blob: c3f81a3ab838f5ffb2136e1d5f981e4d7a83fd84 [file] [log] [blame]
//! Validates the MIR to ensure that invariants are upheld.
use rustc_index::bit_set::BitSet;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::mir::interpret::Scalar;
use rustc_middle::mir::traversal;
use rustc_middle::mir::visit::{PlaceContext, Visitor};
use rustc_middle::mir::{
AggregateKind, BasicBlock, Body, BorrowKind, Local, Location, MirPass, MirPhase, Operand,
PlaceElem, PlaceRef, ProjectionElem, Rvalue, SourceScope, Statement, StatementKind, Terminator,
TerminatorKind, START_BLOCK,
};
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::{self, ParamEnv, Ty, TyCtxt, TypeFoldable};
use rustc_mir_dataflow::impls::MaybeStorageLive;
use rustc_mir_dataflow::storage::AlwaysLiveLocals;
use rustc_mir_dataflow::{Analysis, ResultsCursor};
use rustc_target::abi::Size;
#[derive(Copy, Clone, Debug)]
enum EdgeKind {
Unwind,
Normal,
}
pub struct Validator {
/// Describes at which point in the pipeline this validation is happening.
pub when: String,
/// The phase for which we are upholding the dialect. If the given phase forbids a specific
/// element, this validator will now emit errors if that specific element is encountered.
/// Note that phases that change the dialect cause all *following* phases to check the
/// invariants of the new dialect. A phase that changes dialects never checks the new invariants
/// itself.
pub mir_phase: MirPhase,
}
impl<'tcx> MirPass<'tcx> for Validator {
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let def_id = body.source.def_id();
let param_env = tcx.param_env(def_id);
let mir_phase = self.mir_phase;
let always_live_locals = AlwaysLiveLocals::new(body);
let storage_liveness = MaybeStorageLive::new(always_live_locals)
.into_engine(tcx, body)
.iterate_to_fixpoint()
.into_results_cursor(body);
TypeChecker {
when: &self.when,
body,
tcx,
param_env,
mir_phase,
reachable_blocks: traversal::reachable_as_bitset(body),
storage_liveness,
place_cache: Vec::new(),
}
.visit_body(body);
}
}
/// Returns whether the two types are equal up to lifetimes.
/// All lifetimes, including higher-ranked ones, get ignored for this comparison.
/// (This is unlike the `erasing_regions` methods, which keep higher-ranked lifetimes for soundness reasons.)
///
/// The point of this function is to approximate "equal up to subtyping". However,
/// the approximation is incorrect as variance is ignored.
pub fn equal_up_to_regions<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
src: Ty<'tcx>,
dest: Ty<'tcx>,
) -> bool {
// Fast path.
if src == dest {
return true;
}
// Normalize lifetimes away on both sides, then compare.
let param_env = param_env.with_reveal_all_normalized(tcx);
let normalize = |ty: Ty<'tcx>| {
tcx.normalize_erasing_regions(
param_env,
ty.fold_with(&mut BottomUpFolder {
tcx,
// FIXME: We erase all late-bound lifetimes, but this is not fully correct.
// If you have a type like `<for<'a> fn(&'a u32) as SomeTrait>::Assoc`,
// this is not necessarily equivalent to `<fn(&'static u32) as SomeTrait>::Assoc`,
// since one may have an `impl SomeTrait for fn(&32)` and
// `impl SomeTrait for fn(&'static u32)` at the same time which
// specify distinct values for Assoc. (See also #56105)
lt_op: |_| tcx.lifetimes.re_erased,
// Leave consts and types unchanged.
ct_op: |ct| ct,
ty_op: |ty| ty,
}),
)
};
tcx.infer_ctxt().enter(|infcx| infcx.can_eq(param_env, normalize(src), normalize(dest)).is_ok())
}
struct TypeChecker<'a, 'tcx> {
when: &'a str,
body: &'a Body<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
mir_phase: MirPhase,
reachable_blocks: BitSet<BasicBlock>,
storage_liveness: ResultsCursor<'a, 'tcx, MaybeStorageLive>,
place_cache: Vec<PlaceRef<'tcx>>,
}
impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
fn fail(&self, location: Location, msg: impl AsRef<str>) {
let span = self.body.source_info(location).span;
// We use `delay_span_bug` as we might see broken MIR when other errors have already
// occurred.
self.tcx.sess.diagnostic().delay_span_bug(
span,
&format!(
"broken MIR in {:?} ({}) at {:?}:\n{}",
self.body.source.instance,
self.when,
location,
msg.as_ref()
),
);
}
fn check_edge(&self, location: Location, bb: BasicBlock, edge_kind: EdgeKind) {
if bb == START_BLOCK {
self.fail(location, "start block must not have predecessors")
}
if let Some(bb) = self.body.basic_blocks().get(bb) {
let src = self.body.basic_blocks().get(location.block).unwrap();
match (src.is_cleanup, bb.is_cleanup, edge_kind) {
// Non-cleanup blocks can jump to non-cleanup blocks along non-unwind edges
(false, false, EdgeKind::Normal)
// Non-cleanup blocks can jump to cleanup blocks along unwind edges
| (false, true, EdgeKind::Unwind)
// Cleanup blocks can jump to cleanup blocks along non-unwind edges
| (true, true, EdgeKind::Normal) => {}
// All other jumps are invalid
_ => {
self.fail(
location,
format!(
"{:?} edge to {:?} violates unwind invariants (cleanup {:?} -> {:?})",
edge_kind,
bb,
src.is_cleanup,
bb.is_cleanup,
)
)
}
}
} else {
self.fail(location, format!("encountered jump to invalid basic block {:?}", bb))
}
}
/// Check if src can be assigned into dest.
/// This is not precise, it will accept some incorrect assignments.
fn mir_assign_valid_types(&self, src: Ty<'tcx>, dest: Ty<'tcx>) -> bool {
// Fast path before we normalize.
if src == dest {
// Equal types, all is good.
return true;
}
// Normalize projections and things like that.
// FIXME: We need to reveal_all, as some optimizations change types in ways
// that require unfolding opaque types.
let param_env = self.param_env.with_reveal_all_normalized(self.tcx);
let src = self.tcx.normalize_erasing_regions(param_env, src);
let dest = self.tcx.normalize_erasing_regions(param_env, dest);
// Type-changing assignments can happen when subtyping is used. While
// all normal lifetimes are erased, higher-ranked types with their
// late-bound lifetimes are still around and can lead to type
// differences. So we compare ignoring lifetimes.
equal_up_to_regions(self.tcx, param_env, src, dest)
}
}
impl<'a, 'tcx> Visitor<'tcx> for TypeChecker<'a, 'tcx> {
fn visit_local(&mut self, local: &Local, context: PlaceContext, location: Location) {
if self.body.local_decls.get(*local).is_none() {
self.fail(
location,
format!("local {:?} has no corresponding declaration in `body.local_decls`", local),
);
}
if self.reachable_blocks.contains(location.block) && context.is_use() {
// Uses of locals must occur while the local's storage is allocated.
self.storage_liveness.seek_after_primary_effect(location);
let locals_with_storage = self.storage_liveness.get();
if !locals_with_storage.contains(*local) {
self.fail(location, format!("use of local {:?}, which has no storage here", local));
}
}
}
fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
// This check is somewhat expensive, so only run it when -Zvalidate-mir is passed.
if self.tcx.sess.opts.debugging_opts.validate_mir {
// `Operand::Copy` is only supposed to be used with `Copy` types.
if let Operand::Copy(place) = operand {
let ty = place.ty(&self.body.local_decls, self.tcx).ty;
let span = self.body.source_info(location).span;
if !ty.is_copy_modulo_regions(self.tcx.at(span), self.param_env) {
self.fail(location, format!("`Operand::Copy` with non-`Copy` type {}", ty));
}
}
}
self.super_operand(operand, location);
}
fn visit_projection_elem(
&mut self,
local: Local,
proj_base: &[PlaceElem<'tcx>],
elem: PlaceElem<'tcx>,
context: PlaceContext,
location: Location,
) {
if let ProjectionElem::Index(index) = elem {
let index_ty = self.body.local_decls[index].ty;
if index_ty != self.tcx.types.usize {
self.fail(location, format!("bad index ({:?} != usize)", index_ty))
}
}
self.super_projection_elem(local, proj_base, elem, context, location);
}
fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
match &statement.kind {
StatementKind::Assign(box (dest, rvalue)) => {
// LHS and RHS of the assignment must have the same type.
let left_ty = dest.ty(&self.body.local_decls, self.tcx).ty;
let right_ty = rvalue.ty(&self.body.local_decls, self.tcx);
if !self.mir_assign_valid_types(right_ty, left_ty) {
self.fail(
location,
format!(
"encountered `{:?}` with incompatible types:\n\
left-hand side has type: {}\n\
right-hand side has type: {}",
statement.kind, left_ty, right_ty,
),
);
}
match rvalue {
// The sides of an assignment must not alias. Currently this just checks whether the places
// are identical.
Rvalue::Use(Operand::Copy(src) | Operand::Move(src)) => {
if dest == src {
self.fail(
location,
"encountered `Assign` statement with overlapping memory",
);
}
}
// The deaggregator currently does not deaggreagate arrays.
// So for now, we ignore them here.
Rvalue::Aggregate(box AggregateKind::Array { .. }, _) => {}
// All other aggregates must be gone after some phases.
Rvalue::Aggregate(box kind, _) => {
if self.mir_phase > MirPhase::DropLowering
&& !matches!(kind, AggregateKind::Generator(..))
{
// Generators persist until the state machine transformation, but all
// other aggregates must have been lowered.
self.fail(
location,
format!("{:?} have been lowered to field assignments", rvalue),
)
} else if self.mir_phase > MirPhase::GeneratorLowering {
// No more aggregates after drop and generator lowering.
self.fail(
location,
format!("{:?} have been lowered to field assignments", rvalue),
)
}
}
Rvalue::Ref(_, BorrowKind::Shallow, _) => {
if self.mir_phase > MirPhase::DropLowering {
self.fail(
location,
"`Assign` statement with a `Shallow` borrow should have been removed after drop lowering phase",
);
}
}
_ => {}
}
}
StatementKind::AscribeUserType(..) => {
if self.mir_phase > MirPhase::DropLowering {
self.fail(
location,
"`AscribeUserType` should have been removed after drop lowering phase",
);
}
}
StatementKind::FakeRead(..) => {
if self.mir_phase > MirPhase::DropLowering {
self.fail(
location,
"`FakeRead` should have been removed after drop lowering phase",
);
}
}
StatementKind::CopyNonOverlapping(box rustc_middle::mir::CopyNonOverlapping {
ref src,
ref dst,
ref count,
}) => {
let src_ty = src.ty(&self.body.local_decls, self.tcx);
let op_src_ty = if let Some(src_deref) = src_ty.builtin_deref(true) {
src_deref.ty
} else {
self.fail(
location,
format!("Expected src to be ptr in copy_nonoverlapping, got: {}", src_ty),
);
return;
};
let dst_ty = dst.ty(&self.body.local_decls, self.tcx);
let op_dst_ty = if let Some(dst_deref) = dst_ty.builtin_deref(true) {
dst_deref.ty
} else {
self.fail(
location,
format!("Expected dst to be ptr in copy_nonoverlapping, got: {}", dst_ty),
);
return;
};
// since CopyNonOverlapping is parametrized by 1 type,
// we only need to check that they are equal and not keep an extra parameter.
if op_src_ty != op_dst_ty {
self.fail(location, format!("bad arg ({:?} != {:?})", op_src_ty, op_dst_ty));
}
let op_cnt_ty = count.ty(&self.body.local_decls, self.tcx);
if op_cnt_ty != self.tcx.types.usize {
self.fail(location, format!("bad arg ({:?} != usize)", op_cnt_ty))
}
}
StatementKind::SetDiscriminant { .. }
| StatementKind::StorageLive(..)
| StatementKind::StorageDead(..)
| StatementKind::LlvmInlineAsm(..)
| StatementKind::Retag(_, _)
| StatementKind::Coverage(_)
| StatementKind::Nop => {}
}
self.super_statement(statement, location);
}
fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
match &terminator.kind {
TerminatorKind::Goto { target } => {
self.check_edge(location, *target, EdgeKind::Normal);
}
TerminatorKind::SwitchInt { targets, switch_ty, discr } => {
let ty = discr.ty(&self.body.local_decls, self.tcx);
if ty != *switch_ty {
self.fail(
location,
format!(
"encountered `SwitchInt` terminator with type mismatch: {:?} != {:?}",
ty, switch_ty,
),
);
}
let target_width = self.tcx.sess.target.pointer_width;
let size = Size::from_bits(match switch_ty.kind() {
ty::Uint(uint) => uint.normalize(target_width).bit_width().unwrap(),
ty::Int(int) => int.normalize(target_width).bit_width().unwrap(),
ty::Char => 32,
ty::Bool => 1,
other => bug!("unhandled type: {:?}", other),
});
for (value, target) in targets.iter() {
if Scalar::<()>::try_from_uint(value, size).is_none() {
self.fail(
location,
format!("the value {:#x} is not a proper {:?}", value, switch_ty),
)
}
self.check_edge(location, target, EdgeKind::Normal);
}
self.check_edge(location, targets.otherwise(), EdgeKind::Normal);
}
TerminatorKind::Drop { target, unwind, .. } => {
self.check_edge(location, *target, EdgeKind::Normal);
if let Some(unwind) = unwind {
self.check_edge(location, *unwind, EdgeKind::Unwind);
}
}
TerminatorKind::DropAndReplace { target, unwind, .. } => {
if self.mir_phase > MirPhase::DropLowering {
self.fail(
location,
"`DropAndReplace` is not permitted to exist after drop elaboration",
);
}
self.check_edge(location, *target, EdgeKind::Normal);
if let Some(unwind) = unwind {
self.check_edge(location, *unwind, EdgeKind::Unwind);
}
}
TerminatorKind::Call { func, args, destination, cleanup, .. } => {
let func_ty = func.ty(&self.body.local_decls, self.tcx);
match func_ty.kind() {
ty::FnPtr(..) | ty::FnDef(..) => {}
_ => self.fail(
location,
format!("encountered non-callable type {} in `Call` terminator", func_ty),
),
}
if let Some((_, target)) = destination {
self.check_edge(location, *target, EdgeKind::Normal);
}
if let Some(cleanup) = cleanup {
self.check_edge(location, *cleanup, EdgeKind::Unwind);
}
// The call destination place and Operand::Move place used as an argument might be
// passed by a reference to the callee. Consequently they must be non-overlapping.
// Currently this simply checks for duplicate places.
self.place_cache.clear();
if let Some((destination, _)) = destination {
self.place_cache.push(destination.as_ref());
}
for arg in args {
if let Operand::Move(place) = arg {
self.place_cache.push(place.as_ref());
}
}
let all_len = self.place_cache.len();
self.place_cache.sort_unstable();
self.place_cache.dedup();
let has_duplicates = all_len != self.place_cache.len();
if has_duplicates {
self.fail(
location,
format!(
"encountered overlapping memory in `Call` terminator: {:?}",
terminator.kind,
),
);
}
}
TerminatorKind::Assert { cond, target, cleanup, .. } => {
let cond_ty = cond.ty(&self.body.local_decls, self.tcx);
if cond_ty != self.tcx.types.bool {
self.fail(
location,
format!(
"encountered non-boolean condition of type {} in `Assert` terminator",
cond_ty
),
);
}
self.check_edge(location, *target, EdgeKind::Normal);
if let Some(cleanup) = cleanup {
self.check_edge(location, *cleanup, EdgeKind::Unwind);
}
}
TerminatorKind::Yield { resume, drop, .. } => {
if self.mir_phase > MirPhase::GeneratorLowering {
self.fail(location, "`Yield` should have been replaced by generator lowering");
}
self.check_edge(location, *resume, EdgeKind::Normal);
if let Some(drop) = drop {
self.check_edge(location, *drop, EdgeKind::Normal);
}
}
TerminatorKind::FalseEdge { real_target, imaginary_target } => {
self.check_edge(location, *real_target, EdgeKind::Normal);
self.check_edge(location, *imaginary_target, EdgeKind::Normal);
}
TerminatorKind::FalseUnwind { real_target, unwind } => {
self.check_edge(location, *real_target, EdgeKind::Normal);
if let Some(unwind) = unwind {
self.check_edge(location, *unwind, EdgeKind::Unwind);
}
}
TerminatorKind::InlineAsm { destination, cleanup, .. } => {
if let Some(destination) = destination {
self.check_edge(location, *destination, EdgeKind::Normal);
}
if let Some(cleanup) = cleanup {
self.check_edge(location, *cleanup, EdgeKind::Unwind);
}
}
// Nothing to validate for these.
TerminatorKind::Resume
| TerminatorKind::Abort
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::GeneratorDrop => {}
}
self.super_terminator(terminator, location);
}
fn visit_source_scope(&mut self, scope: &SourceScope) {
if self.body.source_scopes.get(*scope).is_none() {
self.tcx.sess.diagnostic().delay_span_bug(
self.body.span,
&format!(
"broken MIR in {:?} ({}):\ninvalid source scope {:?}",
self.body.source.instance, self.when, scope,
),
);
}
}
}