| use crate::common::CodegenCx; |
| use crate::coverageinfo; |
| use crate::llvm; |
| |
| use llvm::coverageinfo::CounterMappingRegion; |
| use rustc_codegen_ssa::coverageinfo::map::{Counter, CounterExpression}; |
| use rustc_codegen_ssa::traits::{ConstMethods, CoverageInfoMethods}; |
| use rustc_data_structures::fx::FxIndexSet; |
| use rustc_hir::def::DefKind; |
| use rustc_hir::def_id::DefId; |
| use rustc_llvm::RustString; |
| use rustc_middle::bug; |
| use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags; |
| use rustc_middle::mir::coverage::CodeRegion; |
| use rustc_middle::ty::TyCtxt; |
| |
| use std::ffi::CString; |
| |
| /// Generates and exports the Coverage Map. |
| /// |
| /// Rust Coverage Map generation supports LLVM Coverage Mapping Format version |
| /// 6 (zero-based encoded as 5), as defined at |
| /// [LLVM Code Coverage Mapping Format](https://github.com/rust-lang/llvm-project/blob/rustc/13.0-2021-09-30/llvm/docs/CoverageMappingFormat.rst#llvm-code-coverage-mapping-format). |
| /// These versions are supported by the LLVM coverage tools (`llvm-profdata` and `llvm-cov`) |
| /// bundled with Rust's fork of LLVM. |
| /// |
| /// Consequently, Rust's bundled version of Clang also generates Coverage Maps compliant with |
| /// the same version. Clang's implementation of Coverage Map generation was referenced when |
| /// implementing this Rust version, and though the format documentation is very explicit and |
| /// detailed, some undocumented details in Clang's implementation (that may or may not be important) |
| /// were also replicated for Rust's Coverage Map. |
| pub fn finalize(cx: &CodegenCx<'_, '_>) { |
| let tcx = cx.tcx; |
| |
| // Ensure the installed version of LLVM supports Coverage Map Version 6 |
| // (encoded as a zero-based value: 5), which was introduced with LLVM 13. |
| let version = coverageinfo::mapping_version(); |
| assert_eq!(version, 5, "The `CoverageMappingVersion` exposed by `llvm-wrapper` is out of sync"); |
| |
| debug!("Generating coverage map for CodegenUnit: `{}`", cx.codegen_unit.name()); |
| |
| // In order to show that unused functions have coverage counts of zero (0), LLVM requires the |
| // functions exist. Generate synthetic functions with a (required) single counter, and add the |
| // MIR `Coverage` code regions to the `function_coverage_map`, before calling |
| // `ctx.take_function_coverage_map()`. |
| if cx.codegen_unit.is_code_coverage_dead_code_cgu() { |
| add_unused_functions(cx); |
| } |
| |
| let function_coverage_map = match cx.coverage_context() { |
| Some(ctx) => ctx.take_function_coverage_map(), |
| None => return, |
| }; |
| |
| if function_coverage_map.is_empty() { |
| // This module has no functions with coverage instrumentation |
| return; |
| } |
| |
| let mut mapgen = CoverageMapGenerator::new(tcx); |
| |
| // Encode coverage mappings and generate function records |
| let mut function_data = Vec::new(); |
| for (instance, function_coverage) in function_coverage_map { |
| debug!("Generate function coverage for {}, {:?}", cx.codegen_unit.name(), instance); |
| let mangled_function_name = tcx.symbol_name(instance).to_string(); |
| let source_hash = function_coverage.source_hash(); |
| let is_used = function_coverage.is_used(); |
| let (expressions, counter_regions) = |
| function_coverage.get_expressions_and_counter_regions(); |
| |
| let coverage_mapping_buffer = llvm::build_byte_buffer(|coverage_mapping_buffer| { |
| mapgen.write_coverage_mapping(expressions, counter_regions, coverage_mapping_buffer); |
| }); |
| |
| if coverage_mapping_buffer.is_empty() { |
| if function_coverage.is_used() { |
| bug!( |
| "A used function should have had coverage mapping data but did not: {}", |
| mangled_function_name |
| ); |
| } else { |
| debug!("unused function had no coverage mapping data: {}", mangled_function_name); |
| continue; |
| } |
| } |
| |
| function_data.push((mangled_function_name, source_hash, is_used, coverage_mapping_buffer)); |
| } |
| |
| // Encode all filenames referenced by counters/expressions in this module |
| let filenames_buffer = llvm::build_byte_buffer(|filenames_buffer| { |
| coverageinfo::write_filenames_section_to_buffer(&mapgen.filenames, filenames_buffer); |
| }); |
| |
| let filenames_size = filenames_buffer.len(); |
| let filenames_val = cx.const_bytes(&filenames_buffer); |
| let filenames_ref = coverageinfo::hash_bytes(filenames_buffer); |
| |
| // Generate the LLVM IR representation of the coverage map and store it in a well-known global |
| let cov_data_val = mapgen.generate_coverage_map(cx, version, filenames_size, filenames_val); |
| |
| for (mangled_function_name, source_hash, is_used, coverage_mapping_buffer) in function_data { |
| save_function_record( |
| cx, |
| mangled_function_name, |
| source_hash, |
| filenames_ref, |
| coverage_mapping_buffer, |
| is_used, |
| ); |
| } |
| |
| // Save the coverage data value to LLVM IR |
| coverageinfo::save_cov_data_to_mod(cx, cov_data_val); |
| } |
| |
| struct CoverageMapGenerator { |
| filenames: FxIndexSet<CString>, |
| } |
| |
| impl CoverageMapGenerator { |
| fn new(tcx: TyCtxt<'_>) -> Self { |
| let mut filenames = FxIndexSet::default(); |
| // LLVM Coverage Mapping Format version 6 (zero-based encoded as 5) |
| // requires setting the first filename to the compilation directory. |
| // Since rustc generates coverage maps with relative paths, the |
| // compilation directory can be combined with the relative paths |
| // to get absolute paths, if needed. |
| let working_dir = |
| tcx.sess.opts.working_dir.remapped_path_if_available().to_string_lossy().to_string(); |
| let c_filename = |
| CString::new(working_dir).expect("null error converting filename to C string"); |
| filenames.insert(c_filename); |
| Self { filenames } |
| } |
| |
| /// Using the `expressions` and `counter_regions` collected for the current function, generate |
| /// the `mapping_regions` and `virtual_file_mapping`, and capture any new filenames. Then use |
| /// LLVM APIs to encode the `virtual_file_mapping`, `expressions`, and `mapping_regions` into |
| /// the given `coverage_mapping` byte buffer, compliant with the LLVM Coverage Mapping format. |
| fn write_coverage_mapping<'a>( |
| &mut self, |
| expressions: Vec<CounterExpression>, |
| counter_regions: impl Iterator<Item = (Counter, &'a CodeRegion)>, |
| coverage_mapping_buffer: &RustString, |
| ) { |
| let mut counter_regions = counter_regions.collect::<Vec<_>>(); |
| if counter_regions.is_empty() { |
| return; |
| } |
| |
| let mut virtual_file_mapping = Vec::new(); |
| let mut mapping_regions = Vec::new(); |
| let mut current_file_name = None; |
| let mut current_file_id = 0; |
| |
| // Convert the list of (Counter, CodeRegion) pairs to an array of `CounterMappingRegion`, sorted |
| // by filename and position. Capture any new files to compute the `CounterMappingRegion`s |
| // `file_id` (indexing files referenced by the current function), and construct the |
| // function-specific `virtual_file_mapping` from `file_id` to its index in the module's |
| // `filenames` array. |
| counter_regions.sort_unstable_by_key(|(_counter, region)| *region); |
| for (counter, region) in counter_regions { |
| let CodeRegion { file_name, start_line, start_col, end_line, end_col } = *region; |
| let same_file = current_file_name.map_or(false, |p| p == file_name); |
| if !same_file { |
| if current_file_name.is_some() { |
| current_file_id += 1; |
| } |
| current_file_name = Some(file_name); |
| let c_filename = CString::new(file_name.to_string()) |
| .expect("null error converting filename to C string"); |
| debug!(" file_id: {} = '{:?}'", current_file_id, c_filename); |
| let (filenames_index, _) = self.filenames.insert_full(c_filename); |
| virtual_file_mapping.push(filenames_index as u32); |
| } |
| debug!("Adding counter {:?} to map for {:?}", counter, region); |
| mapping_regions.push(CounterMappingRegion::code_region( |
| counter, |
| current_file_id, |
| start_line, |
| start_col, |
| end_line, |
| end_col, |
| )); |
| } |
| |
| // Encode and append the current function's coverage mapping data |
| coverageinfo::write_mapping_to_buffer( |
| virtual_file_mapping, |
| expressions, |
| mapping_regions, |
| coverage_mapping_buffer, |
| ); |
| } |
| |
| /// Construct coverage map header and the array of function records, and combine them into the |
| /// coverage map. Save the coverage map data into the LLVM IR as a static global using a |
| /// specific, well-known section and name. |
| fn generate_coverage_map<'ll>( |
| self, |
| cx: &CodegenCx<'ll, '_>, |
| version: u32, |
| filenames_size: usize, |
| filenames_val: &'ll llvm::Value, |
| ) -> &'ll llvm::Value { |
| debug!("cov map: filenames_size = {}, 0-based version = {}", filenames_size, version); |
| |
| // Create the coverage data header (Note, fields 0 and 2 are now always zero, |
| // as of `llvm::coverage::CovMapVersion::Version4`.) |
| let zero_was_n_records_val = cx.const_u32(0); |
| let filenames_size_val = cx.const_u32(filenames_size as u32); |
| let zero_was_coverage_size_val = cx.const_u32(0); |
| let version_val = cx.const_u32(version); |
| let cov_data_header_val = cx.const_struct( |
| &[zero_was_n_records_val, filenames_size_val, zero_was_coverage_size_val, version_val], |
| /*packed=*/ false, |
| ); |
| |
| // Create the complete LLVM coverage data value to add to the LLVM IR |
| cx.const_struct(&[cov_data_header_val, filenames_val], /*packed=*/ false) |
| } |
| } |
| |
| /// Construct a function record and combine it with the function's coverage mapping data. |
| /// Save the function record into the LLVM IR as a static global using a |
| /// specific, well-known section and name. |
| fn save_function_record( |
| cx: &CodegenCx<'_, '_>, |
| mangled_function_name: String, |
| source_hash: u64, |
| filenames_ref: u64, |
| coverage_mapping_buffer: Vec<u8>, |
| is_used: bool, |
| ) { |
| // Concatenate the encoded coverage mappings |
| let coverage_mapping_size = coverage_mapping_buffer.len(); |
| let coverage_mapping_val = cx.const_bytes(&coverage_mapping_buffer); |
| |
| let func_name_hash = coverageinfo::hash_str(&mangled_function_name); |
| let func_name_hash_val = cx.const_u64(func_name_hash); |
| let coverage_mapping_size_val = cx.const_u32(coverage_mapping_size as u32); |
| let source_hash_val = cx.const_u64(source_hash); |
| let filenames_ref_val = cx.const_u64(filenames_ref); |
| let func_record_val = cx.const_struct( |
| &[ |
| func_name_hash_val, |
| coverage_mapping_size_val, |
| source_hash_val, |
| filenames_ref_val, |
| coverage_mapping_val, |
| ], |
| /*packed=*/ true, |
| ); |
| |
| coverageinfo::save_func_record_to_mod(cx, func_name_hash, func_record_val, is_used); |
| } |
| |
| /// When finalizing the coverage map, `FunctionCoverage` only has the `CodeRegion`s and counters for |
| /// the functions that went through codegen; such as public functions and "used" functions |
| /// (functions referenced by other "used" or public items). Any other functions considered unused, |
| /// or "Unreachable", were still parsed and processed through the MIR stage, but were not |
| /// codegenned. (Note that `-Clink-dead-code` can force some unused code to be codegenned, but |
| /// that flag is known to cause other errors, when combined with `-C instrument-coverage`; and |
| /// `-Clink-dead-code` will not generate code for unused generic functions.) |
| /// |
| /// We can find the unused functions (including generic functions) by the set difference of all MIR |
| /// `DefId`s (`tcx` query `mir_keys`) minus the codegenned `DefId`s (`tcx` query |
| /// `codegened_and_inlined_items`). |
| /// |
| /// These unused functions are then codegen'd in one of the CGUs which is marked as the |
| /// "code coverage dead code cgu" during the partitioning process. This prevents us from generating |
| /// code regions for the same function more than once which can lead to linker errors regarding |
| /// duplicate symbols. |
| fn add_unused_functions(cx: &CodegenCx<'_, '_>) { |
| assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu()); |
| |
| let tcx = cx.tcx; |
| |
| let ignore_unused_generics = tcx.sess.instrument_coverage_except_unused_generics(); |
| |
| let eligible_def_ids: Vec<DefId> = tcx |
| .mir_keys(()) |
| .iter() |
| .filter_map(|local_def_id| { |
| let def_id = local_def_id.to_def_id(); |
| let kind = tcx.def_kind(def_id); |
| // `mir_keys` will give us `DefId`s for all kinds of things, not |
| // just "functions", like consts, statics, etc. Filter those out. |
| // If `ignore_unused_generics` was specified, filter out any |
| // generic functions from consideration as well. |
| if !matches!( |
| kind, |
| DefKind::Fn | DefKind::AssocFn | DefKind::Closure | DefKind::Generator |
| ) { |
| return None; |
| } |
| if ignore_unused_generics && tcx.generics_of(def_id).requires_monomorphization(tcx) { |
| return None; |
| } |
| Some(local_def_id.to_def_id()) |
| }) |
| .collect(); |
| |
| let codegenned_def_ids = tcx.codegened_and_inlined_items(()); |
| |
| for non_codegenned_def_id in |
| eligible_def_ids.into_iter().filter(|id| !codegenned_def_ids.contains(id)) |
| { |
| let codegen_fn_attrs = tcx.codegen_fn_attrs(non_codegenned_def_id); |
| |
| // If a function is marked `#[no_coverage]`, then skip generating a |
| // dead code stub for it. |
| if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NO_COVERAGE) { |
| debug!("skipping unused fn marked #[no_coverage]: {:?}", non_codegenned_def_id); |
| continue; |
| } |
| |
| debug!("generating unused fn: {:?}", non_codegenned_def_id); |
| cx.define_unused_fn(non_codegenned_def_id); |
| } |
| } |