blob: 66d66ea951033ceb10ea9a280fd53b446ca41051 [file] [log] [blame]
//! Validates the MIR to ensure that invariants are upheld.
use rustc_data_structures::fx::FxHashSet;
use rustc_index::bit_set::BitSet;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::mir::interpret::Scalar;
use rustc_middle::mir::visit::NonUseContext::VarDebugInfo;
use rustc_middle::mir::visit::{PlaceContext, Visitor};
use rustc_middle::mir::{
traversal, AggregateKind, BasicBlock, BinOp, Body, BorrowKind, Local, Location, MirPass,
MirPhase, Operand, Place, PlaceElem, PlaceRef, ProjectionElem, Rvalue, SourceScope, Statement,
StatementKind, Terminator, TerminatorKind, UnOp, START_BLOCK,
};
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::{self, InstanceDef, ParamEnv, Ty, TyCtxt, TypeFoldable};
use rustc_mir_dataflow::impls::MaybeStorageLive;
use rustc_mir_dataflow::storage::always_live_locals;
use rustc_mir_dataflow::{Analysis, ResultsCursor};
use rustc_target::abi::{Size, VariantIdx};
#[derive(Copy, Clone, Debug)]
enum EdgeKind {
Unwind,
Normal,
}
pub struct Validator {
/// Describes at which point in the pipeline this validation is happening.
pub when: String,
/// The phase for which we are upholding the dialect. If the given phase forbids a specific
/// element, this validator will now emit errors if that specific element is encountered.
/// Note that phases that change the dialect cause all *following* phases to check the
/// invariants of the new dialect. A phase that changes dialects never checks the new invariants
/// itself.
pub mir_phase: MirPhase,
}
impl<'tcx> MirPass<'tcx> for Validator {
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
// FIXME(JakobDegen): These bodies never instantiated in codegend anyway, so it's not
// terribly important that they pass the validator. However, I think other passes might
// still see them, in which case they might be surprised. It would probably be better if we
// didn't put this through the MIR pipeline at all.
if matches!(body.source.instance, InstanceDef::Intrinsic(..) | InstanceDef::Virtual(..)) {
return;
}
let def_id = body.source.def_id();
let param_env = tcx.param_env(def_id);
let mir_phase = self.mir_phase;
let always_live_locals = always_live_locals(body);
let storage_liveness = MaybeStorageLive::new(always_live_locals)
.into_engine(tcx, body)
.iterate_to_fixpoint()
.into_results_cursor(body);
TypeChecker {
when: &self.when,
body,
tcx,
param_env,
mir_phase,
reachable_blocks: traversal::reachable_as_bitset(body),
storage_liveness,
place_cache: Vec::new(),
value_cache: Vec::new(),
}
.visit_body(body);
}
}
/// Returns whether the two types are equal up to lifetimes.
/// All lifetimes, including higher-ranked ones, get ignored for this comparison.
/// (This is unlike the `erasing_regions` methods, which keep higher-ranked lifetimes for soundness reasons.)
///
/// The point of this function is to approximate "equal up to subtyping". However,
/// the approximation is incorrect as variance is ignored.
pub fn equal_up_to_regions<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
src: Ty<'tcx>,
dest: Ty<'tcx>,
) -> bool {
// Fast path.
if src == dest {
return true;
}
// Normalize lifetimes away on both sides, then compare.
let normalize = |ty: Ty<'tcx>| {
tcx.normalize_erasing_regions(
param_env,
ty.fold_with(&mut BottomUpFolder {
tcx,
// FIXME: We erase all late-bound lifetimes, but this is not fully correct.
// If you have a type like `<for<'a> fn(&'a u32) as SomeTrait>::Assoc`,
// this is not necessarily equivalent to `<fn(&'static u32) as SomeTrait>::Assoc`,
// since one may have an `impl SomeTrait for fn(&32)` and
// `impl SomeTrait for fn(&'static u32)` at the same time which
// specify distinct values for Assoc. (See also #56105)
lt_op: |_| tcx.lifetimes.re_erased,
// Leave consts and types unchanged.
ct_op: |ct| ct,
ty_op: |ty| ty,
}),
)
};
tcx.infer_ctxt().enter(|infcx| infcx.can_eq(param_env, normalize(src), normalize(dest)).is_ok())
}
struct TypeChecker<'a, 'tcx> {
when: &'a str,
body: &'a Body<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
mir_phase: MirPhase,
reachable_blocks: BitSet<BasicBlock>,
storage_liveness: ResultsCursor<'a, 'tcx, MaybeStorageLive>,
place_cache: Vec<PlaceRef<'tcx>>,
value_cache: Vec<u128>,
}
impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
fn fail(&self, location: Location, msg: impl AsRef<str>) {
let span = self.body.source_info(location).span;
// We use `delay_span_bug` as we might see broken MIR when other errors have already
// occurred.
self.tcx.sess.diagnostic().delay_span_bug(
span,
&format!(
"broken MIR in {:?} ({}) at {:?}:\n{}",
self.body.source.instance,
self.when,
location,
msg.as_ref()
),
);
}
fn check_edge(&self, location: Location, bb: BasicBlock, edge_kind: EdgeKind) {
if bb == START_BLOCK {
self.fail(location, "start block must not have predecessors")
}
if let Some(bb) = self.body.basic_blocks().get(bb) {
let src = self.body.basic_blocks().get(location.block).unwrap();
match (src.is_cleanup, bb.is_cleanup, edge_kind) {
// Non-cleanup blocks can jump to non-cleanup blocks along non-unwind edges
(false, false, EdgeKind::Normal)
// Non-cleanup blocks can jump to cleanup blocks along unwind edges
| (false, true, EdgeKind::Unwind)
// Cleanup blocks can jump to cleanup blocks along non-unwind edges
| (true, true, EdgeKind::Normal) => {}
// All other jumps are invalid
_ => {
self.fail(
location,
format!(
"{:?} edge to {:?} violates unwind invariants (cleanup {:?} -> {:?})",
edge_kind,
bb,
src.is_cleanup,
bb.is_cleanup,
)
)
}
}
} else {
self.fail(location, format!("encountered jump to invalid basic block {:?}", bb))
}
}
/// Check if src can be assigned into dest.
/// This is not precise, it will accept some incorrect assignments.
fn mir_assign_valid_types(&self, src: Ty<'tcx>, dest: Ty<'tcx>) -> bool {
// Fast path before we normalize.
if src == dest {
// Equal types, all is good.
return true;
}
// Normalization reveals opaque types, but we may be validating MIR while computing
// said opaque types, causing cycles.
if (src, dest).has_opaque_types() {
return true;
}
// Normalize projections and things like that.
let param_env = self.param_env.with_reveal_all_normalized(self.tcx);
let src = self.tcx.normalize_erasing_regions(param_env, src);
let dest = self.tcx.normalize_erasing_regions(param_env, dest);
// Type-changing assignments can happen when subtyping is used. While
// all normal lifetimes are erased, higher-ranked types with their
// late-bound lifetimes are still around and can lead to type
// differences. So we compare ignoring lifetimes.
equal_up_to_regions(self.tcx, param_env, src, dest)
}
}
impl<'a, 'tcx> Visitor<'tcx> for TypeChecker<'a, 'tcx> {
fn visit_local(&mut self, local: &Local, context: PlaceContext, location: Location) {
if self.body.local_decls.get(*local).is_none() {
self.fail(
location,
format!("local {:?} has no corresponding declaration in `body.local_decls`", local),
);
}
if self.reachable_blocks.contains(location.block) && context.is_use() {
// Uses of locals must occur while the local's storage is allocated.
self.storage_liveness.seek_after_primary_effect(location);
let locals_with_storage = self.storage_liveness.get();
if !locals_with_storage.contains(*local) {
self.fail(location, format!("use of local {:?}, which has no storage here", local));
}
}
}
fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
// This check is somewhat expensive, so only run it when -Zvalidate-mir is passed.
if self.tcx.sess.opts.debugging_opts.validate_mir && self.mir_phase < MirPhase::DropsLowered
{
// `Operand::Copy` is only supposed to be used with `Copy` types.
if let Operand::Copy(place) = operand {
let ty = place.ty(&self.body.local_decls, self.tcx).ty;
let span = self.body.source_info(location).span;
if !ty.is_copy_modulo_regions(self.tcx.at(span), self.param_env) {
self.fail(location, format!("`Operand::Copy` with non-`Copy` type {}", ty));
}
}
}
self.super_operand(operand, location);
}
fn visit_projection_elem(
&mut self,
local: Local,
proj_base: &[PlaceElem<'tcx>],
elem: PlaceElem<'tcx>,
context: PlaceContext,
location: Location,
) {
match elem {
ProjectionElem::Index(index) => {
let index_ty = self.body.local_decls[index].ty;
if index_ty != self.tcx.types.usize {
self.fail(location, format!("bad index ({:?} != usize)", index_ty))
}
}
ProjectionElem::Deref if self.mir_phase >= MirPhase::GeneratorsLowered => {
let base_ty = Place::ty_from(local, proj_base, &self.body.local_decls, self.tcx).ty;
if base_ty.is_box() {
self.fail(
location,
format!("{:?} dereferenced after ElaborateBoxDerefs", base_ty),
)
}
}
ProjectionElem::Field(f, ty) => {
let parent = Place { local, projection: self.tcx.intern_place_elems(proj_base) };
let parent_ty = parent.ty(&self.body.local_decls, self.tcx);
let fail_out_of_bounds = |this: &Self, location| {
this.fail(location, format!("Out of bounds field {:?} for {:?}", f, parent_ty));
};
let check_equal = |this: &Self, location, f_ty| {
if !this.mir_assign_valid_types(ty, f_ty) {
this.fail(
location,
format!(
"Field projection `{:?}.{:?}` specified type `{:?}`, but actual type is {:?}",
parent, f, ty, f_ty
)
)
}
};
match parent_ty.ty.kind() {
ty::Tuple(fields) => {
let Some(f_ty) = fields.get(f.as_usize()) else {
fail_out_of_bounds(self, location);
return;
};
check_equal(self, location, *f_ty);
}
ty::Adt(adt_def, substs) => {
let var = parent_ty.variant_index.unwrap_or(VariantIdx::from_u32(0));
let Some(field) = adt_def.variant(var).fields.get(f.as_usize()) else {
fail_out_of_bounds(self, location);
return;
};
check_equal(self, location, field.ty(self.tcx, substs));
}
ty::Closure(_, substs) => {
let substs = substs.as_closure();
let Some(f_ty) = substs.upvar_tys().nth(f.as_usize()) else {
fail_out_of_bounds(self, location);
return;
};
check_equal(self, location, f_ty);
}
ty::Generator(_, substs, _) => {
let substs = substs.as_generator();
let Some(f_ty) = substs.upvar_tys().nth(f.as_usize()) else {
fail_out_of_bounds(self, location);
return;
};
check_equal(self, location, f_ty);
}
_ => {
self.fail(location, format!("{:?} does not have fields", parent_ty.ty));
}
}
}
_ => {}
}
self.super_projection_elem(local, proj_base, elem, context, location);
}
fn visit_place(&mut self, place: &Place<'tcx>, cntxt: PlaceContext, location: Location) {
// Set off any `bug!`s in the type computation code
let _ = place.ty(&self.body.local_decls, self.tcx);
if self.mir_phase >= MirPhase::Derefered
&& place.projection.len() > 1
&& cntxt != PlaceContext::NonUse(VarDebugInfo)
&& place.projection[1..].contains(&ProjectionElem::Deref)
{
self.fail(location, format!("{:?}, has deref at the wrong place", place));
}
}
fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
macro_rules! check_kinds {
($t:expr, $text:literal, $($patterns:tt)*) => {
if !matches!(($t).kind(), $($patterns)*) {
self.fail(location, format!($text, $t));
}
};
}
match rvalue {
Rvalue::Use(_) => {}
Rvalue::Aggregate(agg_kind, _) => {
let disallowed = match **agg_kind {
AggregateKind::Array(..) => false,
AggregateKind::Generator(..) => self.mir_phase >= MirPhase::GeneratorsLowered,
_ => self.mir_phase >= MirPhase::Deaggregated,
};
if disallowed {
self.fail(
location,
format!("{:?} have been lowered to field assignments", rvalue),
)
}
}
Rvalue::Ref(_, BorrowKind::Shallow, _) => {
if self.mir_phase >= MirPhase::DropsLowered {
self.fail(
location,
"`Assign` statement with a `Shallow` borrow should have been removed after drop lowering phase",
);
}
}
Rvalue::Len(p) => {
let pty = p.ty(&self.body.local_decls, self.tcx).ty;
check_kinds!(
pty,
"Cannot compute length of non-array type {:?}",
ty::Array(..) | ty::Slice(..)
);
}
Rvalue::BinaryOp(op, vals) => {
use BinOp::*;
let a = vals.0.ty(&self.body.local_decls, self.tcx);
let b = vals.1.ty(&self.body.local_decls, self.tcx);
match op {
Offset => {
check_kinds!(a, "Cannot offset non-pointer type {:?}", ty::RawPtr(..));
if b != self.tcx.types.isize && b != self.tcx.types.usize {
self.fail(location, format!("Cannot offset by non-isize type {:?}", b));
}
}
Eq | Lt | Le | Ne | Ge | Gt => {
for x in [a, b] {
check_kinds!(
x,
"Cannot compare type {:?}",
ty::Bool
| ty::Char
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..)
| ty::RawPtr(..)
| ty::FnPtr(..)
)
}
// The function pointer types can have lifetimes
if !self.mir_assign_valid_types(a, b) {
self.fail(
location,
format!("Cannot compare unequal types {:?} and {:?}", a, b),
);
}
}
Shl | Shr => {
for x in [a, b] {
check_kinds!(
x,
"Cannot shift non-integer type {:?}",
ty::Uint(..) | ty::Int(..)
)
}
}
BitAnd | BitOr | BitXor => {
for x in [a, b] {
check_kinds!(
x,
"Cannot perform bitwise op on type {:?}",
ty::Uint(..) | ty::Int(..) | ty::Bool
)
}
if a != b {
self.fail(
location,
format!(
"Cannot perform bitwise op on unequal types {:?} and {:?}",
a, b
),
);
}
}
Add | Sub | Mul | Div | Rem => {
for x in [a, b] {
check_kinds!(
x,
"Cannot perform arithmetic on type {:?}",
ty::Uint(..) | ty::Int(..) | ty::Float(..)
)
}
if a != b {
self.fail(
location,
format!(
"Cannot perform arithmetic on unequal types {:?} and {:?}",
a, b
),
);
}
}
}
}
Rvalue::CheckedBinaryOp(op, vals) => {
use BinOp::*;
let a = vals.0.ty(&self.body.local_decls, self.tcx);
let b = vals.1.ty(&self.body.local_decls, self.tcx);
match op {
Add | Sub | Mul => {
for x in [a, b] {
check_kinds!(
x,
"Cannot perform checked arithmetic on type {:?}",
ty::Uint(..) | ty::Int(..)
)
}
if a != b {
self.fail(
location,
format!(
"Cannot perform checked arithmetic on unequal types {:?} and {:?}",
a, b
),
);
}
}
Shl | Shr => {
for x in [a, b] {
check_kinds!(
x,
"Cannot perform checked shift on non-integer type {:?}",
ty::Uint(..) | ty::Int(..)
)
}
}
_ => self.fail(location, format!("There is no checked version of {:?}", op)),
}
}
Rvalue::UnaryOp(op, operand) => {
let a = operand.ty(&self.body.local_decls, self.tcx);
match op {
UnOp::Neg => {
check_kinds!(a, "Cannot negate type {:?}", ty::Int(..) | ty::Float(..))
}
UnOp::Not => {
check_kinds!(
a,
"Cannot binary not type {:?}",
ty::Int(..) | ty::Uint(..) | ty::Bool
);
}
}
}
Rvalue::ShallowInitBox(operand, _) => {
let a = operand.ty(&self.body.local_decls, self.tcx);
check_kinds!(a, "Cannot shallow init type {:?}", ty::RawPtr(..));
}
_ => {}
}
self.super_rvalue(rvalue, location);
}
fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
match &statement.kind {
StatementKind::Assign(box (dest, rvalue)) => {
// LHS and RHS of the assignment must have the same type.
let left_ty = dest.ty(&self.body.local_decls, self.tcx).ty;
let right_ty = rvalue.ty(&self.body.local_decls, self.tcx);
if !self.mir_assign_valid_types(right_ty, left_ty) {
self.fail(
location,
format!(
"encountered `{:?}` with incompatible types:\n\
left-hand side has type: {}\n\
right-hand side has type: {}",
statement.kind, left_ty, right_ty,
),
);
}
// FIXME(JakobDegen): Check this for all rvalues, not just this one.
if let Rvalue::Use(Operand::Copy(src) | Operand::Move(src)) = rvalue {
// The sides of an assignment must not alias. Currently this just checks whether
// the places are identical.
if dest == src {
self.fail(
location,
"encountered `Assign` statement with overlapping memory",
);
}
}
}
StatementKind::AscribeUserType(..) => {
if self.mir_phase >= MirPhase::DropsLowered {
self.fail(
location,
"`AscribeUserType` should have been removed after drop lowering phase",
);
}
}
StatementKind::FakeRead(..) => {
if self.mir_phase >= MirPhase::DropsLowered {
self.fail(
location,
"`FakeRead` should have been removed after drop lowering phase",
);
}
}
StatementKind::CopyNonOverlapping(box rustc_middle::mir::CopyNonOverlapping {
ref src,
ref dst,
ref count,
}) => {
let src_ty = src.ty(&self.body.local_decls, self.tcx);
let op_src_ty = if let Some(src_deref) = src_ty.builtin_deref(true) {
src_deref.ty
} else {
self.fail(
location,
format!("Expected src to be ptr in copy_nonoverlapping, got: {}", src_ty),
);
return;
};
let dst_ty = dst.ty(&self.body.local_decls, self.tcx);
let op_dst_ty = if let Some(dst_deref) = dst_ty.builtin_deref(true) {
dst_deref.ty
} else {
self.fail(
location,
format!("Expected dst to be ptr in copy_nonoverlapping, got: {}", dst_ty),
);
return;
};
// since CopyNonOverlapping is parametrized by 1 type,
// we only need to check that they are equal and not keep an extra parameter.
if !self.mir_assign_valid_types(op_src_ty, op_dst_ty) {
self.fail(location, format!("bad arg ({:?} != {:?})", op_src_ty, op_dst_ty));
}
let op_cnt_ty = count.ty(&self.body.local_decls, self.tcx);
if op_cnt_ty != self.tcx.types.usize {
self.fail(location, format!("bad arg ({:?} != usize)", op_cnt_ty))
}
}
StatementKind::SetDiscriminant { place, .. } => {
if self.mir_phase < MirPhase::Deaggregated {
self.fail(location, "`SetDiscriminant`is not allowed until deaggregation");
}
let pty = place.ty(&self.body.local_decls, self.tcx).ty.kind();
if !matches!(pty, ty::Adt(..) | ty::Generator(..) | ty::Opaque(..)) {
self.fail(
location,
format!(
"`SetDiscriminant` is only allowed on ADTs and generators, not {:?}",
pty
),
);
}
}
StatementKind::Deinit(..) => {
if self.mir_phase < MirPhase::Deaggregated {
self.fail(location, "`Deinit`is not allowed until deaggregation");
}
}
StatementKind::Retag(_, _) => {
// FIXME(JakobDegen) The validator should check that `self.mir_phase <
// DropsLowered`. However, this causes ICEs with generation of drop shims, which
// seem to fail to set their `MirPhase` correctly.
}
StatementKind::StorageLive(..)
| StatementKind::StorageDead(..)
| StatementKind::Coverage(_)
| StatementKind::Nop => {}
}
self.super_statement(statement, location);
}
fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
match &terminator.kind {
TerminatorKind::Goto { target } => {
self.check_edge(location, *target, EdgeKind::Normal);
}
TerminatorKind::SwitchInt { targets, switch_ty, discr } => {
let ty = discr.ty(&self.body.local_decls, self.tcx);
if ty != *switch_ty {
self.fail(
location,
format!(
"encountered `SwitchInt` terminator with type mismatch: {:?} != {:?}",
ty, switch_ty,
),
);
}
let target_width = self.tcx.sess.target.pointer_width;
let size = Size::from_bits(match switch_ty.kind() {
ty::Uint(uint) => uint.normalize(target_width).bit_width().unwrap(),
ty::Int(int) => int.normalize(target_width).bit_width().unwrap(),
ty::Char => 32,
ty::Bool => 1,
other => bug!("unhandled type: {:?}", other),
});
for (value, target) in targets.iter() {
if Scalar::<()>::try_from_uint(value, size).is_none() {
self.fail(
location,
format!("the value {:#x} is not a proper {:?}", value, switch_ty),
)
}
self.check_edge(location, target, EdgeKind::Normal);
}
self.check_edge(location, targets.otherwise(), EdgeKind::Normal);
self.value_cache.clear();
self.value_cache.extend(targets.iter().map(|(value, _)| value));
let all_len = self.value_cache.len();
self.value_cache.sort_unstable();
self.value_cache.dedup();
let has_duplicates = all_len != self.value_cache.len();
if has_duplicates {
self.fail(
location,
format!(
"duplicated values in `SwitchInt` terminator: {:?}",
terminator.kind,
),
);
}
}
TerminatorKind::Drop { target, unwind, .. } => {
self.check_edge(location, *target, EdgeKind::Normal);
if let Some(unwind) = unwind {
self.check_edge(location, *unwind, EdgeKind::Unwind);
}
}
TerminatorKind::DropAndReplace { target, unwind, .. } => {
if self.mir_phase >= MirPhase::DropsLowered {
self.fail(
location,
"`DropAndReplace` should have been removed during drop elaboration",
);
}
self.check_edge(location, *target, EdgeKind::Normal);
if let Some(unwind) = unwind {
self.check_edge(location, *unwind, EdgeKind::Unwind);
}
}
TerminatorKind::Call { func, args, destination, target, cleanup, .. } => {
let func_ty = func.ty(&self.body.local_decls, self.tcx);
match func_ty.kind() {
ty::FnPtr(..) | ty::FnDef(..) => {}
_ => self.fail(
location,
format!("encountered non-callable type {} in `Call` terminator", func_ty),
),
}
if let Some(target) = target {
self.check_edge(location, *target, EdgeKind::Normal);
}
if let Some(cleanup) = cleanup {
self.check_edge(location, *cleanup, EdgeKind::Unwind);
}
// The call destination place and Operand::Move place used as an argument might be
// passed by a reference to the callee. Consequently they must be non-overlapping.
// Currently this simply checks for duplicate places.
self.place_cache.clear();
self.place_cache.push(destination.as_ref());
for arg in args {
if let Operand::Move(place) = arg {
self.place_cache.push(place.as_ref());
}
}
let all_len = self.place_cache.len();
let mut dedup = FxHashSet::default();
self.place_cache.retain(|p| dedup.insert(*p));
let has_duplicates = all_len != self.place_cache.len();
if has_duplicates {
self.fail(
location,
format!(
"encountered overlapping memory in `Call` terminator: {:?}",
terminator.kind,
),
);
}
}
TerminatorKind::Assert { cond, target, cleanup, .. } => {
let cond_ty = cond.ty(&self.body.local_decls, self.tcx);
if cond_ty != self.tcx.types.bool {
self.fail(
location,
format!(
"encountered non-boolean condition of type {} in `Assert` terminator",
cond_ty
),
);
}
self.check_edge(location, *target, EdgeKind::Normal);
if let Some(cleanup) = cleanup {
self.check_edge(location, *cleanup, EdgeKind::Unwind);
}
}
TerminatorKind::Yield { resume, drop, .. } => {
if self.body.generator.is_none() {
self.fail(location, "`Yield` cannot appear outside generator bodies");
}
if self.mir_phase >= MirPhase::GeneratorsLowered {
self.fail(location, "`Yield` should have been replaced by generator lowering");
}
self.check_edge(location, *resume, EdgeKind::Normal);
if let Some(drop) = drop {
self.check_edge(location, *drop, EdgeKind::Normal);
}
}
TerminatorKind::FalseEdge { real_target, imaginary_target } => {
if self.mir_phase >= MirPhase::DropsLowered {
self.fail(
location,
"`FalseEdge` should have been removed after drop elaboration",
);
}
self.check_edge(location, *real_target, EdgeKind::Normal);
self.check_edge(location, *imaginary_target, EdgeKind::Normal);
}
TerminatorKind::FalseUnwind { real_target, unwind } => {
if self.mir_phase >= MirPhase::DropsLowered {
self.fail(
location,
"`FalseUnwind` should have been removed after drop elaboration",
);
}
self.check_edge(location, *real_target, EdgeKind::Normal);
if let Some(unwind) = unwind {
self.check_edge(location, *unwind, EdgeKind::Unwind);
}
}
TerminatorKind::InlineAsm { destination, cleanup, .. } => {
if let Some(destination) = destination {
self.check_edge(location, *destination, EdgeKind::Normal);
}
if let Some(cleanup) = cleanup {
self.check_edge(location, *cleanup, EdgeKind::Unwind);
}
}
TerminatorKind::GeneratorDrop => {
if self.body.generator.is_none() {
self.fail(location, "`GeneratorDrop` cannot appear outside generator bodies");
}
if self.mir_phase >= MirPhase::GeneratorsLowered {
self.fail(
location,
"`GeneratorDrop` should have been replaced by generator lowering",
);
}
}
TerminatorKind::Resume | TerminatorKind::Abort => {
let bb = location.block;
if !self.body.basic_blocks()[bb].is_cleanup {
self.fail(location, "Cannot `Resume` or `Abort` from non-cleanup basic block")
}
}
TerminatorKind::Return => {
let bb = location.block;
if self.body.basic_blocks()[bb].is_cleanup {
self.fail(location, "Cannot `Return` from cleanup basic block")
}
}
TerminatorKind::Unreachable => {}
}
self.super_terminator(terminator, location);
}
fn visit_source_scope(&mut self, scope: &SourceScope) {
if self.body.source_scopes.get(*scope).is_none() {
self.tcx.sess.diagnostic().delay_span_bug(
self.body.span,
&format!(
"broken MIR in {:?} ({}):\ninvalid source scope {:?}",
self.body.source.instance, self.when, scope,
),
);
}
}
}