| extern crate test; |
| |
| use super::*; |
| use crate::graph::tests::TestGraph; |
| |
| #[test] |
| fn diamond() { |
| let graph = TestGraph::new(0, &[(0, 1), (0, 2), (1, 3), (2, 3)]); |
| let sccs: Sccs<_, usize> = Sccs::new(&graph); |
| assert_eq!(sccs.num_sccs(), 4); |
| assert_eq!(sccs.num_sccs(), 4); |
| } |
| |
| #[test] |
| fn test_big_scc() { |
| // The order in which things will be visited is important to this |
| // test. |
| // |
| // We will visit: |
| // |
| // 0 -> 1 -> 2 -> 0 |
| // |
| // and at this point detect a cycle. 2 will return back to 1 which |
| // will visit 3. 3 will visit 2 before the cycle is complete, and |
| // hence it too will return a cycle. |
| |
| /* |
| +-> 0 |
| | | |
| | v |
| | 1 -> 3 |
| | | | |
| | v | |
| +-- 2 <--+ |
| */ |
| let graph = TestGraph::new(0, &[(0, 1), (1, 2), (1, 3), (2, 0), (3, 2)]); |
| let sccs: Sccs<_, usize> = Sccs::new(&graph); |
| assert_eq!(sccs.num_sccs(), 1); |
| } |
| |
| #[test] |
| fn test_three_sccs() { |
| /* |
| 0 |
| | |
| v |
| +-> 1 3 |
| | | | |
| | v | |
| +-- 2 <--+ |
| */ |
| let graph = TestGraph::new(0, &[(0, 1), (1, 2), (2, 1), (3, 2)]); |
| let sccs: Sccs<_, usize> = Sccs::new(&graph); |
| assert_eq!(sccs.num_sccs(), 3); |
| assert_eq!(sccs.scc(0), 1); |
| assert_eq!(sccs.scc(1), 0); |
| assert_eq!(sccs.scc(2), 0); |
| assert_eq!(sccs.scc(3), 2); |
| assert_eq!(sccs.successors(0), &[]); |
| assert_eq!(sccs.successors(1), &[0]); |
| assert_eq!(sccs.successors(2), &[0]); |
| } |
| |
| #[test] |
| fn test_find_state_2() { |
| // The order in which things will be visited is important to this |
| // test. It tests part of the `find_state` behavior. Here is the |
| // graph: |
| // |
| // |
| // /----+ |
| // 0 <--+ | |
| // | | | |
| // v | | |
| // +-> 1 -> 3 4 |
| // | | | |
| // | v | |
| // +-- 2 <----+ |
| |
| let graph = TestGraph::new(0, &[(0, 1), (0, 4), (1, 2), (1, 3), (2, 1), (3, 0), (4, 2)]); |
| |
| // For this graph, we will start in our DFS by visiting: |
| // |
| // 0 -> 1 -> 2 -> 1 |
| // |
| // and at this point detect a cycle. The state of 2 will thus be |
| // `InCycleWith { 1 }`. We will then visit the 1 -> 3 edge, which |
| // will attempt to visit 0 as well, thus going to the state |
| // `InCycleWith { 0 }`. Finally, node 1 will complete; the lowest |
| // depth of any successor was 3 which had depth 0, and thus it |
| // will be in the state `InCycleWith { 3 }`. |
| // |
| // When we finally traverse the `0 -> 4` edge and then visit node 2, |
| // the states of the nodes are: |
| // |
| // 0 BeingVisited { 0 } |
| // 1 InCycleWith { 3 } |
| // 2 InCycleWith { 1 } |
| // 3 InCycleWith { 0 } |
| // |
| // and hence 4 will traverse the links, finding an ultimate depth of 0. |
| // If will also collapse the states to the following: |
| // |
| // 0 BeingVisited { 0 } |
| // 1 InCycleWith { 3 } |
| // 2 InCycleWith { 1 } |
| // 3 InCycleWith { 0 } |
| |
| let sccs: Sccs<_, usize> = Sccs::new(&graph); |
| assert_eq!(sccs.num_sccs(), 1); |
| assert_eq!(sccs.scc(0), 0); |
| assert_eq!(sccs.scc(1), 0); |
| assert_eq!(sccs.scc(2), 0); |
| assert_eq!(sccs.scc(3), 0); |
| assert_eq!(sccs.scc(4), 0); |
| assert_eq!(sccs.successors(0), &[]); |
| } |
| |
| #[test] |
| fn test_find_state_3() { |
| /* |
| /----+ |
| 0 <--+ | |
| | | | |
| v | | |
| +-> 1 -> 3 4 5 |
| | | | | |
| | v | | |
| +-- 2 <----+-+ |
| */ |
| let graph = |
| TestGraph::new(0, &[(0, 1), (0, 4), (1, 2), (1, 3), (2, 1), (3, 0), (4, 2), (5, 2)]); |
| let sccs: Sccs<_, usize> = Sccs::new(&graph); |
| assert_eq!(sccs.num_sccs(), 2); |
| assert_eq!(sccs.scc(0), 0); |
| assert_eq!(sccs.scc(1), 0); |
| assert_eq!(sccs.scc(2), 0); |
| assert_eq!(sccs.scc(3), 0); |
| assert_eq!(sccs.scc(4), 0); |
| assert_eq!(sccs.scc(5), 1); |
| assert_eq!(sccs.successors(0), &[]); |
| assert_eq!(sccs.successors(1), &[0]); |
| } |
| |
| #[test] |
| fn test_deep_linear() { |
| /* |
| 0 |
| | |
| v |
| 1 |
| | |
| v |
| 2 |
| | |
| v |
| … |
| */ |
| const NR_NODES: usize = 1 << 14; |
| let mut nodes = vec![]; |
| for i in 1..NR_NODES { |
| nodes.push((i - 1, i)); |
| } |
| let graph = TestGraph::new(0, nodes.as_slice()); |
| let sccs: Sccs<_, usize> = Sccs::new(&graph); |
| assert_eq!(sccs.num_sccs(), NR_NODES); |
| assert_eq!(sccs.scc(0), NR_NODES - 1); |
| assert_eq!(sccs.scc(NR_NODES - 1), 0); |
| } |
| |
| #[bench] |
| fn bench_sccc(b: &mut test::Bencher) { |
| // Like `test_three_sccs` but each state is replaced by a group of |
| // three or four to have some amount of test data. |
| /* |
| 0-3 |
| | |
| v |
| +->4-6 11-14 |
| | | | |
| | v | |
| +--7-10<-+ |
| */ |
| fn make_3_clique(slice: &mut [(usize, usize)], base: usize) { |
| slice[0] = (base + 0, base + 1); |
| slice[1] = (base + 1, base + 2); |
| slice[2] = (base + 2, base + 0); |
| } |
| // Not actually a clique but strongly connected. |
| fn make_4_clique(slice: &mut [(usize, usize)], base: usize) { |
| slice[0] = (base + 0, base + 1); |
| slice[1] = (base + 1, base + 2); |
| slice[2] = (base + 2, base + 3); |
| slice[3] = (base + 3, base + 0); |
| slice[4] = (base + 1, base + 3); |
| slice[5] = (base + 2, base + 1); |
| } |
| |
| let mut graph = [(0, 0); 6 + 3 + 6 + 3 + 4]; |
| make_4_clique(&mut graph[0..6], 0); |
| make_3_clique(&mut graph[6..9], 4); |
| make_4_clique(&mut graph[9..15], 7); |
| make_3_clique(&mut graph[15..18], 11); |
| graph[18] = (0, 4); |
| graph[19] = (5, 7); |
| graph[20] = (11, 10); |
| graph[21] = (7, 4); |
| let graph = TestGraph::new(0, &graph[..]); |
| b.iter(|| { |
| let sccs: Sccs<_, usize> = Sccs::new(&graph); |
| assert_eq!(sccs.num_sccs(), 3); |
| }); |
| } |