| use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; |
| use rustc_data_structures::sync::OnceCell; |
| use rustc_index::bit_set::BitSet; |
| use rustc_serialize::{Decodable, Decoder, Encodable, Encoder}; |
| |
| use super::*; |
| |
| /// Preorder traversal of a graph. |
| /// |
| /// Preorder traversal is when each node is visited after at least one of its predecessors. If you |
| /// are familiar with some basic graph theory, then this performs a depth first search and returns |
| /// nodes in order of discovery time. |
| /// |
| /// ```text |
| /// |
| /// A |
| /// / \ |
| /// / \ |
| /// B C |
| /// \ / |
| /// \ / |
| /// D |
| /// ``` |
| /// |
| /// A preorder traversal of this graph is either `A B D C` or `A C D B` |
| #[derive(Clone)] |
| pub struct Preorder<'a, 'tcx> { |
| body: &'a Body<'tcx>, |
| visited: BitSet<BasicBlock>, |
| worklist: Vec<BasicBlock>, |
| root_is_start_block: bool, |
| } |
| |
| impl<'a, 'tcx> Preorder<'a, 'tcx> { |
| pub fn new(body: &'a Body<'tcx>, root: BasicBlock) -> Preorder<'a, 'tcx> { |
| let worklist = vec![root]; |
| |
| Preorder { |
| body, |
| visited: BitSet::new_empty(body.basic_blocks().len()), |
| worklist, |
| root_is_start_block: root == START_BLOCK, |
| } |
| } |
| } |
| |
| pub fn preorder<'a, 'tcx>(body: &'a Body<'tcx>) -> Preorder<'a, 'tcx> { |
| Preorder::new(body, START_BLOCK) |
| } |
| |
| impl<'a, 'tcx> Iterator for Preorder<'a, 'tcx> { |
| type Item = (BasicBlock, &'a BasicBlockData<'tcx>); |
| |
| fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> { |
| while let Some(idx) = self.worklist.pop() { |
| if !self.visited.insert(idx) { |
| continue; |
| } |
| |
| let data = &self.body[idx]; |
| |
| if let Some(ref term) = data.terminator { |
| self.worklist.extend(term.successors()); |
| } |
| |
| return Some((idx, data)); |
| } |
| |
| None |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| // All the blocks, minus the number of blocks we've visited. |
| let upper = self.body.basic_blocks().len() - self.visited.count(); |
| |
| let lower = if self.root_is_start_block { |
| // We will visit all remaining blocks exactly once. |
| upper |
| } else { |
| self.worklist.len() |
| }; |
| |
| (lower, Some(upper)) |
| } |
| } |
| |
| /// Postorder traversal of a graph. |
| /// |
| /// Postorder traversal is when each node is visited after all of its successors, except when the |
| /// successor is only reachable by a back-edge. If you are familiar with some basic graph theory, |
| /// then this performs a depth first search and returns nodes in order of completion time. |
| /// |
| /// |
| /// ```text |
| /// |
| /// A |
| /// / \ |
| /// / \ |
| /// B C |
| /// \ / |
| /// \ / |
| /// D |
| /// ``` |
| /// |
| /// A Postorder traversal of this graph is `D B C A` or `D C B A` |
| pub struct Postorder<'a, 'tcx> { |
| body: &'a Body<'tcx>, |
| visited: BitSet<BasicBlock>, |
| visit_stack: Vec<(BasicBlock, Successors<'a>)>, |
| root_is_start_block: bool, |
| } |
| |
| impl<'a, 'tcx> Postorder<'a, 'tcx> { |
| pub fn new(body: &'a Body<'tcx>, root: BasicBlock) -> Postorder<'a, 'tcx> { |
| let mut po = Postorder { |
| body, |
| visited: BitSet::new_empty(body.basic_blocks().len()), |
| visit_stack: Vec::new(), |
| root_is_start_block: root == START_BLOCK, |
| }; |
| |
| let data = &po.body[root]; |
| |
| if let Some(ref term) = data.terminator { |
| po.visited.insert(root); |
| po.visit_stack.push((root, term.successors())); |
| po.traverse_successor(); |
| } |
| |
| po |
| } |
| |
| fn traverse_successor(&mut self) { |
| // This is quite a complex loop due to 1. the borrow checker not liking it much |
| // and 2. what exactly is going on is not clear |
| // |
| // It does the actual traversal of the graph, while the `next` method on the iterator |
| // just pops off of the stack. `visit_stack` is a stack containing pairs of nodes and |
| // iterators over the successors of those nodes. Each iteration attempts to get the next |
| // node from the top of the stack, then pushes that node and an iterator over the |
| // successors to the top of the stack. This loop only grows `visit_stack`, stopping when |
| // we reach a child that has no children that we haven't already visited. |
| // |
| // For a graph that looks like this: |
| // |
| // A |
| // / \ |
| // / \ |
| // B C |
| // | | |
| // | | |
| // D | |
| // \ / |
| // \ / |
| // E |
| // |
| // The state of the stack starts out with just the root node (`A` in this case); |
| // [(A, [B, C])] |
| // |
| // When the first call to `traverse_successor` happens, the following happens: |
| // |
| // [(B, [D]), // `B` taken from the successors of `A`, pushed to the |
| // // top of the stack along with the successors of `B` |
| // (A, [C])] |
| // |
| // [(D, [E]), // `D` taken from successors of `B`, pushed to stack |
| // (B, []), |
| // (A, [C])] |
| // |
| // [(E, []), // `E` taken from successors of `D`, pushed to stack |
| // (D, []), |
| // (B, []), |
| // (A, [C])] |
| // |
| // Now that the top of the stack has no successors we can traverse, each item will |
| // be popped off during iteration until we get back to `A`. This yields [E, D, B]. |
| // |
| // When we yield `B` and call `traverse_successor`, we push `C` to the stack, but |
| // since we've already visited `E`, that child isn't added to the stack. The last |
| // two iterations yield `C` and finally `A` for a final traversal of [E, D, B, C, A] |
| loop { |
| let bb = if let Some(&mut (_, ref mut iter)) = self.visit_stack.last_mut() { |
| if let Some(bb) = iter.next() { |
| bb |
| } else { |
| break; |
| } |
| } else { |
| break; |
| }; |
| |
| if self.visited.insert(bb) { |
| if let Some(term) = &self.body[bb].terminator { |
| self.visit_stack.push((bb, term.successors())); |
| } |
| } |
| } |
| } |
| } |
| |
| pub fn postorder<'a, 'tcx>(body: &'a Body<'tcx>) -> Postorder<'a, 'tcx> { |
| Postorder::new(body, START_BLOCK) |
| } |
| |
| impl<'a, 'tcx> Iterator for Postorder<'a, 'tcx> { |
| type Item = (BasicBlock, &'a BasicBlockData<'tcx>); |
| |
| fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> { |
| let next = self.visit_stack.pop(); |
| if next.is_some() { |
| self.traverse_successor(); |
| } |
| |
| next.map(|(bb, _)| (bb, &self.body[bb])) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| // All the blocks, minus the number of blocks we've visited. |
| let upper = self.body.basic_blocks().len() - self.visited.count(); |
| |
| let lower = if self.root_is_start_block { |
| // We will visit all remaining blocks exactly once. |
| upper |
| } else { |
| self.visit_stack.len() |
| }; |
| |
| (lower, Some(upper)) |
| } |
| } |
| |
| /// Reverse postorder traversal of a graph |
| /// |
| /// Reverse postorder is the reverse order of a postorder traversal. |
| /// This is different to a preorder traversal and represents a natural |
| /// linearization of control-flow. |
| /// |
| /// ```text |
| /// |
| /// A |
| /// / \ |
| /// / \ |
| /// B C |
| /// \ / |
| /// \ / |
| /// D |
| /// ``` |
| /// |
| /// A reverse postorder traversal of this graph is either `A B C D` or `A C B D` |
| /// Note that for a graph containing no loops (i.e., A DAG), this is equivalent to |
| /// a topological sort. |
| /// |
| /// Construction of a `ReversePostorder` traversal requires doing a full |
| /// postorder traversal of the graph, therefore this traversal should be |
| /// constructed as few times as possible. Use the `reset` method to be able |
| /// to re-use the traversal |
| #[derive(Clone)] |
| pub struct ReversePostorder<'a, 'tcx> { |
| body: &'a Body<'tcx>, |
| blocks: Vec<BasicBlock>, |
| idx: usize, |
| } |
| |
| impl<'a, 'tcx> ReversePostorder<'a, 'tcx> { |
| pub fn new(body: &'a Body<'tcx>, root: BasicBlock) -> ReversePostorder<'a, 'tcx> { |
| let blocks: Vec<_> = Postorder::new(body, root).map(|(bb, _)| bb).collect(); |
| |
| let len = blocks.len(); |
| |
| ReversePostorder { body, blocks, idx: len } |
| } |
| } |
| |
| impl<'a, 'tcx> Iterator for ReversePostorder<'a, 'tcx> { |
| type Item = (BasicBlock, &'a BasicBlockData<'tcx>); |
| |
| fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> { |
| if self.idx == 0 { |
| return None; |
| } |
| self.idx -= 1; |
| |
| self.blocks.get(self.idx).map(|&bb| (bb, &self.body[bb])) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| (self.idx, Some(self.idx)) |
| } |
| } |
| |
| impl<'a, 'tcx> ExactSizeIterator for ReversePostorder<'a, 'tcx> {} |
| |
| /// Returns an iterator over all basic blocks reachable from the `START_BLOCK` in no particular |
| /// order. |
| /// |
| /// This is clearer than writing `preorder` in cases where the order doesn't matter. |
| pub fn reachable<'a, 'tcx>( |
| body: &'a Body<'tcx>, |
| ) -> impl 'a + Iterator<Item = (BasicBlock, &'a BasicBlockData<'tcx>)> { |
| preorder(body) |
| } |
| |
| /// Returns a `BitSet` containing all basic blocks reachable from the `START_BLOCK`. |
| pub fn reachable_as_bitset<'tcx>(body: &Body<'tcx>) -> BitSet<BasicBlock> { |
| let mut iter = preorder(body); |
| (&mut iter).for_each(drop); |
| iter.visited |
| } |
| |
| #[derive(Clone)] |
| pub struct ReversePostorderIter<'a, 'tcx> { |
| body: &'a Body<'tcx>, |
| blocks: &'a [BasicBlock], |
| idx: usize, |
| } |
| |
| impl<'a, 'tcx> Iterator for ReversePostorderIter<'a, 'tcx> { |
| type Item = (BasicBlock, &'a BasicBlockData<'tcx>); |
| |
| fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> { |
| if self.idx == 0 { |
| return None; |
| } |
| self.idx -= 1; |
| |
| self.blocks.get(self.idx).map(|&bb| (bb, &self.body[bb])) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| (self.idx, Some(self.idx)) |
| } |
| } |
| |
| impl<'a, 'tcx> ExactSizeIterator for ReversePostorderIter<'a, 'tcx> {} |
| |
| pub fn reverse_postorder<'a, 'tcx>(body: &'a Body<'tcx>) -> ReversePostorderIter<'a, 'tcx> { |
| let blocks = body.postorder_cache.compute(body); |
| |
| let len = blocks.len(); |
| |
| ReversePostorderIter { body, blocks, idx: len } |
| } |
| |
| #[derive(Clone, Debug)] |
| pub(super) struct PostorderCache { |
| cache: OnceCell<Vec<BasicBlock>>, |
| } |
| |
| impl PostorderCache { |
| #[inline] |
| pub(super) fn new() -> Self { |
| PostorderCache { cache: OnceCell::new() } |
| } |
| |
| /// Invalidates the postorder cache. |
| #[inline] |
| pub(super) fn invalidate(&mut self) { |
| self.cache = OnceCell::new(); |
| } |
| |
| /// Returns the `&[BasicBlocks]` represents the postorder graph for this MIR. |
| #[inline] |
| pub(super) fn compute(&self, body: &Body<'_>) -> &[BasicBlock] { |
| self.cache.get_or_init(|| Postorder::new(body, START_BLOCK).map(|(bb, _)| bb).collect()) |
| } |
| } |
| |
| impl<S: Encoder> Encodable<S> for PostorderCache { |
| #[inline] |
| fn encode(&self, _s: &mut S) {} |
| } |
| |
| impl<D: Decoder> Decodable<D> for PostorderCache { |
| #[inline] |
| fn decode(_: &mut D) -> Self { |
| Self::new() |
| } |
| } |
| |
| impl<CTX> HashStable<CTX> for PostorderCache { |
| #[inline] |
| fn hash_stable(&self, _: &mut CTX, _: &mut StableHasher) { |
| // do nothing |
| } |
| } |
| |
| TrivialTypeFoldableAndLiftImpls! { |
| PostorderCache, |
| } |