blob: 738d47ba2968136921bc8a2e2a99b6bc64c7b851 [file] [log] [blame]
use crate::hir::{ModuleItems, Owner};
use crate::ty::{DefIdTree, TyCtxt};
use rustc_ast as ast;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::svh::Svh;
use rustc_data_structures::sync::{par_for_each_in, Send, Sync};
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_ID, LOCAL_CRATE};
use rustc_hir::definitions::{DefKey, DefPath, DefPathHash};
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::*;
use rustc_index::vec::Idx;
use rustc_middle::hir::nested_filter;
use rustc_span::def_id::StableCrateId;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::Span;
use rustc_target::spec::abi::Abi;
fn fn_decl<'hir>(node: Node<'hir>) -> Option<&'hir FnDecl<'hir>> {
match node {
Node::Item(Item { kind: ItemKind::Fn(sig, _, _), .. })
| Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(sig, _), .. })
| Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(sig, _), .. }) => Some(&sig.decl),
Node::Expr(Expr { kind: ExprKind::Closure { fn_decl, .. }, .. })
| Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(fn_decl, ..), .. }) => {
Some(fn_decl)
}
_ => None,
}
}
pub fn fn_sig<'hir>(node: Node<'hir>) -> Option<&'hir FnSig<'hir>> {
match &node {
Node::Item(Item { kind: ItemKind::Fn(sig, _, _), .. })
| Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(sig, _), .. })
| Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(sig, _), .. }) => Some(sig),
_ => None,
}
}
pub fn associated_body<'hir>(node: Node<'hir>) -> Option<BodyId> {
match node {
Node::Item(Item {
kind: ItemKind::Const(_, body) | ItemKind::Static(.., body) | ItemKind::Fn(.., body),
..
})
| Node::TraitItem(TraitItem {
kind:
TraitItemKind::Const(_, Some(body)) | TraitItemKind::Fn(_, TraitFn::Provided(body)),
..
})
| Node::ImplItem(ImplItem {
kind: ImplItemKind::Const(_, body) | ImplItemKind::Fn(_, body),
..
})
| Node::Expr(Expr { kind: ExprKind::Closure { body, .. }, .. }) => Some(*body),
Node::AnonConst(constant) => Some(constant.body),
_ => None,
}
}
fn is_body_owner<'hir>(node: Node<'hir>, hir_id: HirId) -> bool {
match associated_body(node) {
Some(b) => b.hir_id == hir_id,
None => false,
}
}
#[derive(Copy, Clone)]
pub struct Map<'hir> {
pub(super) tcx: TyCtxt<'hir>,
}
/// An iterator that walks up the ancestor tree of a given `HirId`.
/// Constructed using `tcx.hir().parent_iter(hir_id)`.
pub struct ParentHirIterator<'hir> {
current_id: HirId,
map: Map<'hir>,
}
impl<'hir> Iterator for ParentHirIterator<'hir> {
type Item = (HirId, Node<'hir>);
fn next(&mut self) -> Option<Self::Item> {
if self.current_id == CRATE_HIR_ID {
return None;
}
loop {
// There are nodes that do not have entries, so we need to skip them.
let parent_id = self.map.get_parent_node(self.current_id);
if parent_id == self.current_id {
self.current_id = CRATE_HIR_ID;
return None;
}
self.current_id = parent_id;
if let Some(node) = self.map.find(parent_id) {
return Some((parent_id, node));
}
// If this `HirId` doesn't have an entry, skip it and look for its `parent_id`.
}
}
}
/// An iterator that walks up the ancestor tree of a given `HirId`.
/// Constructed using `tcx.hir().parent_owner_iter(hir_id)`.
pub struct ParentOwnerIterator<'hir> {
current_id: HirId,
map: Map<'hir>,
}
impl<'hir> Iterator for ParentOwnerIterator<'hir> {
type Item = (LocalDefId, OwnerNode<'hir>);
fn next(&mut self) -> Option<Self::Item> {
if self.current_id.local_id.index() != 0 {
self.current_id.local_id = ItemLocalId::new(0);
if let Some(node) = self.map.tcx.hir_owner(self.current_id.owner) {
return Some((self.current_id.owner, node.node));
}
}
if self.current_id == CRATE_HIR_ID {
return None;
}
loop {
// There are nodes that do not have entries, so we need to skip them.
let parent_id = self.map.def_key(self.current_id.owner).parent;
let parent_id = parent_id.map_or(CRATE_HIR_ID.owner, |local_def_index| {
let def_id = LocalDefId { local_def_index };
self.map.local_def_id_to_hir_id(def_id).owner
});
self.current_id = HirId::make_owner(parent_id);
// If this `HirId` doesn't have an entry, skip it and look for its `parent_id`.
if let Some(node) = self.map.tcx.hir_owner(self.current_id.owner) {
return Some((self.current_id.owner, node.node));
}
}
}
}
impl<'hir> Map<'hir> {
pub fn krate(self) -> &'hir Crate<'hir> {
self.tcx.hir_crate(())
}
pub fn root_module(self) -> &'hir Mod<'hir> {
match self.tcx.hir_owner(CRATE_DEF_ID).map(|o| o.node) {
Some(OwnerNode::Crate(item)) => item,
_ => bug!(),
}
}
pub fn items(self) -> impl Iterator<Item = ItemId> + 'hir {
self.tcx.hir_crate_items(()).items.iter().copied()
}
pub fn module_items(self, module: LocalDefId) -> impl Iterator<Item = ItemId> + 'hir {
self.tcx.hir_module_items(module).items()
}
pub fn par_for_each_item(self, f: impl Fn(ItemId) + Sync + Send) {
par_for_each_in(&self.tcx.hir_crate_items(()).items[..], |id| f(*id));
}
pub fn def_key(self, def_id: LocalDefId) -> DefKey {
// Accessing the DefKey is ok, since it is part of DefPathHash.
self.tcx.definitions_untracked().def_key(def_id)
}
pub fn def_path_from_hir_id(self, id: HirId) -> Option<DefPath> {
self.opt_local_def_id(id).map(|def_id| self.def_path(def_id))
}
pub fn def_path(self, def_id: LocalDefId) -> DefPath {
// Accessing the DefPath is ok, since it is part of DefPathHash.
self.tcx.definitions_untracked().def_path(def_id)
}
#[inline]
pub fn def_path_hash(self, def_id: LocalDefId) -> DefPathHash {
// Accessing the DefPathHash is ok, it is incr. comp. stable.
self.tcx.definitions_untracked().def_path_hash(def_id)
}
#[inline]
pub fn local_def_id(self, hir_id: HirId) -> LocalDefId {
self.opt_local_def_id(hir_id).unwrap_or_else(|| {
bug!(
"local_def_id: no entry for `{:?}`, which has a map of `{:?}`",
hir_id,
self.find(hir_id)
)
})
}
#[inline]
pub fn opt_local_def_id(self, hir_id: HirId) -> Option<LocalDefId> {
if hir_id.local_id == ItemLocalId::new(0) {
Some(hir_id.owner)
} else {
self.tcx
.hir_owner_nodes(hir_id.owner)
.as_owner()?
.local_id_to_def_id
.get(&hir_id.local_id)
.copied()
}
}
#[inline]
pub fn local_def_id_to_hir_id(self, def_id: LocalDefId) -> HirId {
self.tcx.local_def_id_to_hir_id(def_id)
}
pub fn iter_local_def_id(self) -> impl Iterator<Item = LocalDefId> + 'hir {
// Create a dependency to the crate to be sure we re-execute this when the amount of
// definitions change.
self.tcx.ensure().hir_crate(());
self.tcx.definitions_untracked().iter_local_def_id()
}
pub fn opt_def_kind(self, local_def_id: LocalDefId) -> Option<DefKind> {
let hir_id = self.local_def_id_to_hir_id(local_def_id);
let def_kind = match self.find(hir_id)? {
Node::Item(item) => match item.kind {
ItemKind::Static(_, mt, _) => DefKind::Static(mt),
ItemKind::Const(..) => DefKind::Const,
ItemKind::Fn(..) => DefKind::Fn,
ItemKind::Macro(_, macro_kind) => DefKind::Macro(macro_kind),
ItemKind::Mod(..) => DefKind::Mod,
ItemKind::OpaqueTy(..) => DefKind::OpaqueTy,
ItemKind::TyAlias(..) => DefKind::TyAlias,
ItemKind::Enum(..) => DefKind::Enum,
ItemKind::Struct(..) => DefKind::Struct,
ItemKind::Union(..) => DefKind::Union,
ItemKind::Trait(..) => DefKind::Trait,
ItemKind::TraitAlias(..) => DefKind::TraitAlias,
ItemKind::ExternCrate(_) => DefKind::ExternCrate,
ItemKind::Use(..) => DefKind::Use,
ItemKind::ForeignMod { .. } => DefKind::ForeignMod,
ItemKind::GlobalAsm(..) => DefKind::GlobalAsm,
ItemKind::Impl { .. } => DefKind::Impl,
},
Node::ForeignItem(item) => match item.kind {
ForeignItemKind::Fn(..) => DefKind::Fn,
ForeignItemKind::Static(_, mt) => DefKind::Static(mt),
ForeignItemKind::Type => DefKind::ForeignTy,
},
Node::TraitItem(item) => match item.kind {
TraitItemKind::Const(..) => DefKind::AssocConst,
TraitItemKind::Fn(..) => DefKind::AssocFn,
TraitItemKind::Type(..) => DefKind::AssocTy,
},
Node::ImplItem(item) => match item.kind {
ImplItemKind::Const(..) => DefKind::AssocConst,
ImplItemKind::Fn(..) => DefKind::AssocFn,
ImplItemKind::TyAlias(..) => DefKind::AssocTy,
},
Node::Variant(_) => DefKind::Variant,
Node::Ctor(variant_data) => {
// FIXME(eddyb) is this even possible, if we have a `Node::Ctor`?
assert_ne!(variant_data.ctor_hir_id(), None);
let ctor_of = match self.find(self.get_parent_node(hir_id)) {
Some(Node::Item(..)) => def::CtorOf::Struct,
Some(Node::Variant(..)) => def::CtorOf::Variant,
_ => unreachable!(),
};
DefKind::Ctor(ctor_of, def::CtorKind::from_hir(variant_data))
}
Node::AnonConst(_) => {
let inline = match self.find(self.get_parent_node(hir_id)) {
Some(Node::Expr(&Expr {
kind: ExprKind::ConstBlock(ref anon_const), ..
})) if anon_const.hir_id == hir_id => true,
_ => false,
};
if inline { DefKind::InlineConst } else { DefKind::AnonConst }
}
Node::Field(_) => DefKind::Field,
Node::Expr(expr) => match expr.kind {
ExprKind::Closure { movability: None, .. } => DefKind::Closure,
ExprKind::Closure { movability: Some(_), .. } => DefKind::Generator,
_ => bug!("def_kind: unsupported node: {}", self.node_to_string(hir_id)),
},
Node::GenericParam(param) => match param.kind {
GenericParamKind::Lifetime { .. } => DefKind::LifetimeParam,
GenericParamKind::Type { .. } => DefKind::TyParam,
GenericParamKind::Const { .. } => DefKind::ConstParam,
},
Node::Crate(_) => DefKind::Mod,
Node::Stmt(_)
| Node::PathSegment(_)
| Node::Ty(_)
| Node::TypeBinding(_)
| Node::Infer(_)
| Node::TraitRef(_)
| Node::Pat(_)
| Node::Binding(_)
| Node::Local(_)
| Node::Param(_)
| Node::Arm(_)
| Node::Lifetime(_)
| Node::Block(_) => return None,
};
Some(def_kind)
}
pub fn find_parent_node(self, id: HirId) -> Option<HirId> {
if id.local_id == ItemLocalId::from_u32(0) {
Some(self.tcx.hir_owner_parent(id.owner))
} else {
let owner = self.tcx.hir_owner_nodes(id.owner).as_owner()?;
let node = owner.nodes[id.local_id].as_ref()?;
let hir_id = HirId { owner: id.owner, local_id: node.parent };
Some(hir_id)
}
}
pub fn get_parent_node(self, hir_id: HirId) -> HirId {
self.find_parent_node(hir_id)
.unwrap_or_else(|| bug!("No parent for node {:?}", self.node_to_string(hir_id)))
}
/// Retrieves the `Node` corresponding to `id`, returning `None` if cannot be found.
pub fn find(self, id: HirId) -> Option<Node<'hir>> {
if id.local_id == ItemLocalId::from_u32(0) {
let owner = self.tcx.hir_owner(id.owner)?;
Some(owner.node.into())
} else {
let owner = self.tcx.hir_owner_nodes(id.owner).as_owner()?;
let node = owner.nodes[id.local_id].as_ref()?;
Some(node.node)
}
}
/// Retrieves the `Node` corresponding to `id`, returning `None` if cannot be found.
#[inline]
pub fn find_by_def_id(self, id: LocalDefId) -> Option<Node<'hir>> {
self.find(self.local_def_id_to_hir_id(id))
}
/// Retrieves the `Node` corresponding to `id`, panicking if it cannot be found.
pub fn get(self, id: HirId) -> Node<'hir> {
self.find(id).unwrap_or_else(|| bug!("couldn't find hir id {} in the HIR map", id))
}
/// Retrieves the `Node` corresponding to `id`, panicking if it cannot be found.
#[inline]
pub fn get_by_def_id(self, id: LocalDefId) -> Node<'hir> {
self.find_by_def_id(id).unwrap_or_else(|| bug!("couldn't find {:?} in the HIR map", id))
}
pub fn get_if_local(self, id: DefId) -> Option<Node<'hir>> {
id.as_local().and_then(|id| self.find(self.local_def_id_to_hir_id(id)))
}
pub fn get_generics(self, id: LocalDefId) -> Option<&'hir Generics<'hir>> {
let node = self.tcx.hir_owner(id)?;
node.node.generics()
}
pub fn item(self, id: ItemId) -> &'hir Item<'hir> {
self.tcx.hir_owner(id.def_id).unwrap().node.expect_item()
}
pub fn trait_item(self, id: TraitItemId) -> &'hir TraitItem<'hir> {
self.tcx.hir_owner(id.def_id).unwrap().node.expect_trait_item()
}
pub fn impl_item(self, id: ImplItemId) -> &'hir ImplItem<'hir> {
self.tcx.hir_owner(id.def_id).unwrap().node.expect_impl_item()
}
pub fn foreign_item(self, id: ForeignItemId) -> &'hir ForeignItem<'hir> {
self.tcx.hir_owner(id.def_id).unwrap().node.expect_foreign_item()
}
pub fn body(self, id: BodyId) -> &'hir Body<'hir> {
self.tcx.hir_owner_nodes(id.hir_id.owner).unwrap().bodies[&id.hir_id.local_id]
}
pub fn fn_decl_by_hir_id(self, hir_id: HirId) -> Option<&'hir FnDecl<'hir>> {
if let Some(node) = self.find(hir_id) {
fn_decl(node)
} else {
bug!("no node for hir_id `{}`", hir_id)
}
}
pub fn fn_sig_by_hir_id(self, hir_id: HirId) -> Option<&'hir FnSig<'hir>> {
if let Some(node) = self.find(hir_id) {
fn_sig(node)
} else {
bug!("no node for hir_id `{}`", hir_id)
}
}
pub fn enclosing_body_owner(self, hir_id: HirId) -> HirId {
for (parent, _) in self.parent_iter(hir_id) {
if let Some(body) = self.maybe_body_owned_by(parent) {
return self.body_owner(body);
}
}
bug!("no `enclosing_body_owner` for hir_id `{}`", hir_id);
}
/// Returns the `HirId` that corresponds to the definition of
/// which this is the body of, i.e., a `fn`, `const` or `static`
/// item (possibly associated), a closure, or a `hir::AnonConst`.
pub fn body_owner(self, BodyId { hir_id }: BodyId) -> HirId {
let parent = self.get_parent_node(hir_id);
assert!(self.find(parent).map_or(false, |n| is_body_owner(n, hir_id)));
parent
}
pub fn body_owner_def_id(self, id: BodyId) -> LocalDefId {
self.local_def_id(self.body_owner(id))
}
/// Given a `HirId`, returns the `BodyId` associated with it,
/// if the node is a body owner, otherwise returns `None`.
pub fn maybe_body_owned_by(self, hir_id: HirId) -> Option<BodyId> {
self.find(hir_id).map(associated_body).flatten()
}
/// Given a body owner's id, returns the `BodyId` associated with it.
pub fn body_owned_by(self, id: HirId) -> BodyId {
self.maybe_body_owned_by(id).unwrap_or_else(|| {
span_bug!(
self.span(id),
"body_owned_by: {} has no associated body",
self.node_to_string(id)
);
})
}
pub fn body_param_names(self, id: BodyId) -> impl Iterator<Item = Ident> + 'hir {
self.body(id).params.iter().map(|arg| match arg.pat.kind {
PatKind::Binding(_, _, ident, _) => ident,
_ => Ident::empty(),
})
}
/// Returns the `BodyOwnerKind` of this `LocalDefId`.
///
/// Panics if `LocalDefId` does not have an associated body.
pub fn body_owner_kind(self, def_id: LocalDefId) -> BodyOwnerKind {
match self.tcx.def_kind(def_id) {
DefKind::Const | DefKind::AssocConst | DefKind::InlineConst | DefKind::AnonConst => {
BodyOwnerKind::Const
}
DefKind::Ctor(..) | DefKind::Fn | DefKind::AssocFn => BodyOwnerKind::Fn,
DefKind::Closure | DefKind::Generator => BodyOwnerKind::Closure,
DefKind::Static(mt) => BodyOwnerKind::Static(mt),
dk => bug!("{:?} is not a body node: {:?}", def_id, dk),
}
}
/// Returns the `ConstContext` of the body associated with this `LocalDefId`.
///
/// Panics if `LocalDefId` does not have an associated body.
///
/// This should only be used for determining the context of a body, a return
/// value of `Some` does not always suggest that the owner of the body is `const`,
/// just that it has to be checked as if it were.
pub fn body_const_context(self, def_id: LocalDefId) -> Option<ConstContext> {
let ccx = match self.body_owner_kind(def_id) {
BodyOwnerKind::Const => ConstContext::Const,
BodyOwnerKind::Static(mt) => ConstContext::Static(mt),
BodyOwnerKind::Fn if self.tcx.is_constructor(def_id.to_def_id()) => return None,
BodyOwnerKind::Fn if self.tcx.is_const_fn_raw(def_id.to_def_id()) => {
ConstContext::ConstFn
}
BodyOwnerKind::Fn if self.tcx.is_const_default_method(def_id.to_def_id()) => {
ConstContext::ConstFn
}
BodyOwnerKind::Fn | BodyOwnerKind::Closure => return None,
};
Some(ccx)
}
/// Returns an iterator of the `DefId`s for all body-owners in this
/// crate. If you would prefer to iterate over the bodies
/// themselves, you can do `self.hir().krate().body_ids.iter()`.
pub fn body_owners(self) -> impl Iterator<Item = LocalDefId> + 'hir {
self.krate()
.owners
.iter_enumerated()
.flat_map(move |(owner, owner_info)| {
let bodies = &owner_info.as_owner()?.nodes.bodies;
Some(bodies.iter().map(move |&(local_id, _)| {
let hir_id = HirId { owner, local_id };
let body_id = BodyId { hir_id };
self.body_owner_def_id(body_id)
}))
})
.flatten()
}
pub fn par_body_owners<F: Fn(LocalDefId) + Sync + Send>(self, f: F) {
use rustc_data_structures::sync::{par_iter, ParallelIterator};
#[cfg(parallel_compiler)]
use rustc_rayon::iter::IndexedParallelIterator;
par_iter(&self.krate().owners.raw).enumerate().for_each(|(owner, owner_info)| {
let owner = LocalDefId::new(owner);
if let MaybeOwner::Owner(owner_info) = owner_info {
par_iter(owner_info.nodes.bodies.range(..)).for_each(|(local_id, _)| {
let hir_id = HirId { owner, local_id: *local_id };
let body_id = BodyId { hir_id };
f(self.body_owner_def_id(body_id))
})
}
});
}
pub fn ty_param_owner(self, def_id: LocalDefId) -> LocalDefId {
let def_kind = self.tcx.def_kind(def_id);
match def_kind {
DefKind::Trait | DefKind::TraitAlias => def_id,
DefKind::TyParam | DefKind::ConstParam => self.tcx.local_parent(def_id),
_ => bug!("ty_param_owner: {:?} is a {:?} not a type parameter", def_id, def_kind),
}
}
pub fn ty_param_name(self, def_id: LocalDefId) -> Symbol {
let def_kind = self.tcx.def_kind(def_id);
match def_kind {
DefKind::Trait | DefKind::TraitAlias => kw::SelfUpper,
DefKind::TyParam | DefKind::ConstParam => self.tcx.item_name(def_id.to_def_id()),
_ => bug!("ty_param_name: {:?} is a {:?} not a type parameter", def_id, def_kind),
}
}
pub fn trait_impls(self, trait_did: DefId) -> &'hir [LocalDefId] {
self.tcx.all_local_trait_impls(()).get(&trait_did).map_or(&[], |xs| &xs[..])
}
/// Gets the attributes on the crate. This is preferable to
/// invoking `krate.attrs` because it registers a tighter
/// dep-graph access.
pub fn krate_attrs(self) -> &'hir [ast::Attribute] {
self.attrs(CRATE_HIR_ID)
}
pub fn rustc_coherence_is_core(self) -> bool {
self.krate_attrs().iter().any(|attr| attr.has_name(sym::rustc_coherence_is_core))
}
pub fn get_module(self, module: LocalDefId) -> (&'hir Mod<'hir>, Span, HirId) {
let hir_id = HirId::make_owner(module);
match self.tcx.hir_owner(module).map(|o| o.node) {
Some(OwnerNode::Item(&Item { span, kind: ItemKind::Mod(ref m), .. })) => {
(m, span, hir_id)
}
Some(OwnerNode::Crate(item)) => (item, item.spans.inner_span, hir_id),
node => panic!("not a module: {:?}", node),
}
}
/// Walks the contents of a crate. See also `Crate::visit_all_items`.
pub fn walk_toplevel_module(self, visitor: &mut impl Visitor<'hir>) {
let (top_mod, span, hir_id) = self.get_module(CRATE_DEF_ID);
visitor.visit_mod(top_mod, span, hir_id);
}
/// Walks the attributes in a crate.
pub fn walk_attributes(self, visitor: &mut impl Visitor<'hir>) {
let krate = self.krate();
for info in krate.owners.iter() {
if let MaybeOwner::Owner(info) = info {
for attrs in info.attrs.map.values() {
for a in *attrs {
visitor.visit_attribute(a)
}
}
}
}
}
/// Visits all items in the crate in some deterministic (but
/// unspecified) order. If you need to process every item,
/// and care about nesting -- usually because your algorithm
/// follows lexical scoping rules -- then this method is the best choice.
/// If you don't care about nesting, you should use the `tcx.hir_crate_items()` query
/// or `items()` instead.
///
/// Please see the notes in `intravisit.rs` for more information.
pub fn deep_visit_all_item_likes<V>(self, visitor: &mut V)
where
V: Visitor<'hir>,
{
let krate = self.krate();
for owner in krate.owners.iter().filter_map(|i| i.as_owner()) {
match owner.node() {
OwnerNode::Item(item) => visitor.visit_item(item),
OwnerNode::ForeignItem(item) => visitor.visit_foreign_item(item),
OwnerNode::ImplItem(item) => visitor.visit_impl_item(item),
OwnerNode::TraitItem(item) => visitor.visit_trait_item(item),
OwnerNode::Crate(_) => {}
}
}
}
/// A parallel version of `visit_all_item_likes`.
pub fn par_visit_all_item_likes<V>(self, visitor: &V)
where
V: itemlikevisit::ParItemLikeVisitor<'hir> + Sync + Send,
{
let krate = self.krate();
par_for_each_in(&krate.owners.raw, |owner| match owner.map(OwnerInfo::node) {
MaybeOwner::Owner(OwnerNode::Item(item)) => visitor.visit_item(item),
MaybeOwner::Owner(OwnerNode::ForeignItem(item)) => visitor.visit_foreign_item(item),
MaybeOwner::Owner(OwnerNode::ImplItem(item)) => visitor.visit_impl_item(item),
MaybeOwner::Owner(OwnerNode::TraitItem(item)) => visitor.visit_trait_item(item),
MaybeOwner::Owner(OwnerNode::Crate(_))
| MaybeOwner::NonOwner(_)
| MaybeOwner::Phantom => {}
})
}
/// If you don't care about nesting, you should use the
/// `tcx.hir_module_items()` query or `module_items()` instead.
/// Please see notes in `deep_visit_all_item_likes`.
pub fn deep_visit_item_likes_in_module<V>(self, module: LocalDefId, visitor: &mut V)
where
V: Visitor<'hir>,
{
let module = self.tcx.hir_module_items(module);
for id in module.items.iter() {
visitor.visit_item(self.item(*id));
}
for id in module.trait_items.iter() {
visitor.visit_trait_item(self.trait_item(*id));
}
for id in module.impl_items.iter() {
visitor.visit_impl_item(self.impl_item(*id));
}
for id in module.foreign_items.iter() {
visitor.visit_foreign_item(self.foreign_item(*id));
}
}
pub fn for_each_module(self, mut f: impl FnMut(LocalDefId)) {
let crate_items = self.tcx.hir_crate_items(());
for module in crate_items.submodules.iter() {
f(*module)
}
}
#[cfg(not(parallel_compiler))]
#[inline]
pub fn par_for_each_module(self, f: impl Fn(LocalDefId)) {
self.for_each_module(f)
}
#[cfg(parallel_compiler)]
pub fn par_for_each_module(self, f: impl Fn(LocalDefId) + Sync) {
use rustc_data_structures::sync::{par_iter, ParallelIterator};
par_iter_submodules(self.tcx, CRATE_DEF_ID, &f);
fn par_iter_submodules<F>(tcx: TyCtxt<'_>, module: LocalDefId, f: &F)
where
F: Fn(LocalDefId) + Sync,
{
(*f)(module);
let items = tcx.hir_module_items(module);
par_iter(&items.submodules[..]).for_each(|&sm| par_iter_submodules(tcx, sm, f));
}
}
/// Returns an iterator for the nodes in the ancestor tree of the `current_id`
/// until the crate root is reached. Prefer this over your own loop using `get_parent_node`.
pub fn parent_iter(self, current_id: HirId) -> ParentHirIterator<'hir> {
ParentHirIterator { current_id, map: self }
}
/// Returns an iterator for the nodes in the ancestor tree of the `current_id`
/// until the crate root is reached. Prefer this over your own loop using `get_parent_node`.
pub fn parent_owner_iter(self, current_id: HirId) -> ParentOwnerIterator<'hir> {
ParentOwnerIterator { current_id, map: self }
}
/// Checks if the node is left-hand side of an assignment.
pub fn is_lhs(self, id: HirId) -> bool {
match self.find(self.get_parent_node(id)) {
Some(Node::Expr(expr)) => match expr.kind {
ExprKind::Assign(lhs, _rhs, _span) => lhs.hir_id == id,
_ => false,
},
_ => false,
}
}
/// Whether the expression pointed at by `hir_id` belongs to a `const` evaluation context.
/// Used exclusively for diagnostics, to avoid suggestion function calls.
pub fn is_inside_const_context(self, hir_id: HirId) -> bool {
self.body_const_context(self.local_def_id(self.enclosing_body_owner(hir_id))).is_some()
}
/// Retrieves the `HirId` for `id`'s enclosing method, unless there's a
/// `while` or `loop` before reaching it, as block tail returns are not
/// available in them.
///
/// ```
/// fn foo(x: usize) -> bool {
/// if x == 1 {
/// true // If `get_return_block` gets passed the `id` corresponding
/// } else { // to this, it will return `foo`'s `HirId`.
/// false
/// }
/// }
/// ```
///
/// ```compile_fail,E0308
/// fn foo(x: usize) -> bool {
/// loop {
/// true // If `get_return_block` gets passed the `id` corresponding
/// } // to this, it will return `None`.
/// false
/// }
/// ```
pub fn get_return_block(self, id: HirId) -> Option<HirId> {
let mut iter = self.parent_iter(id).peekable();
let mut ignore_tail = false;
if let Some(node) = self.find(id) {
if let Node::Expr(Expr { kind: ExprKind::Ret(_), .. }) = node {
// When dealing with `return` statements, we don't care about climbing only tail
// expressions.
ignore_tail = true;
}
}
while let Some((hir_id, node)) = iter.next() {
if let (Some((_, next_node)), false) = (iter.peek(), ignore_tail) {
match next_node {
Node::Block(Block { expr: None, .. }) => return None,
// The current node is not the tail expression of its parent.
Node::Block(Block { expr: Some(e), .. }) if hir_id != e.hir_id => return None,
_ => {}
}
}
match node {
Node::Item(_)
| Node::ForeignItem(_)
| Node::TraitItem(_)
| Node::Expr(Expr { kind: ExprKind::Closure { .. }, .. })
| Node::ImplItem(_) => return Some(hir_id),
// Ignore `return`s on the first iteration
Node::Expr(Expr { kind: ExprKind::Loop(..) | ExprKind::Ret(..), .. })
| Node::Local(_) => {
return None;
}
_ => {}
}
}
None
}
/// Retrieves the `HirId` for `id`'s parent item, or `id` itself if no
/// parent item is in this map. The "parent item" is the closest parent node
/// in the HIR which is recorded by the map and is an item, either an item
/// in a module, trait, or impl.
pub fn get_parent_item(self, hir_id: HirId) -> LocalDefId {
if let Some((def_id, _node)) = self.parent_owner_iter(hir_id).next() {
def_id
} else {
CRATE_DEF_ID
}
}
/// Returns the `HirId` of `id`'s nearest module parent, or `id` itself if no
/// module parent is in this map.
pub(super) fn get_module_parent_node(self, hir_id: HirId) -> LocalDefId {
for (def_id, node) in self.parent_owner_iter(hir_id) {
if let OwnerNode::Item(&Item { kind: ItemKind::Mod(_), .. }) = node {
return def_id;
}
}
CRATE_DEF_ID
}
/// When on an if expression, a match arm tail expression or a match arm, give back
/// the enclosing `if` or `match` expression.
///
/// Used by error reporting when there's a type error in an if or match arm caused by the
/// expression needing to be unit.
pub fn get_if_cause(self, hir_id: HirId) -> Option<&'hir Expr<'hir>> {
for (_, node) in self.parent_iter(hir_id) {
match node {
Node::Item(_)
| Node::ForeignItem(_)
| Node::TraitItem(_)
| Node::ImplItem(_)
| Node::Stmt(Stmt { kind: StmtKind::Local(_), .. }) => break,
Node::Expr(expr @ Expr { kind: ExprKind::If(..) | ExprKind::Match(..), .. }) => {
return Some(expr);
}
_ => {}
}
}
None
}
/// Returns the nearest enclosing scope. A scope is roughly an item or block.
pub fn get_enclosing_scope(self, hir_id: HirId) -> Option<HirId> {
for (hir_id, node) in self.parent_iter(hir_id) {
if let Node::Item(Item {
kind:
ItemKind::Fn(..)
| ItemKind::Const(..)
| ItemKind::Static(..)
| ItemKind::Mod(..)
| ItemKind::Enum(..)
| ItemKind::Struct(..)
| ItemKind::Union(..)
| ItemKind::Trait(..)
| ItemKind::Impl { .. },
..
})
| Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(..), .. })
| Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(..), .. })
| Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(..), .. })
| Node::Block(_) = node
{
return Some(hir_id);
}
}
None
}
/// Returns the defining scope for an opaque type definition.
pub fn get_defining_scope(self, id: HirId) -> HirId {
let mut scope = id;
loop {
scope = self.get_enclosing_scope(scope).unwrap_or(CRATE_HIR_ID);
if scope == CRATE_HIR_ID || !matches!(self.get(scope), Node::Block(_)) {
return scope;
}
}
}
pub fn get_foreign_abi(self, hir_id: HirId) -> Abi {
let parent = self.get_parent_item(hir_id);
if let Some(node) = self.tcx.hir_owner(parent) {
if let OwnerNode::Item(Item { kind: ItemKind::ForeignMod { abi, .. }, .. }) = node.node
{
return *abi;
}
}
bug!(
"expected foreign mod or inlined parent, found {}",
self.node_to_string(HirId::make_owner(parent))
)
}
pub fn expect_item(self, id: LocalDefId) -> &'hir Item<'hir> {
match self.tcx.hir_owner(id) {
Some(Owner { node: OwnerNode::Item(item), .. }) => item,
_ => bug!("expected item, found {}", self.node_to_string(HirId::make_owner(id))),
}
}
pub fn expect_impl_item(self, id: LocalDefId) -> &'hir ImplItem<'hir> {
match self.tcx.hir_owner(id) {
Some(Owner { node: OwnerNode::ImplItem(item), .. }) => item,
_ => bug!("expected impl item, found {}", self.node_to_string(HirId::make_owner(id))),
}
}
pub fn expect_trait_item(self, id: LocalDefId) -> &'hir TraitItem<'hir> {
match self.tcx.hir_owner(id) {
Some(Owner { node: OwnerNode::TraitItem(item), .. }) => item,
_ => bug!("expected trait item, found {}", self.node_to_string(HirId::make_owner(id))),
}
}
pub fn expect_variant(self, id: HirId) -> &'hir Variant<'hir> {
match self.find(id) {
Some(Node::Variant(variant)) => variant,
_ => bug!("expected variant, found {}", self.node_to_string(id)),
}
}
pub fn expect_foreign_item(self, id: LocalDefId) -> &'hir ForeignItem<'hir> {
match self.tcx.hir_owner(id) {
Some(Owner { node: OwnerNode::ForeignItem(item), .. }) => item,
_ => {
bug!("expected foreign item, found {}", self.node_to_string(HirId::make_owner(id)))
}
}
}
pub fn expect_expr(self, id: HirId) -> &'hir Expr<'hir> {
match self.find(id) {
Some(Node::Expr(expr)) => expr,
_ => bug!("expected expr, found {}", self.node_to_string(id)),
}
}
#[inline]
fn opt_ident(self, id: HirId) -> Option<Ident> {
match self.get(id) {
Node::Binding(&Pat { kind: PatKind::Binding(_, _, ident, _), .. }) => Some(ident),
// A `Ctor` doesn't have an identifier itself, but its parent
// struct/variant does. Compare with `hir::Map::opt_span`.
Node::Ctor(..) => match self.find(self.get_parent_node(id))? {
Node::Item(item) => Some(item.ident),
Node::Variant(variant) => Some(variant.ident),
_ => unreachable!(),
},
node => node.ident(),
}
}
#[inline]
pub(super) fn opt_ident_span(self, id: HirId) -> Option<Span> {
self.opt_ident(id).map(|ident| ident.span)
}
#[inline]
pub fn opt_name(self, id: HirId) -> Option<Symbol> {
self.opt_ident(id).map(|ident| ident.name)
}
pub fn name(self, id: HirId) -> Symbol {
self.opt_name(id).unwrap_or_else(|| bug!("no name for {}", self.node_to_string(id)))
}
/// Given a node ID, gets a list of attributes associated with the AST
/// corresponding to the node-ID.
pub fn attrs(self, id: HirId) -> &'hir [ast::Attribute] {
self.tcx.hir_attrs(id.owner).get(id.local_id)
}
/// Gets the span of the definition of the specified HIR node.
/// This is used by `tcx.get_span`
pub fn span(self, hir_id: HirId) -> Span {
self.opt_span(hir_id)
.unwrap_or_else(|| bug!("hir::map::Map::span: id not in map: {:?}", hir_id))
}
pub fn opt_span(self, hir_id: HirId) -> Option<Span> {
let span = match self.find(hir_id)? {
Node::Param(param) => param.span,
Node::Item(item) => match &item.kind {
ItemKind::Fn(sig, _, _) => sig.span,
_ => item.span,
},
Node::ForeignItem(foreign_item) => foreign_item.span,
Node::TraitItem(trait_item) => match &trait_item.kind {
TraitItemKind::Fn(sig, _) => sig.span,
_ => trait_item.span,
},
Node::ImplItem(impl_item) => match &impl_item.kind {
ImplItemKind::Fn(sig, _) => sig.span,
_ => impl_item.span,
},
Node::Variant(variant) => variant.span,
Node::Field(field) => field.span,
Node::AnonConst(constant) => self.body(constant.body).value.span,
Node::Expr(expr) => expr.span,
Node::Stmt(stmt) => stmt.span,
Node::PathSegment(seg) => {
let ident_span = seg.ident.span;
ident_span
.with_hi(seg.args.map_or_else(|| ident_span.hi(), |args| args.span_ext.hi()))
}
Node::Ty(ty) => ty.span,
Node::TypeBinding(tb) => tb.span,
Node::TraitRef(tr) => tr.path.span,
Node::Binding(pat) => pat.span,
Node::Pat(pat) => pat.span,
Node::Arm(arm) => arm.span,
Node::Block(block) => block.span,
Node::Ctor(..) => match self.find(self.get_parent_node(hir_id))? {
Node::Item(item) => item.span,
Node::Variant(variant) => variant.span,
_ => unreachable!(),
},
Node::Lifetime(lifetime) => lifetime.span,
Node::GenericParam(param) => param.span,
Node::Infer(i) => i.span,
Node::Local(local) => local.span,
Node::Crate(item) => item.spans.inner_span,
};
Some(span)
}
/// Like `hir.span()`, but includes the body of function items
/// (instead of just the function header)
pub fn span_with_body(self, hir_id: HirId) -> Span {
match self.find(hir_id) {
Some(Node::TraitItem(item)) => item.span,
Some(Node::ImplItem(impl_item)) => impl_item.span,
Some(Node::Item(item)) => item.span,
Some(_) => self.span(hir_id),
_ => bug!("hir::map::Map::span_with_body: id not in map: {:?}", hir_id),
}
}
pub fn span_if_local(self, id: DefId) -> Option<Span> {
if id.is_local() { Some(self.tcx.def_span(id)) } else { None }
}
pub fn res_span(self, res: Res) -> Option<Span> {
match res {
Res::Err => None,
Res::Local(id) => Some(self.span(id)),
res => self.span_if_local(res.opt_def_id()?),
}
}
/// Get a representation of this `id` for debugging purposes.
/// NOTE: Do NOT use this in diagnostics!
pub fn node_to_string(self, id: HirId) -> String {
hir_id_to_string(self, id)
}
/// Returns the HirId of `N` in `struct Foo<const N: usize = { ... }>` when
/// called with the HirId for the `{ ... }` anon const
pub fn opt_const_param_default_param_hir_id(self, anon_const: HirId) -> Option<HirId> {
match self.get(self.get_parent_node(anon_const)) {
Node::GenericParam(GenericParam {
hir_id: param_id,
kind: GenericParamKind::Const { .. },
..
}) => Some(*param_id),
_ => None,
}
}
}
impl<'hir> intravisit::Map<'hir> for Map<'hir> {
fn find(&self, hir_id: HirId) -> Option<Node<'hir>> {
(*self).find(hir_id)
}
fn body(&self, id: BodyId) -> &'hir Body<'hir> {
(*self).body(id)
}
fn item(&self, id: ItemId) -> &'hir Item<'hir> {
(*self).item(id)
}
fn trait_item(&self, id: TraitItemId) -> &'hir TraitItem<'hir> {
(*self).trait_item(id)
}
fn impl_item(&self, id: ImplItemId) -> &'hir ImplItem<'hir> {
(*self).impl_item(id)
}
fn foreign_item(&self, id: ForeignItemId) -> &'hir ForeignItem<'hir> {
(*self).foreign_item(id)
}
}
pub(super) fn crate_hash(tcx: TyCtxt<'_>, crate_num: CrateNum) -> Svh {
debug_assert_eq!(crate_num, LOCAL_CRATE);
let krate = tcx.hir_crate(());
let hir_body_hash = krate.hir_hash;
let upstream_crates = upstream_crates(tcx);
let resolutions = tcx.resolutions(());
// We hash the final, remapped names of all local source files so we
// don't have to include the path prefix remapping commandline args.
// If we included the full mapping in the SVH, we could only have
// reproducible builds by compiling from the same directory. So we just
// hash the result of the mapping instead of the mapping itself.
let mut source_file_names: Vec<_> = tcx
.sess
.source_map()
.files()
.iter()
.filter(|source_file| source_file.cnum == LOCAL_CRATE)
.map(|source_file| source_file.name_hash)
.collect();
source_file_names.sort_unstable();
let mut hcx = tcx.create_stable_hashing_context();
let mut stable_hasher = StableHasher::new();
hir_body_hash.hash_stable(&mut hcx, &mut stable_hasher);
upstream_crates.hash_stable(&mut hcx, &mut stable_hasher);
source_file_names.hash_stable(&mut hcx, &mut stable_hasher);
if tcx.sess.opts.debugging_opts.incremental_relative_spans {
let definitions = &tcx.definitions_untracked();
let mut owner_spans: Vec<_> = krate
.owners
.iter_enumerated()
.filter_map(|(def_id, info)| {
let _ = info.as_owner()?;
let def_path_hash = definitions.def_path_hash(def_id);
let span = resolutions.source_span[def_id];
debug_assert_eq!(span.parent(), None);
Some((def_path_hash, span))
})
.collect();
owner_spans.sort_unstable_by_key(|bn| bn.0);
owner_spans.hash_stable(&mut hcx, &mut stable_hasher);
}
tcx.sess.opts.dep_tracking_hash(true).hash_stable(&mut hcx, &mut stable_hasher);
tcx.sess.local_stable_crate_id().hash_stable(&mut hcx, &mut stable_hasher);
// Hash visibility information since it does not appear in HIR.
resolutions.visibilities.hash_stable(&mut hcx, &mut stable_hasher);
resolutions.has_pub_restricted.hash_stable(&mut hcx, &mut stable_hasher);
let crate_hash: Fingerprint = stable_hasher.finish();
Svh::new(crate_hash.to_smaller_hash())
}
fn upstream_crates(tcx: TyCtxt<'_>) -> Vec<(StableCrateId, Svh)> {
let mut upstream_crates: Vec<_> = tcx
.crates(())
.iter()
.map(|&cnum| {
let stable_crate_id = tcx.stable_crate_id(cnum);
let hash = tcx.crate_hash(cnum);
(stable_crate_id, hash)
})
.collect();
upstream_crates.sort_unstable_by_key(|&(stable_crate_id, _)| stable_crate_id);
upstream_crates
}
fn hir_id_to_string(map: Map<'_>, id: HirId) -> String {
let id_str = format!(" (hir_id={})", id);
let path_str = || {
// This functionality is used for debugging, try to use `TyCtxt` to get
// the user-friendly path, otherwise fall back to stringifying `DefPath`.
crate::ty::tls::with_opt(|tcx| {
if let Some(tcx) = tcx {
let def_id = map.local_def_id(id);
tcx.def_path_str(def_id.to_def_id())
} else if let Some(path) = map.def_path_from_hir_id(id) {
path.data.into_iter().map(|elem| elem.to_string()).collect::<Vec<_>>().join("::")
} else {
String::from("<missing path>")
}
})
};
let span_str = || map.tcx.sess.source_map().span_to_snippet(map.span(id)).unwrap_or_default();
let node_str = |prefix| format!("{} {}{}", prefix, span_str(), id_str);
match map.find(id) {
Some(Node::Item(item)) => {
let item_str = match item.kind {
ItemKind::ExternCrate(..) => "extern crate",
ItemKind::Use(..) => "use",
ItemKind::Static(..) => "static",
ItemKind::Const(..) => "const",
ItemKind::Fn(..) => "fn",
ItemKind::Macro(..) => "macro",
ItemKind::Mod(..) => "mod",
ItemKind::ForeignMod { .. } => "foreign mod",
ItemKind::GlobalAsm(..) => "global asm",
ItemKind::TyAlias(..) => "ty",
ItemKind::OpaqueTy(..) => "opaque type",
ItemKind::Enum(..) => "enum",
ItemKind::Struct(..) => "struct",
ItemKind::Union(..) => "union",
ItemKind::Trait(..) => "trait",
ItemKind::TraitAlias(..) => "trait alias",
ItemKind::Impl { .. } => "impl",
};
format!("{} {}{}", item_str, path_str(), id_str)
}
Some(Node::ForeignItem(_)) => format!("foreign item {}{}", path_str(), id_str),
Some(Node::ImplItem(ii)) => match ii.kind {
ImplItemKind::Const(..) => {
format!("assoc const {} in {}{}", ii.ident, path_str(), id_str)
}
ImplItemKind::Fn(..) => format!("method {} in {}{}", ii.ident, path_str(), id_str),
ImplItemKind::TyAlias(_) => {
format!("assoc type {} in {}{}", ii.ident, path_str(), id_str)
}
},
Some(Node::TraitItem(ti)) => {
let kind = match ti.kind {
TraitItemKind::Const(..) => "assoc constant",
TraitItemKind::Fn(..) => "trait method",
TraitItemKind::Type(..) => "assoc type",
};
format!("{} {} in {}{}", kind, ti.ident, path_str(), id_str)
}
Some(Node::Variant(ref variant)) => {
format!("variant {} in {}{}", variant.ident, path_str(), id_str)
}
Some(Node::Field(ref field)) => {
format!("field {} in {}{}", field.ident, path_str(), id_str)
}
Some(Node::AnonConst(_)) => node_str("const"),
Some(Node::Expr(_)) => node_str("expr"),
Some(Node::Stmt(_)) => node_str("stmt"),
Some(Node::PathSegment(_)) => node_str("path segment"),
Some(Node::Ty(_)) => node_str("type"),
Some(Node::TypeBinding(_)) => node_str("type binding"),
Some(Node::TraitRef(_)) => node_str("trait ref"),
Some(Node::Binding(_)) => node_str("local"),
Some(Node::Pat(_)) => node_str("pat"),
Some(Node::Param(_)) => node_str("param"),
Some(Node::Arm(_)) => node_str("arm"),
Some(Node::Block(_)) => node_str("block"),
Some(Node::Infer(_)) => node_str("infer"),
Some(Node::Local(_)) => node_str("local"),
Some(Node::Ctor(..)) => format!("ctor {}{}", path_str(), id_str),
Some(Node::Lifetime(_)) => node_str("lifetime"),
Some(Node::GenericParam(ref param)) => format!("generic_param {:?}{}", param, id_str),
Some(Node::Crate(..)) => String::from("root_crate"),
None => format!("unknown node{}", id_str),
}
}
pub(super) fn hir_module_items(tcx: TyCtxt<'_>, module_id: LocalDefId) -> ModuleItems {
let mut collector = ModuleCollector {
tcx,
submodules: Vec::default(),
items: Vec::default(),
trait_items: Vec::default(),
impl_items: Vec::default(),
foreign_items: Vec::default(),
};
let (hir_mod, span, hir_id) = tcx.hir().get_module(module_id);
collector.visit_mod(hir_mod, span, hir_id);
let ModuleCollector { submodules, items, trait_items, impl_items, foreign_items, .. } =
collector;
return ModuleItems {
submodules: submodules.into_boxed_slice(),
items: items.into_boxed_slice(),
trait_items: trait_items.into_boxed_slice(),
impl_items: impl_items.into_boxed_slice(),
foreign_items: foreign_items.into_boxed_slice(),
};
struct ModuleCollector<'tcx> {
tcx: TyCtxt<'tcx>,
submodules: Vec<LocalDefId>,
items: Vec<ItemId>,
trait_items: Vec<TraitItemId>,
impl_items: Vec<ImplItemId>,
foreign_items: Vec<ForeignItemId>,
}
impl<'hir> Visitor<'hir> for ModuleCollector<'hir> {
type NestedFilter = nested_filter::All;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_item(&mut self, item: &'hir Item<'hir>) {
self.items.push(item.item_id());
if let ItemKind::Mod(..) = item.kind {
// If this declares another module, do not recurse inside it.
self.submodules.push(item.def_id);
} else {
intravisit::walk_item(self, item)
}
}
fn visit_trait_item(&mut self, item: &'hir TraitItem<'hir>) {
self.trait_items.push(item.trait_item_id());
intravisit::walk_trait_item(self, item)
}
fn visit_impl_item(&mut self, item: &'hir ImplItem<'hir>) {
self.impl_items.push(item.impl_item_id());
intravisit::walk_impl_item(self, item)
}
fn visit_foreign_item(&mut self, item: &'hir ForeignItem<'hir>) {
self.foreign_items.push(item.foreign_item_id());
intravisit::walk_foreign_item(self, item)
}
}
}
pub(crate) fn hir_crate_items(tcx: TyCtxt<'_>, _: ()) -> ModuleItems {
let mut collector = CrateCollector {
tcx,
submodules: Vec::default(),
items: Vec::default(),
trait_items: Vec::default(),
impl_items: Vec::default(),
foreign_items: Vec::default(),
};
tcx.hir().walk_toplevel_module(&mut collector);
let CrateCollector { submodules, items, trait_items, impl_items, foreign_items, .. } =
collector;
return ModuleItems {
submodules: submodules.into_boxed_slice(),
items: items.into_boxed_slice(),
trait_items: trait_items.into_boxed_slice(),
impl_items: impl_items.into_boxed_slice(),
foreign_items: foreign_items.into_boxed_slice(),
};
struct CrateCollector<'tcx> {
tcx: TyCtxt<'tcx>,
submodules: Vec<LocalDefId>,
items: Vec<ItemId>,
trait_items: Vec<TraitItemId>,
impl_items: Vec<ImplItemId>,
foreign_items: Vec<ForeignItemId>,
}
impl<'hir> Visitor<'hir> for CrateCollector<'hir> {
type NestedFilter = nested_filter::All;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_item(&mut self, item: &'hir Item<'hir>) {
self.items.push(item.item_id());
intravisit::walk_item(self, item)
}
fn visit_mod(&mut self, m: &'hir Mod<'hir>, _s: Span, n: HirId) {
self.submodules.push(n.owner);
intravisit::walk_mod(self, m, n);
}
fn visit_foreign_item(&mut self, item: &'hir ForeignItem<'hir>) {
self.foreign_items.push(item.foreign_item_id());
intravisit::walk_foreign_item(self, item)
}
fn visit_trait_item(&mut self, item: &'hir TraitItem<'hir>) {
self.trait_items.push(item.trait_item_id());
intravisit::walk_trait_item(self, item)
}
fn visit_impl_item(&mut self, item: &'hir ImplItem<'hir>) {
self.impl_items.push(item.impl_item_id());
intravisit::walk_impl_item(self, item)
}
}
}