUSED(mi_os_get_aligned_hint); |
| #endif |
| if (p==NULL) { |
| p = mmap(addr,size,protect_flags,flags,fd,0); |
| if (p==MAP_FAILED) p = NULL; |
| } |
| return p; |
| } |
| |
| static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int protect_flags, bool large_only, bool allow_large, bool* is_large) { |
| void* p = NULL; |
| #if !defined(MAP_ANONYMOUS) |
| #define MAP_ANONYMOUS MAP_ANON |
| #endif |
| #if !defined(MAP_NORESERVE) |
| #define MAP_NORESERVE 0 |
| #endif |
| int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE; |
| int fd = -1; |
| #if defined(MAP_ALIGNED) // BSD |
| if (try_alignment > 0) { |
| size_t n = _mi_bsr(try_alignment); |
| if (((size_t)1 << n) == try_alignment && n >= 12 && n <= 30) { // alignment is a power of 2 and 4096 <= alignment <= 1GiB |
| flags |= MAP_ALIGNED(n); |
| } |
| } |
| #endif |
| #if defined(PROT_MAX) |
| protect_flags |= PROT_MAX(PROT_READ | PROT_WRITE); // BSD |
| #endif |
| #if defined(VM_MAKE_TAG) |
| // macOS: tracking anonymous page with a specific ID. (All up to 98 are taken officially but LLVM sanitizers had taken 99) |
| int os_tag = (int)mi_option_get(mi_option_os_tag); |
| if (os_tag < 100 || os_tag > 255) os_tag = 100; |
| fd = VM_MAKE_TAG(os_tag); |
| #endif |
| if ((large_only || use_large_os_page(size, try_alignment)) && allow_large) { |
| static _Atomic(uintptr_t) large_page_try_ok; // = 0; |
| uintptr_t try_ok = mi_atomic_load_acquire(&large_page_try_ok); |
| if (!large_only && try_ok > 0) { |
| // If the OS is not configured for large OS pages, or the user does not have |
| // enough permission, the `mmap` will always fail (but it might also fail for other reasons). |
| // Therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times |
| // to avoid too many failing calls to mmap. |
| mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1); |
| } |
| else { |
| int lflags = flags & ~MAP_NORESERVE; // using NORESERVE on huge pages seems to fail on Linux |
| int lfd = fd; |
| #ifdef MAP_ALIGNED_SUPER |
| lflags |= MAP_ALIGNED_SUPER; |
| #endif |
| #ifdef MAP_HUGETLB |
| lflags |= MAP_HUGETLB; |
| #endif |
| #ifdef MAP_HUGE_1GB |
| static bool mi_huge_pages_available = true; |
| if ((size % GiB) == 0 && mi_huge_pages_available) { |
| lflags |= MAP_HUGE_1GB; |
| } |
| else |
| #endif |
| { |
| #ifdef MAP_HUGE_2MB |
| lflags |= MAP_HUGE_2MB; |
| #endif |
| } |
| #ifdef VM_FLAGS_SUPERPAGE_SIZE_2MB |
| lfd |= VM_FLAGS_SUPERPAGE_SIZE_2MB; |
| #endif |
| if (large_only || lflags != flags) { |
| // try large OS page allocation |
| *is_large = true; |
| p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, lflags, lfd); |
| #ifdef MAP_HUGE_1GB |
| if (p == NULL && (lflags & MAP_HUGE_1GB) != 0) { |
| mi_huge_pages_available = false; // don't try huge 1GiB pages again |
| _mi_warning_message("unable to allocate huge (1GiB) page, trying large (2MiB) pages instead (error %i)\n", errno); |
| lflags = ((lflags & ~MAP_HUGE_1GB) | MAP_HUGE_2MB); |
| p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, lflags, lfd); |
| } |
| #endif |
| if (large_only) return p; |
| if (p == NULL) { |
| mi_atomic_store_release(&large_page_try_ok, 10UL); // on error, don't try again for the next N allocations |
| } |
| } |
| } |
| } |
| if (p == NULL) { |
| *is_large = false; |
| p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, flags, fd); |
| #if defined(MADV_HUGEPAGE) |
| // Many Linux systems don't allow MAP_HUGETLB but they support instead |
| // transparent huge pages (THP). It is not required to call `madvise` with MADV_HUGE |
| // though since properly aligned allocations will already use large pages if available |
| // in that case -- in particular for our large regions (in `memory.c`). |
| // However, some systems only allow THP if called with explicit `madvise`, so |
| // when large OS pages are enabled for mimalloc, we call `madvice` anyways. |
| if (allow_large && use_large_os_page(size, try_alignment)) { |
| if (madvise(p, size, MADV_HUGEPAGE) == 0) { |
| *is_large = true; // possibly |
| }; |
| } |
| #endif |
| #if defined(__sun) |
| if (allow_large && use_large_os_page(size, try_alignment)) { |
| struct memcntl_mha cmd = {0}; |
| cmd.mha_pagesize = large_os_page_size; |
| cmd.mha_cmd = MHA_MAPSIZE_VA; |
| if (memcntl(p, size, MC_HAT_ADVISE, (caddr_t)&cmd, 0, 0) == 0) { |
| *is_large = true; |
| } |
| } |
| #endif |
| } |
| if (p == NULL) { |
| _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: %i, address: %p, large only: %d, allow large: %d)\n", size, errno, addr, large_only, allow_large); |
| } |
| return p; |
| } |
| #endif |
| |
| // On 64-bit systems, we can do efficient aligned allocation by using |
| // the 4TiB to 30TiB area to allocate them. |
| #if (MI_INTPTR_SIZE >= 8) && (defined(_WIN32) || (defined(MI_OS_USE_MMAP) && !defined(MAP_ALIGNED))) |
| static mi_decl_cache_align _Atomic(uintptr_t) aligned_base; |
| |
| // Return a 4MiB aligned address that is probably available |
| static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size) { |
| if (try_alignment == 0 || try_alignment > MI_SEGMENT_SIZE) return NULL; |
| if ((size%MI_SEGMENT_SIZE) != 0) return NULL; |
| uintptr_t hint = mi_atomic_add_acq_rel(&aligned_base, size); |
| if (hint == 0 || hint > ((intptr_t)30<<40)) { // try to wrap around after 30TiB (area after 32TiB is used for huge OS pages) |
| uintptr_t init = ((uintptr_t)4 << 40); // start at 4TiB area |
| #if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of aligned allocations unless in debug mode |
| uintptr_t r = _mi_heap_random_next(mi_get_default_heap()); |
| init = init + (MI_SEGMENT_SIZE * ((r>>17) & 0xFFFFF)); // (randomly 20 bits)*4MiB == 0 to 4TiB |
| #endif |
| uintptr_t expected = hint + size; |
| mi_atomic_cas_strong_acq_rel(&aligned_base, &expected, init); |
| hint = mi_atomic_add_acq_rel(&aligned_base, size); // this may still give 0 or > 30TiB but that is ok, it is a hint after all |
| } |
| if (hint%try_alignment != 0) return NULL; |
| return (void*)hint; |
| } |
| #else |
| static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size) { |
| UNUSED(try_alignment); UNUSED(size); |
| return NULL; |
| } |
| #endif |
| |
| |
| // Primitive allocation from the OS. |
| // Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned. |
| static void* mi_os_mem_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, mi_stats_t* stats) { |
| mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); |
| if (size == 0) return NULL; |
| if (!commit) allow_large = false; |
| |
| void* p = NULL; |
| /* |
| if (commit && allow_large) { |
| p = _mi_os_try_alloc_from_huge_reserved(size, try_alignment); |
| if (p != NULL) { |
| *is_large = true; |
| return p; |
| } |
| } |
| */ |
| |
| #if defined(_WIN32) |
| int flags = MEM_RESERVE; |
| if (commit) flags |= MEM_COMMIT; |
| p = mi_win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large); |
| #elif defined(__wasi__) |
| *is_large = false; |
| p = mi_wasm_heap_grow(size, try_alignment); |
| #else |
| int protect_flags = (commit ? (PROT_WRITE | PROT_READ) : PROT_NONE); |
| p = mi_unix_mmap(NULL, size, try_alignment, protect_flags, false, allow_large, is_large); |
| #endif |
| mi_stat_counter_increase(stats->mmap_calls, 1); |
| if (p != NULL) { |
| _mi_stat_increase(&stats->reserved, size); |
| if (commit) { _mi_stat_increase(&stats->committed, size); } |
| } |
| return p; |
| } |
| |
| |
| // Primitive aligned allocation from the OS. |
| // This function guarantees the allocated memory is aligned. |
| static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, mi_stats_t* stats) { |
| mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0)); |
| mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); |
| if (!commit) allow_large = false; |
| if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL; |
| size = _mi_align_up(size, _mi_os_page_size()); |
| |
| // try first with a hint (this will be aligned directly on Win 10+ or BSD) |
| void* p = mi_os_mem_alloc(size, alignment, commit, allow_large, is_large, stats); |
| if (p == NULL) return NULL; |
| |
| // if not aligned, free it, overallocate, and unmap around it |
| if (((uintptr_t)p % alignment != 0)) { |
| mi_os_mem_free(p, size, commit, stats); |
| if (size >= (SIZE_MAX - alignment)) return NULL; // overflow |
| size_t over_size = size + alignment; |
| |
| #if _WIN32 |
| // over-allocate and than re-allocate exactly at an aligned address in there. |
| // this may fail due to threads allocating at the same time so we |
| // retry this at most 3 times before giving up. |
| // (we can not decommit around the overallocation on Windows, because we can only |
| // free the original pointer, not one pointing inside the area) |
| int flags = MEM_RESERVE; |
| if (commit) flags |= MEM_COMMIT; |
| for (int tries = 0; tries < 3; tries++) { |
| // over-allocate to determine a virtual memory range |
| p = mi_os_mem_alloc(over_size, alignment, commit, false, is_large, stats); |
| if (p == NULL) return NULL; // error |
| if (((uintptr_t)p % alignment) == 0) { |
| // if p happens to be aligned, just decommit the left-over area |
| _mi_os_decommit((uint8_t*)p + size, over_size - size, stats); |
| break; |
| } |
| else { |
| // otherwise free and allocate at an aligned address in there |
| mi_os_mem_free(p, over_size, commit, stats); |
| void* aligned_p = mi_align_up_ptr(p, alignment); |
| p = mi_win_virtual_alloc(aligned_p, size, alignment, flags, false, allow_large, is_large); |
| if (p == aligned_p) break; // success! |
| if (p != NULL) { // should not happen? |
| mi_os_mem_free(p, size, commit, stats); |
| p = NULL; |
| } |
| } |
| } |
| #else |
| // overallocate... |
| p = mi_os_mem_alloc(over_size, alignment, commit, false, is_large, stats); |
| if (p == NULL) return NULL; |
| // and selectively unmap parts around the over-allocated area. |
| void* aligned_p = mi_align_up_ptr(p, alignment); |
| size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p; |
| size_t mid_size = _mi_align_up(size, _mi_os_page_size()); |
| size_t post_size = over_size - pre_size - mid_size; |
| mi_assert_internal(pre_size < over_size && post_size < over_size && mid_size >= size); |
| if (pre_size > 0) mi_os_mem_free(p, pre_size, commit, stats); |
| if (post_size > 0) mi_os_mem_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats); |
| // we can return the aligned pointer on `mmap` systems |
| p = aligned_p; |
| #endif |
| } |
| |
| mi_assert_internal(p == NULL || (p != NULL && ((uintptr_t)p % alignment) == 0)); |
| return p; |
| } |
| |
| /* ----------------------------------------------------------- |
| OS API: alloc, free, alloc_aligned |
| ----------------------------------------------------------- */ |
| |
| void* _mi_os_alloc(size_t size, mi_stats_t* tld_stats) { |
| UNUSED(tld_stats); |
| mi_stats_t* stats = &_mi_stats_main; |
| if (size == 0) return NULL; |
| size = _mi_os_good_alloc_size(size); |
| bool is_large = false; |
| return mi_os_mem_alloc(size, 0, true, false, &is_large, stats); |
| } |
| |
| void _mi_os_free_ex(void* p, size_t size, bool was_committed, mi_stats_t* tld_stats) { |
| UNUSED(tld_stats); |
| mi_stats_t* stats = &_mi_stats_main; |
| if (size == 0 || p == NULL) return; |
| size = _mi_os_good_alloc_size(size); |
| mi_os_mem_free(p, size, was_committed, stats); |
| } |
| |
| void _mi_os_free(void* p, size_t size, mi_stats_t* stats) { |
| _mi_os_free_ex(p, size, true, stats); |
| } |
| |
| void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool* large, mi_os_tld_t* tld) |
| { |
| UNUSED(tld); |
| if (size == 0) return NULL; |
| size = _mi_os_good_alloc_size(size); |
| alignment = _mi_align_up(alignment, _mi_os_page_size()); |
| bool allow_large = false; |
| if (large != NULL) { |
| allow_large = *large; |
| *large = false; |
| } |
| return mi_os_mem_alloc_aligned(size, alignment, commit, allow_large, (large!=NULL?large:&allow_large), &_mi_stats_main /*tld->stats*/ ); |
| } |
| |
| |
| |
| /* ----------------------------------------------------------- |
| OS memory API: reset, commit, decommit, protect, unprotect. |
| ----------------------------------------------------------- */ |
| |
| |
| // OS page align within a given area, either conservative (pages inside the area only), |
| // or not (straddling pages outside the area is possible) |
| static void* mi_os_page_align_areax(bool conservative, void* addr, size_t size, size_t* newsize) { |
| mi_assert(addr != NULL && size > 0); |
| if (newsize != NULL) *newsize = 0; |
| if (size == 0 || addr == NULL) return NULL; |
| |
| // page align conservatively within the range |
| void* start = (conservative ? mi_align_up_ptr(addr, _mi_os_page_size()) |
| : mi_align_down_ptr(addr, _mi_os_page_size())); |
| void* end = (conservative ? mi_align_down_ptr((uint8_t*)addr + size, _mi_os_page_size()) |
| : mi_align_up_ptr((uint8_t*)addr + size, _mi_os_page_size())); |
| ptrdiff_t diff = (uint8_t*)end - (uint8_t*)start; |
| if (diff <= 0) return NULL; |
| |
| mi_assert_internal((conservative && (size_t)diff <= size) || (!conservative && (size_t)diff >= size)); |
| if (newsize != NULL) *newsize = (size_t)diff; |
| return start; |
| } |
| |
| static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t* newsize) { |
| return mi_os_page_align_areax(true, addr, size, newsize); |
| } |
| |
| static void mi_mprotect_hint(int err) { |
| #if defined(MI_OS_USE_MMAP) && (MI_SECURE>=2) // guard page around every mimalloc page |
| if (err == ENOMEM) { |
| _mi_warning_message("the previous warning may have been caused by a low memory map limit.\n" |
| " On Linux this is controlled by the vm.max_map_count. For example:\n" |
| " > sudo sysctl -w vm.max_map_count=262144\n"); |
| } |
| #else |
| UNUSED(err); |
| #endif |
| } |
| |
| // Commit/Decommit memory. |
| // Usually commit is aligned liberal, while decommit is aligned conservative. |
| // (but not for the reset version where we want commit to be conservative as well) |
| static bool mi_os_commitx(void* addr, size_t size, bool commit, bool conservative, bool* is_zero, mi_stats_t* stats) { |
| // page align in the range, commit liberally, decommit conservative |
| if (is_zero != NULL) { *is_zero = false; } |
| size_t csize; |
| void* start = mi_os_page_align_areax(conservative, addr, size, &csize); |
| if (csize == 0) return true; // || _mi_os_is_huge_reserved(addr)) |
| int err = 0; |
| if (commit) { |
| _mi_stat_increase(&stats->committed, size); // use size for precise commit vs. decommit |
| _mi_stat_counter_increase(&stats->commit_calls, 1); |
| } |
| else { |
| _mi_stat_decrease(&stats->committed, size); |
| } |
| |
| #if defined(_WIN32) |
| if (commit) { |
| // if the memory was already committed, the call succeeds but it is not zero'd |
| // *is_zero = true; |
| void* p = VirtualAlloc(start, csize, MEM_COMMIT, PAGE_READWRITE); |
| err = (p == start ? 0 : GetLastError()); |
| } |
| else { |
| BOOL ok = VirtualFree(start, csize, MEM_DECOMMIT); |
| err = (ok ? 0 : GetLastError()); |
| } |
| #elif defined(__wasi__) |
| // WebAssembly guests can't control memory protection |
| #elif defined(MAP_FIXED) |
| if (!commit) { |
| // use mmap with MAP_FIXED to discard the existing memory (and reduce commit charge) |
| void* p = mmap(start, csize, PROT_NONE, (MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE), -1, 0); |
| if (p != start) { err = errno; } |
| } |
| else { |
| // for commit, just change the protection |
| err = mprotect(start, csize, (PROT_READ | PROT_WRITE)); |
| if (err != 0) { err = errno; } |
| } |
| #else |
| err = mprotect(start, csize, (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE)); |
| if (err != 0) { err = errno; } |
| #endif |
| if (err != 0) { |
| _mi_warning_message("%s error: start: %p, csize: 0x%x, err: %i\n", commit ? "commit" : "decommit", start, csize, err); |
| mi_mprotect_hint(err); |
| } |
| mi_assert_internal(err == 0); |
| return (err == 0); |
| } |
| |
| bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) { |
| UNUSED(tld_stats); |
| mi_stats_t* stats = &_mi_stats_main; |
| return mi_os_commitx(addr, size, true, false /* liberal */, is_zero, stats); |
| } |
| |
| bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* tld_stats) { |
| UNUSED(tld_stats); |
| mi_stats_t* stats = &_mi_stats_main; |
| bool is_zero; |
| return mi_os_commitx(addr, size, false, true /* conservative */, &is_zero, stats); |
| } |
| |
| static bool mi_os_commit_unreset(void* addr, size_t size, bool* is_zero, mi_stats_t* stats) { |
| return mi_os_commitx(addr, size, true, true /* conservative */, is_zero, stats); |
| } |
| |
| // Signal to the OS that the address range is no longer in use |
| // but may be used later again. This will release physical memory |
| // pages and reduce swapping while keeping the memory committed. |
| // We page align to a conservative area inside the range to reset. |
| static bool mi_os_resetx(void* addr, size_t size, bool reset, mi_stats_t* stats) { |
| // page align conservatively within the range |
| size_t csize; |
| void* start = mi_os_page_align_area_conservative(addr, size, &csize); |
| if (csize == 0) return true; // || _mi_os_is_huge_reserved(addr) |
| if (reset) _mi_stat_increase(&stats->reset, csize); |
| else _mi_stat_decrease(&stats->reset, csize); |
| if (!reset) return true; // nothing to do on unreset! |
| |
| #if (MI_DEBUG>1) |
| if (MI_SECURE==0) { |
| memset(start, 0, csize); // pretend it is eagerly reset |
| } |
| #endif |
| |
| #if defined(_WIN32) |
| // Testing shows that for us (on `malloc-large`) MEM_RESET is 2x faster than DiscardVirtualMemory |
| void* p = VirtualAlloc(start, csize, MEM_RESET, PAGE_READWRITE); |
| mi_assert_internal(p == start); |
| #if 1 |
| if (p == start && start != NULL) { |
| VirtualUnlock(start,csize); // VirtualUnlock after MEM_RESET removes the memory from the working set |
| } |
| #endif |
| if (p != start) return false; |
| #else |
| #if defined(MADV_FREE) |
| static _Atomic(uintptr_t) advice = ATOMIC_VAR_INIT(MADV_FREE); |
| int err = madvise(start, csize, (int)mi_atomic_load_relaxed(&advice)); |
| if (err != 0 && errno == EINVAL && advice == MADV_FREE) { |
| // if MADV_FREE is not supported, fall back to MADV_DONTNEED from now on |
| mi_atomic_store_release(&advice, (uintptr_t)MADV_DONTNEED); |
| err = madvise(start, csize, MADV_DONTNEED); |
| } |
| #elif defined(__wasi__) |
| int err = 0; |
| #else |
| int err = madvise(start, csize, MADV_DONTNEED); |
| #endif |
| if (err != 0) { |
| _mi_warning_message("madvise reset error: start: %p, csize: 0x%x, errno: %i\n", start, csize, errno); |
| } |
| //mi_assert(err == 0); |
| if (err != 0) return false; |
| #endif |
| return true; |
| } |
| |
| // Signal to the OS that the address range is no longer in use |
| // but may be used later again. This will release physical memory |
| // pages and reduce swapping while keeping the memory committed. |
| // We page align to a conservative area inside the range to reset. |
| bool _mi_os_reset(void* addr, size_t size, mi_stats_t* tld_stats) { |
| UNUSED(tld_stats); |
| mi_stats_t* stats = &_mi_stats_main; |
| if (mi_option_is_enabled(mi_option_reset_decommits)) { |
| return _mi_os_decommit(addr, size, stats); |
| } |
| else { |
| return mi_os_resetx(addr, size, true, stats); |
| } |
| } |
| |
| bool _mi_os_unreset(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) { |
| UNUSED(tld_stats); |
| mi_stats_t* stats = &_mi_stats_main; |
| if (mi_option_is_enabled(mi_option_reset_decommits)) { |
| return mi_os_commit_unreset(addr, size, is_zero, stats); // re-commit it (conservatively!) |
| } |
| else { |
| *is_zero = false; |
| return mi_os_resetx(addr, size, false, stats); |
| } |
| } |
| |
| |
| // Protect a region in memory to be not accessible. |
| static bool mi_os_protectx(void* addr, size_t size, bool protect) { |
| // page align conservatively within the range |
| size_t csize = 0; |
| void* start = mi_os_page_align_area_conservative(addr, size, &csize); |
| if (csize == 0) return false; |
| /* |
| if (_mi_os_is_huge_reserved(addr)) { |
| _mi_warning_message("cannot mprotect memory allocated in huge OS pages\n"); |
| } |
| */ |
| int err = 0; |
| #ifdef _WIN32 |
| DWORD oldprotect = 0; |
| BOOL ok = VirtualProtect(start, csize, protect ? PAGE_NOACCESS : PAGE_READWRITE, &oldprotect); |
| err = (ok ? 0 : GetLastError()); |
| #elif defined(__wasi__) |
| err = 0; |
| #else |
| err = mprotect(start, csize, protect ? PROT_NONE : (PROT_READ | PROT_WRITE)); |
| if (err != 0) { err = errno; } |
| #endif |
| if (err != 0) { |
| _mi_warning_message("mprotect error: start: %p, csize: 0x%x, err: %i\n", start, csize, err); |
| mi_mprotect_hint(err); |
| } |
| return (err == 0); |
| } |
| |
| bool _mi_os_protect(void* addr, size_t size) { |
| return mi_os_protectx(addr, size, true); |
| } |
| |
| bool _mi_os_unprotect(void* addr, size_t size) { |
| return mi_os_protectx(addr, size, false); |
| } |
| |
| |
| |
| bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize, mi_stats_t* stats) { |
| // page align conservatively within the range |
| mi_assert_internal(oldsize > newsize && p != NULL); |
| if (oldsize < newsize || p == NULL) return false; |
| if (oldsize == newsize) return true; |
| |
| // oldsize and newsize should be page aligned or we cannot shrink precisely |
| void* addr = (uint8_t*)p + newsize; |
| size_t size = 0; |
| void* start = mi_os_page_align_area_conservative(addr, oldsize - newsize, &size); |
| if (size == 0 || start != addr) return false; |
| |
| #ifdef _WIN32 |
| // we cannot shrink on windows, but we can decommit |
| return _mi_os_decommit(start, size, stats); |
| #else |
| return mi_os_mem_free(start, size, true, stats); |
| #endif |
| } |
| |
| |
| /* ---------------------------------------------------------------------------- |
| Support for allocating huge OS pages (1Gib) that are reserved up-front |
| and possibly associated with a specific NUMA node. (use `numa_node>=0`) |
| -----------------------------------------------------------------------------*/ |
| #define MI_HUGE_OS_PAGE_SIZE (GiB) |
| |
| #if defined(_WIN32) && (MI_INTPTR_SIZE >= 8) |
| static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node) |
| { |
| mi_assert_internal(size%GiB == 0); |
| mi_assert_internal(addr != NULL); |
| const DWORD flags = MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE; |
| |
| mi_win_enable_large_os_pages(); |
| |
| #if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS) |
| MEM_EXTENDED_PARAMETER params[3] = { {{0,0},{0}},{{0,0},{0}},{{0,0},{0}} }; |
| // on modern Windows try use NtAllocateVirtualMemoryEx for 1GiB huge pages |
| static bool mi_huge_pages_available = true; |
| if (pNtAllocateVirtualMemoryEx != NULL && mi_huge_pages_available) { |
| #ifndef MEM_EXTENDED_PARAMETER_NONPAGED_HUGE |
| #define MEM_EXTENDED_PARAMETER_NONPAGED_HUGE (0x10) |
| #endif |
| params[0].Type = 5; // == MemExtendedParameterAttributeFlags; |
| params[0].ULong64 = MEM_EXTENDED_PARAMETER_NONPAGED_HUGE; |
| ULONG param_count = 1; |
| if (numa_node >= 0) { |
| param_count++; |
| params[1].Type = MemExtendedParameterNumaNode; |
| params[1].ULong = (unsigned)numa_node; |
| } |
| SIZE_T psize = size; |
| void* base = addr; |
| NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags, PAGE_READWRITE, params, param_count); |
| if (err == 0 && base != NULL) { |
| return base; |
| } |
| else { |
| // fall back to regular large pages |
| mi_huge_pages_available = false; // don't try further huge pages |
| _mi_warning_message("unable to allocate using huge (1gb) pages, trying large (2mb) pages instead (status 0x%lx)\n", err); |
| } |
| } |
| // on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation |
| if (pVirtualAlloc2 != NULL && numa_node >= 0) { |
| params[0].Type = MemExtendedParameterNumaNode; |
| params[0].ULong = (unsigned)numa_node; |
| return (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, params, 1); |
| } |
| #else |
| UNUSED(numa_node); |
| #endif |
| // otherwise use regular virtual alloc on older windows |
| return VirtualAlloc(addr, size, flags, PAGE_READWRITE); |
| } |
| |
| #elif defined(MI_OS_USE_MMAP) && (MI_INTPTR_SIZE >= 8) && !defined(__HAIKU__) |
| #include <sys/syscall.h> |
| #ifndef MPOL_PREFERRED |
| #define MPOL_PREFERRED 1 |
| #endif |
| #if defined(SYS_mbind) |
| static long mi_os_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) { |
| return syscall(SYS_mbind, start, len, mode, nmask, maxnode, flags); |
| } |
| #else |
| static long mi_os_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) { |
| UNUSED(start); UNUSED(len); UNUSED(mode); UNUSED(nmask); UNUSED(maxnode); UNUSED(flags); |
| return 0; |
| } |
| #endif |
| static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node) { |
| mi_assert_internal(size%GiB == 0); |
| bool is_large = true; |
| void* p = mi_unix_mmap(addr, size, MI_SEGMENT_SIZE, PROT_READ | PROT_WRITE, true, true, &is_large); |
| if (p == NULL) return NULL; |
| if (numa_node >= 0 && numa_node < 8*MI_INTPTR_SIZE) { // at most 64 nodes |
| uintptr_t numa_mask = (1UL << numa_node); |
| // TODO: does `mbind` work correctly for huge OS pages? should we |
| // use `set_mempolicy` before calling mmap instead? |
| // see: <https://lkml.org/lkml/2017/2/9/875> |
| long err = mi_os_mbind(p, size, MPOL_PREFERRED, &numa_mask, 8*MI_INTPTR_SIZE, 0); |
| if (err != 0) { |
| _mi_warning_message("failed to bind huge (1gb) pages to numa node %d: %s\n", numa_node, strerror(errno)); |
| } |
| } |
| return p; |
| } |
| #else |
| static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node) { |
| UNUSED(addr); UNUSED(size); UNUSED(numa_node); |
| return NULL; |
| } |
| #endif |
| |
| #if (MI_INTPTR_SIZE >= 8) |
| // To ensure proper alignment, use our own area for huge OS pages |
| static mi_decl_cache_align _Atomic(uintptr_t) mi_huge_start; // = 0 |
| |
| // Claim an aligned address range for huge pages |
| static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) { |
| if (total_size != NULL) *total_size = 0; |
| const size_t size = pages * MI_HUGE_OS_PAGE_SIZE; |
| |
| uintptr_t start = 0; |
| uintptr_t end = 0; |
| uintptr_t huge_start = mi_atomic_load_relaxed(&mi_huge_start); |
| do { |
| start = huge_start; |
| if (start == 0) { |
| // Initialize the start address after the 32TiB area |
| start = ((uintptr_t)32 << 40); // 32TiB virtual start address |
| #if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode |
| uintptr_t r = _mi_heap_random_next(mi_get_default_heap()); |
| start = start + ((uintptr_t)MI_HUGE_OS_PAGE_SIZE * ((r>>17) & 0x0FFF)); // (randomly 12bits)*1GiB == between 0 to 4TiB |
| #endif |
| } |
| end = start + size; |
| mi_assert_internal(end % MI_SEGMENT_SIZE == 0); |
| } while (!mi_atomic_cas_strong_acq_rel(&mi_huge_start, &huge_start, end)); |
| |
| if (total_size != NULL) *total_size = size; |
| return (uint8_t*)start; |
| } |
| #else |
| static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) { |
| UNUSED(pages); |
| if (total_size != NULL) *total_size = 0; |
| return NULL; |
| } |
| #endif |
| |
| // Allocate MI_SEGMENT_SIZE aligned huge pages |
| void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_msecs, size_t* pages_reserved, size_t* psize) { |
| if (psize != NULL) *psize = 0; |
| if (pages_reserved != NULL) *pages_reserved = 0; |
| size_t size = 0; |
| uint8_t* start = mi_os_claim_huge_pages(pages, &size); |
| if (start == NULL) return NULL; // or 32-bit systems |
| |
| // Allocate one page at the time but try to place them contiguously |
| // We allocate one page at the time to be able to abort if it takes too long |
| // or to at least allocate as many as available on the system. |
| mi_msecs_t start_t = _mi_clock_start(); |
| size_t page; |
| for (page = 0; page < pages; page++) { |
| // allocate a page |
| void* addr = start + (page * MI_HUGE_OS_PAGE_SIZE); |
| void* p = mi_os_alloc_huge_os_pagesx(addr, MI_HUGE_OS_PAGE_SIZE, numa_node); |
| |
| // Did we succeed at a contiguous address? |
| if (p != addr) { |
| // no success, issue a warning and break |
| if (p != NULL) { |
| _mi_warning_message("could not allocate contiguous huge page %zu at %p\n", page, addr); |
| _mi_os_free(p, MI_HUGE_OS_PAGE_SIZE, &_mi_stats_main); |
| } |
| break; |
| } |
| |
| // success, record it |
| _mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE); |
| _mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE); |
| |
| // check for timeout |
| if (max_msecs > 0) { |
| mi_msecs_t elapsed = _mi_clock_end(start_t); |
| if (page >= 1) { |
| mi_msecs_t estimate = ((elapsed / (page+1)) * pages); |
| if (estimate > 2*max_msecs) { // seems like we are going to timeout, break |
| elapsed = max_msecs + 1; |
| } |
| } |
| if (elapsed > max_msecs) { |
| _mi_warning_message("huge page allocation timed out\n"); |
| break; |
| } |
| } |
| } |
| mi_assert_internal(page*MI_HUGE_OS_PAGE_SIZE <= size); |
| if (pages_reserved != NULL) *pages_reserved = page; |
| if (psize != NULL) *psize = page * MI_HUGE_OS_PAGE_SIZE; |
| return (page == 0 ? NULL : start); |
| } |
| |
| // free every huge page in a range individually (as we allocated per page) |
| // note: needed with VirtualAlloc but could potentially be done in one go on mmap'd systems. |
| void _mi_os_free_huge_pages(void* p, size_t size, mi_stats_t* stats) { |
| if (p==NULL || size==0) return; |
| uint8_t* base = (uint8_t*)p; |
| while (size >= MI_HUGE_OS_PAGE_SIZE) { |
| _mi_os_free(base, MI_HUGE_OS_PAGE_SIZE, stats); |
| size -= MI_HUGE_OS_PAGE_SIZE; |
| } |
| } |
| |
| /* ---------------------------------------------------------------------------- |
| Support NUMA aware allocation |
| -----------------------------------------------------------------------------*/ |
| #ifdef _WIN32 |
| static size_t mi_os_numa_nodex() { |
| USHORT numa_node = 0; |
| if (pGetCurrentProcessorNumberEx != NULL && pGetNumaProcessorNodeEx != NULL) { |
| // Extended API is supported |
| PROCESSOR_NUMBER pnum; |
| (*pGetCurrentProcessorNumberEx)(&pnum); |
| USHORT nnode = 0; |
| BOOL ok = (*pGetNumaProcessorNodeEx)(&pnum, &nnode); |
| if (ok) numa_node = nnode; |
| } |
| else { |
| // Vista or earlier, use older API that is limited to 64 processors. Issue #277 |
| DWORD pnum = GetCurrentProcessorNumber(); |
| UCHAR nnode = 0; |
| BOOL ok = GetNumaProcessorNode((UCHAR)pnum, &nnode); |
| if (ok) numa_node = nnode; |
| } |
| return numa_node; |
| } |
| |
| static size_t mi_os_numa_node_countx(void) { |
| ULONG numa_max = 0; |
| GetNumaHighestNodeNumber(&numa_max); |
| // find the highest node number that has actual processors assigned to it. Issue #282 |
| while(numa_max > 0) { |
| if (pGetNumaNodeProcessorMaskEx != NULL) { |
| // Extended API is supported |
| GROUP_AFFINITY affinity; |
| if ((*pGetNumaNodeProcessorMaskEx)((USHORT)numa_max, &affinity)) { |
| if (affinity.Mask != 0) break; // found the maximum non-empty node |
| } |
| } |
| else { |
| // Vista or earlier, use older API that is limited to 64 processors. |
| ULONGLONG mask; |
| if (GetNumaNodeProcessorMask((UCHAR)numa_max, &mask)) { |
| if (mask != 0) break; // found the maximum non-empty node |
| }; |
| } |
| // max node was invalid or had no processor assigned, try again |
| numa_max--; |
| } |
| return ((size_t)numa_max + 1); |
| } |
| #elif defined(__linux__) |
| #include <sys/syscall.h> // getcpu |
| #include <stdio.h> // access |
| |
| static size_t mi_os_numa_nodex(void) { |
| #ifdef SYS_getcpu |
| unsigned long node = 0; |
| unsigned long ncpu = 0; |
| long err = syscall(SYS_getcpu, &ncpu, &node, NULL); |
| if (err != 0) return 0; |
| return node; |
| #else |
| return 0; |
| #endif |
| } |
| static size_t mi_os_numa_node_countx(void) { |
| char buf[128]; |
| unsigned node = 0; |
| for(node = 0; node < 256; node++) { |
| // enumerate node entries -- todo: it there a more efficient way to do this? (but ensure there is no allocation) |
| snprintf(buf, 127, "/sys/devices/system/node/node%u", node + 1); |
| if (access(buf,R_OK) != 0) break; |
| } |
| return (node+1); |
| } |
| #else |
| static size_t mi_os_numa_nodex(void) { |
| return 0; |
| } |
| static size_t mi_os_numa_node_countx(void) { |
| return 1; |
| } |
| #endif |
| |
| size_t _mi_numa_node_count = 0; // cache the node count |
| |
| size_t _mi_os_numa_node_count_get(void) { |
| if (mi_unlikely(_mi_numa_node_count <= 0)) { |
| long ncount = mi_option_get(mi_option_use_numa_nodes); // given explicitly? |
| if (ncount <= 0) ncount = (long)mi_os_numa_node_countx(); // or detect dynamically |
| _mi_numa_node_count = (size_t)(ncount <= 0 ? 1 : ncount); |
| _mi_verbose_message("using %zd numa regions\n", _mi_numa_node_count); |
| } |
| mi_assert_internal(_mi_numa_node_count >= 1); |
| return _mi_numa_node_count; |
| } |
| |
| int _mi_os_numa_node_get(mi_os_tld_t* tld) { |
| UNUSED(tld); |
| size_t numa_count = _mi_os_numa_node_count(); |
| if (numa_count<=1) return 0; // optimize on single numa node systems: always node 0 |
| // never more than the node count and >= 0 |
| size_t numa_node = mi_os_numa_nodex(); |
| if (numa_node >= numa_count) { numa_node = numa_node % numa_count; } |
| return (int)numa_node; |
| } |