| use crate::common::CodegenCx; |
| use crate::coverageinfo; |
| use crate::llvm; |
| |
| use llvm::coverageinfo::CounterMappingRegion; |
| use rustc_codegen_ssa::coverageinfo::map::{Counter, CounterExpression}; |
| use rustc_codegen_ssa::traits::{ConstMethods, CoverageInfoMethods}; |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet}; |
| use rustc_hir::def_id::{DefId, DefIdSet}; |
| use rustc_llvm::RustString; |
| use rustc_middle::mir::coverage::CodeRegion; |
| use rustc_middle::ty::TyCtxt; |
| use rustc_span::Symbol; |
| |
| use std::ffi::CString; |
| |
| use tracing::debug; |
| |
| /// Generates and exports the Coverage Map. |
| /// |
| /// Rust Coverage Map generation supports LLVM Coverage Mapping Format versions |
| /// 5 (LLVM 12, only) and 6 (zero-based encoded as 4 and 5, respectively), as defined at |
| /// [LLVM Code Coverage Mapping Format](https://github.com/rust-lang/llvm-project/blob/rustc/13.0-2021-09-30/llvm/docs/CoverageMappingFormat.rst#llvm-code-coverage-mapping-format). |
| /// These versions are supported by the LLVM coverage tools (`llvm-profdata` and `llvm-cov`) |
| /// bundled with Rust's fork of LLVM. |
| /// |
| /// Consequently, Rust's bundled version of Clang also generates Coverage Maps compliant with |
| /// the same version. Clang's implementation of Coverage Map generation was referenced when |
| /// implementing this Rust version, and though the format documentation is very explicit and |
| /// detailed, some undocumented details in Clang's implementation (that may or may not be important) |
| /// were also replicated for Rust's Coverage Map. |
| pub fn finalize<'ll, 'tcx>(cx: &CodegenCx<'ll, 'tcx>) { |
| let tcx = cx.tcx; |
| |
| // Ensure the installed version of LLVM supports at least Coverage Map |
| // Version 5 (encoded as a zero-based value: 4), which was introduced with |
| // LLVM 12. |
| let version = coverageinfo::mapping_version(); |
| if version < 4 { |
| tcx.sess.fatal("rustc option `-Z instrument-coverage` requires LLVM 12 or higher."); |
| } |
| |
| debug!("Generating coverage map for CodegenUnit: `{}`", cx.codegen_unit.name()); |
| |
| // In order to show that unused functions have coverage counts of zero (0), LLVM requires the |
| // functions exist. Generate synthetic functions with a (required) single counter, and add the |
| // MIR `Coverage` code regions to the `function_coverage_map`, before calling |
| // `ctx.take_function_coverage_map()`. |
| if !tcx.sess.instrument_coverage_except_unused_functions() { |
| add_unused_functions(cx); |
| } |
| |
| let function_coverage_map = match cx.coverage_context() { |
| Some(ctx) => ctx.take_function_coverage_map(), |
| None => return, |
| }; |
| |
| if function_coverage_map.is_empty() { |
| // This module has no functions with coverage instrumentation |
| return; |
| } |
| |
| let mut mapgen = CoverageMapGenerator::new(tcx, version); |
| |
| // Encode coverage mappings and generate function records |
| let mut function_data = Vec::new(); |
| for (instance, function_coverage) in function_coverage_map { |
| debug!("Generate function coverage for {}, {:?}", cx.codegen_unit.name(), instance); |
| let mangled_function_name = tcx.symbol_name(instance).to_string(); |
| let source_hash = function_coverage.source_hash(); |
| let is_used = function_coverage.is_used(); |
| let (expressions, counter_regions) = |
| function_coverage.get_expressions_and_counter_regions(); |
| |
| let coverage_mapping_buffer = llvm::build_byte_buffer(|coverage_mapping_buffer| { |
| mapgen.write_coverage_mapping(expressions, counter_regions, coverage_mapping_buffer); |
| }); |
| debug_assert!( |
| !coverage_mapping_buffer.is_empty(), |
| "Every `FunctionCoverage` should have at least one counter" |
| ); |
| |
| function_data.push((mangled_function_name, source_hash, is_used, coverage_mapping_buffer)); |
| } |
| |
| // Encode all filenames referenced by counters/expressions in this module |
| let filenames_buffer = llvm::build_byte_buffer(|filenames_buffer| { |
| coverageinfo::write_filenames_section_to_buffer(&mapgen.filenames, filenames_buffer); |
| }); |
| |
| let filenames_size = filenames_buffer.len(); |
| let filenames_val = cx.const_bytes(&filenames_buffer); |
| let filenames_ref = coverageinfo::hash_bytes(filenames_buffer); |
| |
| // Generate the LLVM IR representation of the coverage map and store it in a well-known global |
| let cov_data_val = mapgen.generate_coverage_map(cx, version, filenames_size, filenames_val); |
| |
| for (mangled_function_name, source_hash, is_used, coverage_mapping_buffer) in function_data { |
| save_function_record( |
| cx, |
| mangled_function_name, |
| source_hash, |
| filenames_ref, |
| coverage_mapping_buffer, |
| is_used, |
| ); |
| } |
| |
| // Save the coverage data value to LLVM IR |
| coverageinfo::save_cov_data_to_mod(cx, cov_data_val); |
| } |
| |
| struct CoverageMapGenerator { |
| filenames: FxIndexSet<CString>, |
| } |
| |
| impl CoverageMapGenerator { |
| fn new(tcx: TyCtxt<'_>, version: u32) -> Self { |
| let mut filenames = FxIndexSet::default(); |
| if version >= 5 { |
| // LLVM Coverage Mapping Format version 6 (zero-based encoded as 5) |
| // requires setting the first filename to the compilation directory. |
| // Since rustc generates coverage maps with relative paths, the |
| // compilation directory can be combined with the the relative paths |
| // to get absolute paths, if needed. |
| let working_dir = tcx |
| .sess |
| .opts |
| .working_dir |
| .remapped_path_if_available() |
| .to_string_lossy() |
| .to_string(); |
| let c_filename = |
| CString::new(working_dir).expect("null error converting filename to C string"); |
| filenames.insert(c_filename); |
| } |
| Self { filenames } |
| } |
| |
| /// Using the `expressions` and `counter_regions` collected for the current function, generate |
| /// the `mapping_regions` and `virtual_file_mapping`, and capture any new filenames. Then use |
| /// LLVM APIs to encode the `virtual_file_mapping`, `expressions`, and `mapping_regions` into |
| /// the given `coverage_mapping` byte buffer, compliant with the LLVM Coverage Mapping format. |
| fn write_coverage_mapping<'a>( |
| &mut self, |
| expressions: Vec<CounterExpression>, |
| counter_regions: impl Iterator<Item = (Counter, &'a CodeRegion)>, |
| coverage_mapping_buffer: &RustString, |
| ) { |
| let mut counter_regions = counter_regions.collect::<Vec<_>>(); |
| if counter_regions.is_empty() { |
| return; |
| } |
| |
| let mut virtual_file_mapping = Vec::new(); |
| let mut mapping_regions = Vec::new(); |
| let mut current_file_name = None; |
| let mut current_file_id = 0; |
| |
| // Convert the list of (Counter, CodeRegion) pairs to an array of `CounterMappingRegion`, sorted |
| // by filename and position. Capture any new files to compute the `CounterMappingRegion`s |
| // `file_id` (indexing files referenced by the current function), and construct the |
| // function-specific `virtual_file_mapping` from `file_id` to its index in the module's |
| // `filenames` array. |
| counter_regions.sort_unstable_by_key(|(_counter, region)| *region); |
| for (counter, region) in counter_regions { |
| let CodeRegion { file_name, start_line, start_col, end_line, end_col } = *region; |
| let same_file = current_file_name.as_ref().map_or(false, |p| *p == file_name); |
| if !same_file { |
| if current_file_name.is_some() { |
| current_file_id += 1; |
| } |
| current_file_name = Some(file_name); |
| let c_filename = CString::new(file_name.to_string()) |
| .expect("null error converting filename to C string"); |
| debug!(" file_id: {} = '{:?}'", current_file_id, c_filename); |
| let (filenames_index, _) = self.filenames.insert_full(c_filename); |
| virtual_file_mapping.push(filenames_index as u32); |
| } |
| debug!("Adding counter {:?} to map for {:?}", counter, region); |
| mapping_regions.push(CounterMappingRegion::code_region( |
| counter, |
| current_file_id, |
| start_line, |
| start_col, |
| end_line, |
| end_col, |
| )); |
| } |
| |
| // Encode and append the current function's coverage mapping data |
| coverageinfo::write_mapping_to_buffer( |
| virtual_file_mapping, |
| expressions, |
| mapping_regions, |
| coverage_mapping_buffer, |
| ); |
| } |
| |
| /// Construct coverage map header and the array of function records, and combine them into the |
| /// coverage map. Save the coverage map data into the LLVM IR as a static global using a |
| /// specific, well-known section and name. |
| fn generate_coverage_map<'ll>( |
| self, |
| cx: &CodegenCx<'ll, '_>, |
| version: u32, |
| filenames_size: usize, |
| filenames_val: &'ll llvm::Value, |
| ) -> &'ll llvm::Value { |
| debug!("cov map: filenames_size = {}, 0-based version = {}", filenames_size, version); |
| |
| // Create the coverage data header (Note, fields 0 and 2 are now always zero, |
| // as of `llvm::coverage::CovMapVersion::Version4`.) |
| let zero_was_n_records_val = cx.const_u32(0); |
| let filenames_size_val = cx.const_u32(filenames_size as u32); |
| let zero_was_coverage_size_val = cx.const_u32(0); |
| let version_val = cx.const_u32(version); |
| let cov_data_header_val = cx.const_struct( |
| &[zero_was_n_records_val, filenames_size_val, zero_was_coverage_size_val, version_val], |
| /*packed=*/ false, |
| ); |
| |
| // Create the complete LLVM coverage data value to add to the LLVM IR |
| cx.const_struct(&[cov_data_header_val, filenames_val], /*packed=*/ false) |
| } |
| } |
| |
| /// Construct a function record and combine it with the function's coverage mapping data. |
| /// Save the function record into the LLVM IR as a static global using a |
| /// specific, well-known section and name. |
| fn save_function_record( |
| cx: &CodegenCx<'_, '_>, |
| mangled_function_name: String, |
| source_hash: u64, |
| filenames_ref: u64, |
| coverage_mapping_buffer: Vec<u8>, |
| is_used: bool, |
| ) { |
| // Concatenate the encoded coverage mappings |
| let coverage_mapping_size = coverage_mapping_buffer.len(); |
| let coverage_mapping_val = cx.const_bytes(&coverage_mapping_buffer); |
| |
| let func_name_hash = coverageinfo::hash_str(&mangled_function_name); |
| let func_name_hash_val = cx.const_u64(func_name_hash); |
| let coverage_mapping_size_val = cx.const_u32(coverage_mapping_size as u32); |
| let source_hash_val = cx.const_u64(source_hash); |
| let filenames_ref_val = cx.const_u64(filenames_ref); |
| let func_record_val = cx.const_struct( |
| &[ |
| func_name_hash_val, |
| coverage_mapping_size_val, |
| source_hash_val, |
| filenames_ref_val, |
| coverage_mapping_val, |
| ], |
| /*packed=*/ true, |
| ); |
| |
| coverageinfo::save_func_record_to_mod(cx, func_name_hash, func_record_val, is_used); |
| } |
| |
| /// When finalizing the coverage map, `FunctionCoverage` only has the `CodeRegion`s and counters for |
| /// the functions that went through codegen; such as public functions and "used" functions |
| /// (functions referenced by other "used" or public items). Any other functions considered unused, |
| /// or "Unreachable", were still parsed and processed through the MIR stage, but were not |
| /// codegenned. (Note that `-Clink-dead-code` can force some unused code to be codegenned, but |
| /// that flag is known to cause other errors, when combined with `-Z instrument-coverage`; and |
| /// `-Clink-dead-code` will not generate code for unused generic functions.) |
| /// |
| /// We can find the unused functions (including generic functions) by the set difference of all MIR |
| /// `DefId`s (`tcx` query `mir_keys`) minus the codegenned `DefId`s (`tcx` query |
| /// `codegened_and_inlined_items`). |
| /// |
| /// *HOWEVER* the codegenned `DefId`s are partitioned across multiple `CodegenUnit`s (CGUs), and |
| /// this function is processing a `function_coverage_map` for the functions (`Instance`/`DefId`) |
| /// allocated to only one of those CGUs. We must NOT inject any unused functions's `CodeRegion`s |
| /// more than once, so we have to pick a CGUs `function_coverage_map` into which the unused |
| /// function will be inserted. |
| fn add_unused_functions<'ll, 'tcx>(cx: &CodegenCx<'ll, 'tcx>) { |
| let tcx = cx.tcx; |
| |
| // FIXME(#79622): Can this solution be simplified and/or improved? Are there other sources |
| // of compiler state data that might help (or better sources that could be exposed, but |
| // aren't yet)? |
| |
| let ignore_unused_generics = tcx.sess.instrument_coverage_except_unused_generics(); |
| |
| let all_def_ids: DefIdSet = tcx |
| .mir_keys(()) |
| .iter() |
| .filter_map(|local_def_id| { |
| let def_id = local_def_id.to_def_id(); |
| if ignore_unused_generics && tcx.generics_of(def_id).requires_monomorphization(tcx) { |
| return None; |
| } |
| Some(local_def_id.to_def_id()) |
| }) |
| .collect(); |
| |
| let codegenned_def_ids = tcx.codegened_and_inlined_items(()); |
| |
| let mut unused_def_ids_by_file: FxHashMap<Symbol, Vec<DefId>> = FxHashMap::default(); |
| for &non_codegenned_def_id in all_def_ids.difference(codegenned_def_ids) { |
| // Make sure the non-codegenned (unused) function has at least one MIR |
| // `Coverage` statement with a code region, and return its file name. |
| if let Some(non_codegenned_file_name) = tcx.covered_file_name(non_codegenned_def_id) { |
| let def_ids = |
| unused_def_ids_by_file.entry(*non_codegenned_file_name).or_insert_with(Vec::new); |
| def_ids.push(non_codegenned_def_id); |
| } |
| } |
| |
| if unused_def_ids_by_file.is_empty() { |
| // There are no unused functions with file names to add (in any CGU) |
| return; |
| } |
| |
| // Each `CodegenUnit` (CGU) has its own function_coverage_map, and generates a specific binary |
| // with its own coverage map. |
| // |
| // Each covered function `Instance` can be included in only one coverage map, produced from a |
| // specific function_coverage_map, from a specific CGU. |
| // |
| // Since unused functions did not generate code, they are not associated with any CGU yet. |
| // |
| // To avoid injecting the unused functions in multiple coverage maps (for multiple CGUs) |
| // determine which function_coverage_map has the responsibility for publishing unreachable |
| // coverage, based on file name: For each unused function, find the CGU that generates the |
| // first function (based on sorted `DefId`) from the same file. |
| // |
| // Add a new `FunctionCoverage` to the `function_coverage_map`, with unreachable code regions |
| // for each region in it's MIR. |
| |
| // Convert the `HashSet` of `codegenned_def_ids` to a sortable vector, and sort them. |
| let mut sorted_codegenned_def_ids: Vec<DefId> = codegenned_def_ids.iter().copied().collect(); |
| sorted_codegenned_def_ids.sort_unstable(); |
| |
| let mut first_covered_def_id_by_file: FxHashMap<Symbol, DefId> = FxHashMap::default(); |
| for &def_id in sorted_codegenned_def_ids.iter() { |
| if let Some(covered_file_name) = tcx.covered_file_name(def_id) { |
| // Only add files known to have unused functions |
| if unused_def_ids_by_file.contains_key(covered_file_name) { |
| first_covered_def_id_by_file.entry(*covered_file_name).or_insert(def_id); |
| } |
| } |
| } |
| |
| // Get the set of def_ids with coverage regions, known by *this* CoverageContext. |
| let cgu_covered_def_ids: DefIdSet = match cx.coverage_context() { |
| Some(ctx) => ctx |
| .function_coverage_map |
| .borrow() |
| .keys() |
| .map(|&instance| instance.def.def_id()) |
| .collect(), |
| None => return, |
| }; |
| |
| let cgu_covered_files: FxHashSet<Symbol> = first_covered_def_id_by_file |
| .iter() |
| .filter_map( |
| |(&file_name, def_id)| { |
| if cgu_covered_def_ids.contains(def_id) { Some(file_name) } else { None } |
| }, |
| ) |
| .collect(); |
| |
| // For each file for which this CGU is responsible for adding unused function coverage, |
| // get the `def_id`s for each unused function (if any), define a synthetic function with a |
| // single LLVM coverage counter, and add the function's coverage `CodeRegion`s. to the |
| // function_coverage_map. |
| for covered_file_name in cgu_covered_files { |
| for def_id in unused_def_ids_by_file.remove(&covered_file_name).into_iter().flatten() { |
| cx.define_unused_fn(def_id); |
| } |
| } |
| } |