blob: bfe8ccbdc8a3d9e7a9eb72fb438205ffa995eeb3 [file] [log] [blame]
//! A pre-legalization rewriting pass.
//!
//! This module provides early-stage optimizations. The optimizations found
//! should be useful for already well-optimized code. More general purpose
//! early-stage optimizations can be found in the preopt crate.
use crate::cursor::{Cursor, FuncCursor};
use crate::divconst_magic_numbers::{magic_s32, magic_s64, magic_u32, magic_u64};
use crate::divconst_magic_numbers::{MS32, MS64, MU32, MU64};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::{
condcodes::{CondCode, IntCC},
instructions::Opcode,
types::{I128, I32, I64},
Block, DataFlowGraph, Function, Inst, InstBuilder, InstructionData, Type, Value,
};
use crate::isa::TargetIsa;
use crate::timing;
#[inline]
/// Replaces the unique result of the instruction inst to an alias of the given value, and
/// replaces the instruction with a nop. Can be used only on instructions producing one unique
/// result, otherwise will assert.
fn replace_single_result_with_alias(dfg: &mut DataFlowGraph, inst: Inst, value: Value) {
// Replace the result value by an alias.
let results = dfg.detach_results(inst);
debug_assert!(results.len(&dfg.value_lists) == 1);
let result = results.get(0, &dfg.value_lists).unwrap();
dfg.change_to_alias(result, value);
// Replace instruction by a nop.
dfg.replace(inst).nop();
}
//----------------------------------------------------------------------
//
// Pattern-match helpers and transformation for div and rem by constants.
// Simple math helpers
/// if `x` is a power of two, or the negation thereof, return the power along
/// with a boolean that indicates whether `x` is negative. Else return None.
#[inline]
fn i32_is_power_of_two(x: i32) -> Option<(bool, u32)> {
// We have to special-case this because abs(x) isn't representable.
if x == -0x8000_0000 {
return Some((true, 31));
}
let abs_x = i32::wrapping_abs(x) as u32;
if abs_x.is_power_of_two() {
return Some((x < 0, abs_x.trailing_zeros()));
}
None
}
/// Same comments as for i32_is_power_of_two apply.
#[inline]
fn i64_is_power_of_two(x: i64) -> Option<(bool, u32)> {
// We have to special-case this because abs(x) isn't representable.
if x == -0x8000_0000_0000_0000 {
return Some((true, 63));
}
let abs_x = i64::wrapping_abs(x) as u64;
if abs_x.is_power_of_two() {
return Some((x < 0, abs_x.trailing_zeros()));
}
None
}
/// Representation of an instruction that can be replaced by a single division/remainder operation
/// between a left Value operand and a right immediate operand.
#[derive(Debug)]
enum DivRemByConstInfo {
DivU32(Value, u32),
DivU64(Value, u64),
DivS32(Value, i32),
DivS64(Value, i64),
RemU32(Value, u32),
RemU64(Value, u64),
RemS32(Value, i32),
RemS64(Value, i64),
}
/// Possibly create a DivRemByConstInfo from the given components, by figuring out which, if any,
/// of the 8 cases apply, and also taking care to sanity-check the immediate.
fn package_up_divrem_info(
value: Value,
value_type: Type,
imm_i64: i64,
is_signed: bool,
is_rem: bool,
) -> Option<DivRemByConstInfo> {
let imm_u64 = imm_i64 as u64;
match (is_signed, value_type) {
(false, I32) => {
if imm_u64 < 0x1_0000_0000 {
if is_rem {
Some(DivRemByConstInfo::RemU32(value, imm_u64 as u32))
} else {
Some(DivRemByConstInfo::DivU32(value, imm_u64 as u32))
}
} else {
None
}
}
(false, I64) => {
// unsigned 64, no range constraint.
if is_rem {
Some(DivRemByConstInfo::RemU64(value, imm_u64))
} else {
Some(DivRemByConstInfo::DivU64(value, imm_u64))
}
}
(true, I32) => {
if imm_u64 <= 0x7fff_ffff || imm_u64 >= 0xffff_ffff_8000_0000 {
if is_rem {
Some(DivRemByConstInfo::RemS32(value, imm_u64 as i32))
} else {
Some(DivRemByConstInfo::DivS32(value, imm_u64 as i32))
}
} else {
None
}
}
(true, I64) => {
// signed 64, no range constraint.
if is_rem {
Some(DivRemByConstInfo::RemS64(value, imm_u64 as i64))
} else {
Some(DivRemByConstInfo::DivS64(value, imm_u64 as i64))
}
}
_ => None,
}
}
/// Examine `inst` to see if it is a div or rem by a constant, and if so return the operands,
/// signedness, operation size and div-vs-rem-ness in a handy bundle.
fn get_div_info(inst: Inst, dfg: &DataFlowGraph) -> Option<DivRemByConstInfo> {
if let InstructionData::BinaryImm64 { opcode, arg, imm } = dfg.insts[inst] {
let (is_signed, is_rem) = match opcode {
Opcode::UdivImm => (false, false),
Opcode::UremImm => (false, true),
Opcode::SdivImm => (true, false),
Opcode::SremImm => (true, true),
_ => return None,
};
return package_up_divrem_info(arg, dfg.value_type(arg), imm.into(), is_signed, is_rem);
}
None
}
/// Actually do the transformation given a bundle containing the relevant information.
/// `divrem_info` describes a div or rem by a constant, that `pos` currently points at, and `inst`
/// is the associated instruction. `inst` is replaced by a sequence of other operations that
/// calculate the same result. Note that there are various `divrem_info` cases where we cannot do
/// any transformation, in which case `inst` is left unchanged.
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
let is_rem = match *divrem_info {
DivRemByConstInfo::DivU32(_, _)
| DivRemByConstInfo::DivU64(_, _)
| DivRemByConstInfo::DivS32(_, _)
| DivRemByConstInfo::DivS64(_, _) => false,
DivRemByConstInfo::RemU32(_, _)
| DivRemByConstInfo::RemU64(_, _)
| DivRemByConstInfo::RemS32(_, _)
| DivRemByConstInfo::RemS64(_, _) => true,
};
match *divrem_info {
// -------------------- U32 --------------------
// U32 div, rem by zero: ignore
DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}
// U32 div by 1: identity
// U32 rem by 1: zero
DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
if is_rem {
pos.func.dfg.replace(inst).iconst(I32, 0);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
}
}
// U32 div, rem by a power-of-2
DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
if d.is_power_of_two() =>
{
debug_assert!(d >= 2);
// compute k where d == 2^k
let k = d.trailing_zeros();
debug_assert!(k >= 1 && k <= 31);
if is_rem {
let mask = (1u64 << k) - 1;
pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
} else {
pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
}
}
// U32 div, rem by non-power-of-2
DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
debug_assert!(d >= 3);
let MU32 {
mul_by,
do_add,
shift_by,
} = magic_u32(d);
let qf; // final quotient
let q0 = pos.ins().iconst(I32, mul_by as i64);
let q1 = pos.ins().umulhi(n1, q0);
if do_add {
debug_assert!(shift_by >= 1 && shift_by <= 32);
let t1 = pos.ins().isub(n1, q1);
let t2 = pos.ins().ushr_imm(t1, 1);
let t3 = pos.ins().iadd(t2, q1);
// I never found any case where shift_by == 1 here.
// So there's no attempt to fold out a zero shift.
debug_assert_ne!(shift_by, 1);
qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
} else {
debug_assert!(shift_by >= 0 && shift_by <= 31);
// Whereas there are known cases here for shift_by == 0.
if shift_by > 0 {
qf = pos.ins().ushr_imm(q1, shift_by as i64);
} else {
qf = q1;
}
}
// Now qf holds the final quotient. If necessary calculate the
// remainder instead.
if is_rem {
let tt = pos.ins().imul_imm(qf, d as i64);
pos.func.dfg.replace(inst).isub(n1, tt);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
}
}
// -------------------- U64 --------------------
// U64 div, rem by zero: ignore
DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}
// U64 div by 1: identity
// U64 rem by 1: zero
DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
if is_rem {
pos.func.dfg.replace(inst).iconst(I64, 0);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
}
}
// U64 div, rem by a power-of-2
DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
if d.is_power_of_two() =>
{
debug_assert!(d >= 2);
// compute k where d == 2^k
let k = d.trailing_zeros();
debug_assert!(k >= 1 && k <= 63);
if is_rem {
let mask = (1u64 << k) - 1;
pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
} else {
pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
}
}
// U64 div, rem by non-power-of-2
DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
debug_assert!(d >= 3);
let MU64 {
mul_by,
do_add,
shift_by,
} = magic_u64(d);
let qf; // final quotient
let q0 = pos.ins().iconst(I64, mul_by as i64);
let q1 = pos.ins().umulhi(n1, q0);
if do_add {
debug_assert!(shift_by >= 1 && shift_by <= 64);
let t1 = pos.ins().isub(n1, q1);
let t2 = pos.ins().ushr_imm(t1, 1);
let t3 = pos.ins().iadd(t2, q1);
// I never found any case where shift_by == 1 here.
// So there's no attempt to fold out a zero shift.
debug_assert_ne!(shift_by, 1);
qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
} else {
debug_assert!(shift_by >= 0 && shift_by <= 63);
// Whereas there are known cases here for shift_by == 0.
if shift_by > 0 {
qf = pos.ins().ushr_imm(q1, shift_by as i64);
} else {
qf = q1;
}
}
// Now qf holds the final quotient. If necessary calculate the
// remainder instead.
if is_rem {
let tt = pos.ins().imul_imm(qf, d as i64);
pos.func.dfg.replace(inst).isub(n1, tt);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
}
}
// -------------------- S32 --------------------
// S32 div, rem by zero or -1: ignore
DivRemByConstInfo::DivS32(_n1, -1)
| DivRemByConstInfo::RemS32(_n1, -1)
| DivRemByConstInfo::DivS32(_n1, 0)
| DivRemByConstInfo::RemS32(_n1, 0) => {}
// S32 div by 1: identity
// S32 rem by 1: zero
DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
if is_rem {
pos.func.dfg.replace(inst).iconst(I32, 0);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
}
}
DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
if let Some((is_negative, k)) = i32_is_power_of_two(d) {
// k can be 31 only in the case that d is -2^31.
debug_assert!(k >= 1 && k <= 31);
let t1 = if k - 1 == 0 {
n1
} else {
pos.ins().sshr_imm(n1, (k - 1) as i64)
};
let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
let t3 = pos.ins().iadd(n1, t2);
if is_rem {
// S32 rem by a power-of-2
let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
// Curiously, we don't care here what the sign of d is.
pos.func.dfg.replace(inst).isub(n1, t4);
} else {
// S32 div by a power-of-2
let t4 = pos.ins().sshr_imm(t3, k as i64);
if is_negative {
pos.func.dfg.replace(inst).irsub_imm(t4, 0);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
}
}
} else {
// S32 div, rem by a non-power-of-2
debug_assert!(d < -2 || d > 2);
let MS32 { mul_by, shift_by } = magic_s32(d);
let q0 = pos.ins().iconst(I32, mul_by as i64);
let q1 = pos.ins().smulhi(n1, q0);
let q2 = if d > 0 && mul_by < 0 {
pos.ins().iadd(q1, n1)
} else if d < 0 && mul_by > 0 {
pos.ins().isub(q1, n1)
} else {
q1
};
debug_assert!(shift_by >= 0 && shift_by <= 31);
let q3 = if shift_by == 0 {
q2
} else {
pos.ins().sshr_imm(q2, shift_by as i64)
};
let t1 = pos.ins().ushr_imm(q3, 31);
let qf = pos.ins().iadd(q3, t1);
// Now qf holds the final quotient. If necessary calculate
// the remainder instead.
if is_rem {
let tt = pos.ins().imul_imm(qf, d as i64);
pos.func.dfg.replace(inst).isub(n1, tt);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
}
}
}
// -------------------- S64 --------------------
// S64 div, rem by zero or -1: ignore
DivRemByConstInfo::DivS64(_n1, -1)
| DivRemByConstInfo::RemS64(_n1, -1)
| DivRemByConstInfo::DivS64(_n1, 0)
| DivRemByConstInfo::RemS64(_n1, 0) => {}
// S64 div by 1: identity
// S64 rem by 1: zero
DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
if is_rem {
pos.func.dfg.replace(inst).iconst(I64, 0);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
}
}
DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
if let Some((is_negative, k)) = i64_is_power_of_two(d) {
// k can be 63 only in the case that d is -2^63.
debug_assert!(k >= 1 && k <= 63);
let t1 = if k - 1 == 0 {
n1
} else {
pos.ins().sshr_imm(n1, (k - 1) as i64)
};
let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
let t3 = pos.ins().iadd(n1, t2);
if is_rem {
// S64 rem by a power-of-2
let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
// Curiously, we don't care here what the sign of d is.
pos.func.dfg.replace(inst).isub(n1, t4);
} else {
// S64 div by a power-of-2
let t4 = pos.ins().sshr_imm(t3, k as i64);
if is_negative {
pos.func.dfg.replace(inst).irsub_imm(t4, 0);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
}
}
} else {
// S64 div, rem by a non-power-of-2
debug_assert!(d < -2 || d > 2);
let MS64 { mul_by, shift_by } = magic_s64(d);
let q0 = pos.ins().iconst(I64, mul_by);
let q1 = pos.ins().smulhi(n1, q0);
let q2 = if d > 0 && mul_by < 0 {
pos.ins().iadd(q1, n1)
} else if d < 0 && mul_by > 0 {
pos.ins().isub(q1, n1)
} else {
q1
};
debug_assert!(shift_by >= 0 && shift_by <= 63);
let q3 = if shift_by == 0 {
q2
} else {
pos.ins().sshr_imm(q2, shift_by as i64)
};
let t1 = pos.ins().ushr_imm(q3, 63);
let qf = pos.ins().iadd(q3, t1);
// Now qf holds the final quotient. If necessary calculate
// the remainder instead.
if is_rem {
let tt = pos.ins().imul_imm(qf, d);
pos.func.dfg.replace(inst).isub(n1, tt);
} else {
replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
}
}
}
}
}
enum BranchOrderKind {
BrzToBrnz(Value),
BrnzToBrz(Value),
}
/// Reorder branches to encourage fallthroughs.
///
/// When a block ends with a conditional branch followed by an unconditional
/// branch, this will reorder them if one of them is branching to the next Block
/// layout-wise. The unconditional jump can then become a fallthrough.
fn branch_order(pos: &mut FuncCursor, cfg: &mut ControlFlowGraph, block: Block, inst: Inst) {
let (term_inst, term_inst_args, term_dest, cond_inst, cond_inst_args, cond_dest, kind) =
match pos.func.dfg.insts[inst] {
InstructionData::Jump {
opcode: Opcode::Jump,
destination,
ref args,
} => {
let next_block = if let Some(next_block) = pos.func.layout.next_block(block) {
next_block
} else {
return;
};
if destination == next_block {
return;
}
let prev_inst = if let Some(prev_inst) = pos.func.layout.prev_inst(inst) {
prev_inst
} else {
return;
};
let prev_inst_data = &pos.func.dfg.insts[prev_inst];
if let Some(prev_dest) = prev_inst_data.branch_destination() {
if prev_dest != next_block {
return;
}
} else {
return;
}
match prev_inst_data {
InstructionData::Branch {
opcode,
args: ref prev_args,
destination: cond_dest,
} => {
let cond_arg = {
let args = pos.func.dfg.inst_args(prev_inst);
args[0]
};
let kind = match opcode {
Opcode::Brz => BranchOrderKind::BrzToBrnz(cond_arg),
Opcode::Brnz => BranchOrderKind::BrnzToBrz(cond_arg),
_ => panic!("unexpected opcode"),
};
(
inst,
args.clone(),
destination,
prev_inst,
prev_args.clone(),
*cond_dest,
kind,
)
}
_ => return,
}
}
_ => return,
};
let cond_args = cond_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();
let term_args = term_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();
match kind {
BranchOrderKind::BrnzToBrz(cond_arg) => {
pos.func
.dfg
.replace(term_inst)
.jump(cond_dest, &cond_args[1..]);
pos.func
.dfg
.replace(cond_inst)
.brz(cond_arg, term_dest, &term_args);
}
BranchOrderKind::BrzToBrnz(cond_arg) => {
pos.func
.dfg
.replace(term_inst)
.jump(cond_dest, &cond_args[1..]);
pos.func
.dfg
.replace(cond_inst)
.brnz(cond_arg, term_dest, &term_args);
}
}
cfg.recompute_block(pos.func, block);
}
mod simplify {
use super::*;
use crate::ir::{
dfg::ValueDef,
immediates,
instructions::{Opcode, ValueList},
types::{I16, I32, I8},
};
use std::marker::PhantomData;
pub struct PeepholeOptimizer<'a, 'b> {
phantom: PhantomData<(&'a (), &'b ())>,
}
pub fn peephole_optimizer<'a, 'b>(_: &dyn TargetIsa) -> PeepholeOptimizer<'a, 'b> {
PeepholeOptimizer {
phantom: PhantomData,
}
}
pub fn apply_all<'a, 'b>(
_optimizer: &mut PeepholeOptimizer<'a, 'b>,
pos: &mut FuncCursor<'a>,
inst: Inst,
native_word_width: u32,
) {
simplify(pos, inst, native_word_width);
branch_opt(pos, inst);
}
#[inline]
fn resolve_imm64_value(dfg: &DataFlowGraph, value: Value) -> Option<immediates::Imm64> {
if let ValueDef::Result(candidate_inst, _) = dfg.value_def(value) {
if let InstructionData::UnaryImm {
opcode: Opcode::Iconst,
imm,
} = dfg.insts[candidate_inst]
{
return Some(imm);
}
}
None
}
/// Try to transform [(x << N) >> N] into a (un)signed-extending move.
/// Returns true if the final instruction has been converted to such a move.
fn try_fold_extended_move(
pos: &mut FuncCursor,
inst: Inst,
opcode: Opcode,
arg: Value,
imm: immediates::Imm64,
) -> bool {
if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
if let InstructionData::BinaryImm64 {
opcode: Opcode::IshlImm,
arg: prev_arg,
imm: prev_imm,
} = &pos.func.dfg.insts[arg_inst]
{
if imm != *prev_imm {
return false;
}
let dest_ty = pos.func.dfg.ctrl_typevar(inst);
if dest_ty != pos.func.dfg.ctrl_typevar(arg_inst) || !dest_ty.is_int() {
return false;
}
let imm_bits: i64 = imm.into();
let ireduce_ty = match (dest_ty.lane_bits() as i64).wrapping_sub(imm_bits) {
8 => I8,
16 => I16,
32 => I32,
_ => return false,
};
let ireduce_ty = ireduce_ty.by(dest_ty.lane_count()).unwrap();
// This becomes a no-op, since ireduce_ty has a smaller lane width than
// the argument type (also the destination type).
let arg = *prev_arg;
let narrower_arg = pos.ins().ireduce(ireduce_ty, arg);
if opcode == Opcode::UshrImm {
pos.func.dfg.replace(inst).uextend(dest_ty, narrower_arg);
} else {
pos.func.dfg.replace(inst).sextend(dest_ty, narrower_arg);
}
return true;
}
}
false
}
/// Apply basic simplifications.
///
/// This folds constants with arithmetic to form `_imm` instructions, and other minor
/// simplifications.
///
/// Doesn't apply some simplifications if the native word width (in bytes) is smaller than the
/// controlling type's width of the instruction. This would result in an illegal instruction that
/// would likely be expanded back into an instruction on smaller types with the same initial
/// opcode, creating unnecessary churn.
fn simplify(pos: &mut FuncCursor, inst: Inst, native_word_width: u32) {
match pos.func.dfg.insts[inst] {
InstructionData::Binary { opcode, args } => {
if let Some(mut imm) = resolve_imm64_value(&pos.func.dfg, args[1]) {
let new_opcode = match opcode {
Opcode::Iadd => Opcode::IaddImm,
Opcode::Imul => Opcode::ImulImm,
Opcode::Sdiv => Opcode::SdivImm,
Opcode::Udiv => Opcode::UdivImm,
Opcode::Srem => Opcode::SremImm,
Opcode::Urem => Opcode::UremImm,
Opcode::Band => Opcode::BandImm,
Opcode::Bor => Opcode::BorImm,
Opcode::Bxor => Opcode::BxorImm,
Opcode::Rotl => Opcode::RotlImm,
Opcode::Rotr => Opcode::RotrImm,
Opcode::Ishl => Opcode::IshlImm,
Opcode::Ushr => Opcode::UshrImm,
Opcode::Sshr => Opcode::SshrImm,
Opcode::Isub => {
imm = imm.wrapping_neg();
Opcode::IaddImm
}
_ => return,
};
let ty = pos.func.dfg.ctrl_typevar(inst);
if ty.bytes() <= native_word_width {
pos.func
.dfg
.replace(inst)
.BinaryImm64(new_opcode, ty, imm, args[0]);
// Repeat for BinaryImm simplification.
simplify(pos, inst, native_word_width);
}
} else if let Some(imm) = resolve_imm64_value(&pos.func.dfg, args[0]) {
let new_opcode = match opcode {
Opcode::Iadd => Opcode::IaddImm,
Opcode::Imul => Opcode::ImulImm,
Opcode::Band => Opcode::BandImm,
Opcode::Bor => Opcode::BorImm,
Opcode::Bxor => Opcode::BxorImm,
Opcode::Isub => Opcode::IrsubImm,
_ => return,
};
let ty = pos.func.dfg.ctrl_typevar(inst);
if ty.bytes() <= native_word_width {
pos.func
.dfg
.replace(inst)
.BinaryImm64(new_opcode, ty, imm, args[1]);
}
}
}
InstructionData::BinaryImm64 { opcode, arg, imm } => {
let ty = pos.func.dfg.ctrl_typevar(inst);
let mut arg = arg;
let mut imm = imm;
match opcode {
Opcode::IaddImm
| Opcode::ImulImm
| Opcode::BorImm
| Opcode::BandImm
| Opcode::BxorImm => {
// Fold binary_op(C2, binary_op(C1, x)) into binary_op(binary_op(C1, C2), x)
if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
if let InstructionData::BinaryImm64 {
opcode: prev_opcode,
arg: prev_arg,
imm: prev_imm,
} = &pos.func.dfg.insts[arg_inst]
{
if opcode == *prev_opcode
&& ty == pos.func.dfg.ctrl_typevar(arg_inst)
{
let lhs: i64 = imm.into();
let rhs: i64 = (*prev_imm).into();
let new_imm = match opcode {
Opcode::BorImm => lhs | rhs,
Opcode::BandImm => lhs & rhs,
Opcode::BxorImm => lhs ^ rhs,
Opcode::IaddImm => lhs.wrapping_add(rhs),
Opcode::ImulImm => lhs.wrapping_mul(rhs),
_ => panic!("can't happen"),
};
let new_imm = immediates::Imm64::from(new_imm);
let new_arg = *prev_arg;
pos.func
.dfg
.replace(inst)
.BinaryImm64(opcode, ty, new_imm, new_arg);
imm = new_imm;
arg = new_arg;
}
}
}
}
Opcode::UshrImm | Opcode::SshrImm => {
if pos.func.dfg.ctrl_typevar(inst).bytes() <= native_word_width
&& try_fold_extended_move(pos, inst, opcode, arg, imm)
{
return;
}
}
_ => {}
};
// Replace operations that are no-ops.
match (opcode, imm.into(), ty) {
(Opcode::IaddImm, 0, _)
| (Opcode::ImulImm, 1, _)
| (Opcode::SdivImm, 1, _)
| (Opcode::UdivImm, 1, _)
| (Opcode::BorImm, 0, _)
| (Opcode::BandImm, -1, _)
| (Opcode::BxorImm, 0, _)
| (Opcode::RotlImm, 0, _)
| (Opcode::RotrImm, 0, _)
| (Opcode::IshlImm, 0, _)
| (Opcode::UshrImm, 0, _)
| (Opcode::SshrImm, 0, _) => {
// Alias the result value with the original argument.
replace_single_result_with_alias(&mut pos.func.dfg, inst, arg);
}
(Opcode::ImulImm, 0, ty) | (Opcode::BandImm, 0, ty) if ty != I128 => {
// Replace by zero.
pos.func.dfg.replace(inst).iconst(ty, 0);
}
(Opcode::BorImm, -1, ty) if ty != I128 => {
// Replace by minus one.
pos.func.dfg.replace(inst).iconst(ty, -1);
}
_ => {}
}
}
InstructionData::IntCompare { opcode, cond, args } => {
debug_assert_eq!(opcode, Opcode::Icmp);
if let Some(imm) = resolve_imm64_value(&pos.func.dfg, args[1]) {
if pos.func.dfg.ctrl_typevar(inst).bytes() <= native_word_width {
pos.func.dfg.replace(inst).icmp_imm(cond, args[0], imm);
}
}
}
_ => {}
}
}
struct BranchOptInfo {
br_inst: Inst,
cmp_arg: Value,
args: ValueList,
new_opcode: Opcode,
}
/// Fold comparisons into branch operations when possible.
///
/// This matches against operations which compare against zero, then use the
/// result in a `brz` or `brnz` branch. It folds those two operations into a
/// single `brz` or `brnz`.
fn branch_opt(pos: &mut FuncCursor, inst: Inst) {
let mut info = if let InstructionData::Branch {
opcode: br_opcode,
args: ref br_args,
..
} = pos.func.dfg.insts[inst]
{
let first_arg = {
let args = pos.func.dfg.inst_args(inst);
args[0]
};
let icmp_inst =
if let ValueDef::Result(icmp_inst, _) = pos.func.dfg.value_def(first_arg) {
icmp_inst
} else {
return;
};
if let InstructionData::IntCompareImm {
opcode: Opcode::IcmpImm,
arg: cmp_arg,
cond: cmp_cond,
imm: cmp_imm,
} = pos.func.dfg.insts[icmp_inst]
{
let cmp_imm: i64 = cmp_imm.into();
if cmp_imm != 0 {
return;
}
// icmp_imm returns non-zero when the comparison is true. So, if
// we're branching on zero, we need to invert the condition.
let cond = match br_opcode {
Opcode::Brz => cmp_cond.inverse(),
Opcode::Brnz => cmp_cond,
_ => return,
};
let new_opcode = match cond {
IntCC::Equal => Opcode::Brz,
IntCC::NotEqual => Opcode::Brnz,
_ => return,
};
BranchOptInfo {
br_inst: inst,
cmp_arg,
args: br_args.clone(),
new_opcode,
}
} else {
return;
}
} else {
return;
};
info.args.as_mut_slice(&mut pos.func.dfg.value_lists)[0] = info.cmp_arg;
if let InstructionData::Branch { ref mut opcode, .. } = pos.func.dfg.insts[info.br_inst] {
*opcode = info.new_opcode;
} else {
panic!();
}
}
}
/// The main pre-opt pass.
pub fn do_preopt(func: &mut Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
let _tt = timing::preopt();
let mut pos = FuncCursor::new(func);
let native_word_width = isa.pointer_bytes() as u32;
let mut optimizer = simplify::peephole_optimizer(isa);
while let Some(block) = pos.next_block() {
while let Some(inst) = pos.next_inst() {
simplify::apply_all(&mut optimizer, &mut pos, inst, native_word_width);
// Try to transform divide-by-constant into simpler operations.
if let Some(divrem_info) = get_div_info(inst, &pos.func.dfg) {
do_divrem_transformation(&divrem_info, &mut pos, inst);
continue;
}
branch_order(&mut pos, cfg, block, inst);
}
}
}