blob: 364005e67e63f91f0dd5dc2a563ef7f0b465d6db [file] [log] [blame]
extern crate test;
use super::*;
use crate::graph::tests::TestGraph;
#[test]
fn diamond() {
let graph = TestGraph::new(0, &[(0, 1), (0, 2), (1, 3), (2, 3)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 4);
assert_eq!(sccs.num_sccs(), 4);
}
#[test]
fn test_big_scc() {
// The order in which things will be visited is important to this
// test.
//
// We will visit:
//
// 0 -> 1 -> 2 -> 0
//
// and at this point detect a cycle. 2 will return back to 1 which
// will visit 3. 3 will visit 2 before the cycle is complete, and
// hence it too will return a cycle.
/*
+-> 0
| |
| v
| 1 -> 3
| | |
| v |
+-- 2 <--+
*/
let graph = TestGraph::new(0, &[(0, 1), (1, 2), (1, 3), (2, 0), (3, 2)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 1);
}
#[test]
fn test_three_sccs() {
/*
0
|
v
+-> 1 3
| | |
| v |
+-- 2 <--+
*/
let graph = TestGraph::new(0, &[(0, 1), (1, 2), (2, 1), (3, 2)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 3);
assert_eq!(sccs.scc(0), 1);
assert_eq!(sccs.scc(1), 0);
assert_eq!(sccs.scc(2), 0);
assert_eq!(sccs.scc(3), 2);
assert_eq!(sccs.successors(0), &[]);
assert_eq!(sccs.successors(1), &[0]);
assert_eq!(sccs.successors(2), &[0]);
}
#[test]
fn test_find_state_2() {
// The order in which things will be visited is important to this
// test. It tests part of the `find_state` behavior. Here is the
// graph:
//
//
// /----+
// 0 <--+ |
// | | |
// v | |
// +-> 1 -> 3 4
// | | |
// | v |
// +-- 2 <----+
let graph = TestGraph::new(0, &[(0, 1), (0, 4), (1, 2), (1, 3), (2, 1), (3, 0), (4, 2)]);
// For this graph, we will start in our DFS by visiting:
//
// 0 -> 1 -> 2 -> 1
//
// and at this point detect a cycle. The state of 2 will thus be
// `InCycleWith { 1 }`. We will then visit the 1 -> 3 edge, which
// will attempt to visit 0 as well, thus going to the state
// `InCycleWith { 0 }`. Finally, node 1 will complete; the lowest
// depth of any successor was 3 which had depth 0, and thus it
// will be in the state `InCycleWith { 3 }`.
//
// When we finally traverse the `0 -> 4` edge and then visit node 2,
// the states of the nodes are:
//
// 0 BeingVisited { 0 }
// 1 InCycleWith { 3 }
// 2 InCycleWith { 1 }
// 3 InCycleWith { 0 }
//
// and hence 4 will traverse the links, finding an ultimate depth of 0.
// If will also collapse the states to the following:
//
// 0 BeingVisited { 0 }
// 1 InCycleWith { 3 }
// 2 InCycleWith { 1 }
// 3 InCycleWith { 0 }
let sccs: Sccs<_, usize> = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 1);
assert_eq!(sccs.scc(0), 0);
assert_eq!(sccs.scc(1), 0);
assert_eq!(sccs.scc(2), 0);
assert_eq!(sccs.scc(3), 0);
assert_eq!(sccs.scc(4), 0);
assert_eq!(sccs.successors(0), &[]);
}
#[test]
fn test_find_state_3() {
/*
/----+
0 <--+ |
| | |
v | |
+-> 1 -> 3 4 5
| | | |
| v | |
+-- 2 <----+-+
*/
let graph =
TestGraph::new(0, &[(0, 1), (0, 4), (1, 2), (1, 3), (2, 1), (3, 0), (4, 2), (5, 2)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 2);
assert_eq!(sccs.scc(0), 0);
assert_eq!(sccs.scc(1), 0);
assert_eq!(sccs.scc(2), 0);
assert_eq!(sccs.scc(3), 0);
assert_eq!(sccs.scc(4), 0);
assert_eq!(sccs.scc(5), 1);
assert_eq!(sccs.successors(0), &[]);
assert_eq!(sccs.successors(1), &[0]);
}
#[test]
fn test_deep_linear() {
/*
0
|
v
1
|
v
2
|
v
*/
const NR_NODES: usize = 1 << 14;
let mut nodes = vec![];
for i in 1..NR_NODES {
nodes.push((i - 1, i));
}
let graph = TestGraph::new(0, nodes.as_slice());
let sccs: Sccs<_, usize> = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), NR_NODES);
assert_eq!(sccs.scc(0), NR_NODES - 1);
assert_eq!(sccs.scc(NR_NODES - 1), 0);
}
#[bench]
fn bench_sccc(b: &mut test::Bencher) {
// Like `test_three_sccs` but each state is replaced by a group of
// three or four to have some amount of test data.
/*
0-3
|
v
+->4-6 11-14
| | |
| v |
+--7-10<-+
*/
fn make_3_clique(slice: &mut [(usize, usize)], base: usize) {
slice[0] = (base + 0, base + 1);
slice[1] = (base + 1, base + 2);
slice[2] = (base + 2, base + 0);
}
// Not actually a clique but strongly connected.
fn make_4_clique(slice: &mut [(usize, usize)], base: usize) {
slice[0] = (base + 0, base + 1);
slice[1] = (base + 1, base + 2);
slice[2] = (base + 2, base + 3);
slice[3] = (base + 3, base + 0);
slice[4] = (base + 1, base + 3);
slice[5] = (base + 2, base + 1);
}
let mut graph = [(0, 0); 6 + 3 + 6 + 3 + 4];
make_4_clique(&mut graph[0..6], 0);
make_3_clique(&mut graph[6..9], 4);
make_4_clique(&mut graph[9..15], 7);
make_3_clique(&mut graph[15..18], 11);
graph[18] = (0, 4);
graph[19] = (5, 7);
graph[20] = (11, 10);
graph[21] = (7, 4);
let graph = TestGraph::new(0, &graph[..]);
b.iter(|| {
let sccs: Sccs<_, usize> = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 3);
});
}