| use crate::fx::{FxHashMap, FxHasher}; |
| use crate::sync::{Lock, LockGuard}; |
| use std::borrow::Borrow; |
| use std::collections::hash_map::RawEntryMut; |
| use std::hash::{Hash, Hasher}; |
| use std::mem; |
| |
| #[derive(Clone, Default)] |
| #[cfg_attr(parallel_compiler, repr(align(64)))] |
| struct CacheAligned<T>(T); |
| |
| #[cfg(parallel_compiler)] |
| // 32 shards is sufficient to reduce contention on an 8-core Ryzen 7 1700, |
| // but this should be tested on higher core count CPUs. How the `Sharded` type gets used |
| // may also affect the ideal number of shards. |
| const SHARD_BITS: usize = 5; |
| |
| #[cfg(not(parallel_compiler))] |
| const SHARD_BITS: usize = 0; |
| |
| pub const SHARDS: usize = 1 << SHARD_BITS; |
| |
| /// An array of cache-line aligned inner locked structures with convenience methods. |
| #[derive(Clone)] |
| pub struct Sharded<T> { |
| shards: [CacheAligned<Lock<T>>; SHARDS], |
| } |
| |
| impl<T: Default> Default for Sharded<T> { |
| #[inline] |
| fn default() -> Self { |
| Self::new(T::default) |
| } |
| } |
| |
| impl<T> Sharded<T> { |
| #[inline] |
| pub fn new(mut value: impl FnMut() -> T) -> Self { |
| Sharded { shards: [(); SHARDS].map(|()| CacheAligned(Lock::new(value()))) } |
| } |
| |
| /// The shard is selected by hashing `val` with `FxHasher`. |
| #[inline] |
| pub fn get_shard_by_value<K: Hash + ?Sized>(&self, val: &K) -> &Lock<T> { |
| if SHARDS == 1 { &self.shards[0].0 } else { self.get_shard_by_hash(make_hash(val)) } |
| } |
| |
| #[inline] |
| pub fn get_shard_by_hash(&self, hash: u64) -> &Lock<T> { |
| &self.shards[get_shard_index_by_hash(hash)].0 |
| } |
| |
| #[inline] |
| pub fn get_shard_by_index(&self, i: usize) -> &Lock<T> { |
| &self.shards[i].0 |
| } |
| |
| pub fn lock_shards(&self) -> Vec<LockGuard<'_, T>> { |
| (0..SHARDS).map(|i| self.shards[i].0.lock()).collect() |
| } |
| |
| pub fn try_lock_shards(&self) -> Option<Vec<LockGuard<'_, T>>> { |
| (0..SHARDS).map(|i| self.shards[i].0.try_lock()).collect() |
| } |
| } |
| |
| pub type ShardedHashMap<K, V> = Sharded<FxHashMap<K, V>>; |
| |
| impl<K: Eq, V> ShardedHashMap<K, V> { |
| pub fn len(&self) -> usize { |
| self.lock_shards().iter().map(|shard| shard.len()).sum() |
| } |
| } |
| |
| impl<K: Eq + Hash + Copy> ShardedHashMap<K, ()> { |
| #[inline] |
| pub fn intern_ref<Q: ?Sized>(&self, value: &Q, make: impl FnOnce() -> K) -> K |
| where |
| K: Borrow<Q>, |
| Q: Hash + Eq, |
| { |
| let hash = make_hash(value); |
| let mut shard = self.get_shard_by_hash(hash).lock(); |
| let entry = shard.raw_entry_mut().from_key_hashed_nocheck(hash, value); |
| |
| match entry { |
| RawEntryMut::Occupied(e) => *e.key(), |
| RawEntryMut::Vacant(e) => { |
| let v = make(); |
| e.insert_hashed_nocheck(hash, v, ()); |
| v |
| } |
| } |
| } |
| |
| #[inline] |
| pub fn intern<Q>(&self, value: Q, make: impl FnOnce(Q) -> K) -> K |
| where |
| K: Borrow<Q>, |
| Q: Hash + Eq, |
| { |
| let hash = make_hash(&value); |
| let mut shard = self.get_shard_by_hash(hash).lock(); |
| let entry = shard.raw_entry_mut().from_key_hashed_nocheck(hash, &value); |
| |
| match entry { |
| RawEntryMut::Occupied(e) => *e.key(), |
| RawEntryMut::Vacant(e) => { |
| let v = make(value); |
| e.insert_hashed_nocheck(hash, v, ()); |
| v |
| } |
| } |
| } |
| } |
| |
| pub trait IntoPointer { |
| /// Returns a pointer which outlives `self`. |
| fn into_pointer(&self) -> *const (); |
| } |
| |
| impl<K: Eq + Hash + Copy + IntoPointer> ShardedHashMap<K, ()> { |
| pub fn contains_pointer_to<T: Hash + IntoPointer>(&self, value: &T) -> bool { |
| let hash = make_hash(&value); |
| let shard = self.get_shard_by_hash(hash).lock(); |
| let value = value.into_pointer(); |
| shard.raw_entry().from_hash(hash, |entry| entry.into_pointer() == value).is_some() |
| } |
| } |
| |
| #[inline] |
| pub fn make_hash<K: Hash + ?Sized>(val: &K) -> u64 { |
| let mut state = FxHasher::default(); |
| val.hash(&mut state); |
| state.finish() |
| } |
| |
| /// Get a shard with a pre-computed hash value. If `get_shard_by_value` is |
| /// ever used in combination with `get_shard_by_hash` on a single `Sharded` |
| /// instance, then `hash` must be computed with `FxHasher`. Otherwise, |
| /// `hash` can be computed with any hasher, so long as that hasher is used |
| /// consistently for each `Sharded` instance. |
| #[inline] |
| pub fn get_shard_index_by_hash(hash: u64) -> usize { |
| let hash_len = mem::size_of::<usize>(); |
| // Ignore the top 7 bits as hashbrown uses these and get the next SHARD_BITS highest bits. |
| // hashbrown also uses the lowest bits, so we can't use those |
| let bits = (hash >> (hash_len * 8 - 7 - SHARD_BITS)) as usize; |
| bits % SHARDS |
| } |