| use std::borrow::Cow; |
| use std::cell::Cell; |
| use std::convert::TryFrom; |
| use std::ops::Deref; |
| |
| use gccjit::{ |
| BinaryOp, |
| Block, |
| ComparisonOp, |
| Context, |
| Function, |
| LValue, |
| RValue, |
| ToRValue, |
| Type, |
| UnaryOp, |
| }; |
| use rustc_apfloat::{ieee, Float, Round, Status}; |
| use rustc_codegen_ssa::MemFlags; |
| use rustc_codegen_ssa::common::{ |
| AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind, |
| }; |
| use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue}; |
| use rustc_codegen_ssa::mir::place::PlaceRef; |
| use rustc_codegen_ssa::traits::{ |
| BackendTypes, |
| BaseTypeMethods, |
| BuilderMethods, |
| ConstMethods, |
| DerivedTypeMethods, |
| LayoutTypeMethods, |
| HasCodegen, |
| OverflowOp, |
| StaticBuilderMethods, |
| }; |
| use rustc_data_structures::fx::FxHashSet; |
| use rustc_middle::bug; |
| use rustc_middle::ty::{ParamEnv, Ty, TyCtxt}; |
| use rustc_middle::ty::layout::{FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasParamEnv, HasTyCtxt, LayoutError, LayoutOfHelpers, TyAndLayout}; |
| use rustc_span::Span; |
| use rustc_span::def_id::DefId; |
| use rustc_target::abi::{ |
| self, |
| call::FnAbi, |
| Align, |
| HasDataLayout, |
| Size, |
| TargetDataLayout, |
| WrappingRange, |
| }; |
| use rustc_target::spec::{HasTargetSpec, Target}; |
| |
| use crate::common::{SignType, TypeReflection, type_is_pointer}; |
| use crate::context::CodegenCx; |
| use crate::intrinsic::llvm; |
| use crate::type_of::LayoutGccExt; |
| |
| // TODO(antoyo) |
| type Funclet = (); |
| |
| // TODO(antoyo): remove this variable. |
| static mut RETURN_VALUE_COUNT: usize = 0; |
| |
| enum ExtremumOperation { |
| Max, |
| Min, |
| } |
| |
| pub struct Builder<'a: 'gcc, 'gcc, 'tcx> { |
| pub cx: &'a CodegenCx<'gcc, 'tcx>, |
| pub block: Block<'gcc>, |
| stack_var_count: Cell<usize>, |
| } |
| |
| impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> { |
| fn with_cx(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Self { |
| Builder { |
| cx, |
| block, |
| stack_var_count: Cell::new(0), |
| } |
| } |
| |
| fn atomic_extremum(&mut self, operation: ExtremumOperation, dst: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering) -> RValue<'gcc> { |
| let size = src.get_type().get_size(); |
| |
| let func = self.current_func(); |
| |
| let load_ordering = |
| match order { |
| // TODO(antoyo): does this make sense? |
| AtomicOrdering::AcquireRelease | AtomicOrdering::Release => AtomicOrdering::Acquire, |
| _ => order, |
| }; |
| let previous_value = self.atomic_load(dst.get_type(), dst, load_ordering, Size::from_bytes(size)); |
| let previous_var = func.new_local(None, previous_value.get_type(), "previous_value"); |
| let return_value = func.new_local(None, previous_value.get_type(), "return_value"); |
| self.llbb().add_assignment(None, previous_var, previous_value); |
| self.llbb().add_assignment(None, return_value, previous_var.to_rvalue()); |
| |
| let while_block = func.new_block("while"); |
| let after_block = func.new_block("after_while"); |
| self.llbb().end_with_jump(None, while_block); |
| |
| // NOTE: since jumps were added and compare_exchange doesn't expect this, the current block in the |
| // state need to be updated. |
| self.switch_to_block(while_block); |
| |
| let comparison_operator = |
| match operation { |
| ExtremumOperation::Max => ComparisonOp::LessThan, |
| ExtremumOperation::Min => ComparisonOp::GreaterThan, |
| }; |
| |
| let cond1 = self.context.new_comparison(None, comparison_operator, previous_var.to_rvalue(), self.context.new_cast(None, src, previous_value.get_type())); |
| let compare_exchange = self.compare_exchange(dst, previous_var, src, order, load_ordering, false); |
| let cond2 = self.cx.context.new_unary_op(None, UnaryOp::LogicalNegate, compare_exchange.get_type(), compare_exchange); |
| let cond = self.cx.context.new_binary_op(None, BinaryOp::LogicalAnd, self.cx.bool_type, cond1, cond2); |
| |
| while_block.end_with_conditional(None, cond, while_block, after_block); |
| |
| // NOTE: since jumps were added in a place rustc does not expect, the current block in the |
| // state need to be updated. |
| self.switch_to_block(after_block); |
| |
| return_value.to_rvalue() |
| } |
| |
| fn compare_exchange(&self, dst: RValue<'gcc>, cmp: LValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering, failure_order: AtomicOrdering, weak: bool) -> RValue<'gcc> { |
| let size = src.get_type().get_size(); |
| let compare_exchange = self.context.get_builtin_function(&format!("__atomic_compare_exchange_{}", size)); |
| let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); |
| let failure_order = self.context.new_rvalue_from_int(self.i32_type, failure_order.to_gcc()); |
| let weak = self.context.new_rvalue_from_int(self.bool_type, weak as i32); |
| |
| let void_ptr_type = self.context.new_type::<*mut ()>(); |
| let volatile_void_ptr_type = void_ptr_type.make_volatile(); |
| let dst = self.context.new_cast(None, dst, volatile_void_ptr_type); |
| let expected = self.context.new_cast(None, cmp.get_address(None), void_ptr_type); |
| |
| // NOTE: not sure why, but we have the wrong type here. |
| let int_type = compare_exchange.get_param(2).to_rvalue().get_type(); |
| let src = self.context.new_cast(None, src, int_type); |
| self.context.new_call(None, compare_exchange, &[dst, expected, src, weak, order, failure_order]) |
| } |
| |
| pub fn assign(&self, lvalue: LValue<'gcc>, value: RValue<'gcc>) { |
| self.llbb().add_assignment(None, lvalue, value); |
| } |
| |
| fn check_call<'b>(&mut self, _typ: &str, func: Function<'gcc>, args: &'b [RValue<'gcc>]) -> Cow<'b, [RValue<'gcc>]> { |
| let mut all_args_match = true; |
| let mut param_types = vec![]; |
| let param_count = func.get_param_count(); |
| for (index, arg) in args.iter().enumerate().take(param_count) { |
| let param = func.get_param(index as i32); |
| let param = param.to_rvalue().get_type(); |
| if param != arg.get_type() { |
| all_args_match = false; |
| } |
| param_types.push(param); |
| } |
| |
| if all_args_match { |
| return Cow::Borrowed(args); |
| } |
| |
| let casted_args: Vec<_> = param_types |
| .into_iter() |
| .zip(args.iter()) |
| .enumerate() |
| .map(|(_i, (expected_ty, &actual_val))| { |
| let actual_ty = actual_val.get_type(); |
| if expected_ty != actual_ty { |
| self.bitcast(actual_val, expected_ty) |
| } |
| else { |
| actual_val |
| } |
| }) |
| .collect(); |
| |
| Cow::Owned(casted_args) |
| } |
| |
| fn check_ptr_call<'b>(&mut self, _typ: &str, func_ptr: RValue<'gcc>, args: &'b [RValue<'gcc>]) -> Cow<'b, [RValue<'gcc>]> { |
| let mut all_args_match = true; |
| let mut param_types = vec![]; |
| let gcc_func = func_ptr.get_type().dyncast_function_ptr_type().expect("function ptr"); |
| for (index, arg) in args.iter().enumerate().take(gcc_func.get_param_count()) { |
| let param = gcc_func.get_param_type(index); |
| if param != arg.get_type() { |
| all_args_match = false; |
| } |
| param_types.push(param); |
| } |
| |
| let mut on_stack_param_indices = FxHashSet::default(); |
| if let Some(indices) = self.on_stack_params.borrow().get(&gcc_func) { |
| on_stack_param_indices = indices.clone(); |
| } |
| |
| if all_args_match { |
| return Cow::Borrowed(args); |
| } |
| |
| let func_name = format!("{:?}", func_ptr); |
| |
| let casted_args: Vec<_> = param_types |
| .into_iter() |
| .zip(args.iter()) |
| .enumerate() |
| .map(|(index, (expected_ty, &actual_val))| { |
| if llvm::ignore_arg_cast(&func_name, index, args.len()) { |
| return actual_val; |
| } |
| |
| let actual_ty = actual_val.get_type(); |
| if expected_ty != actual_ty { |
| if !actual_ty.is_vector() && !expected_ty.is_vector() && actual_ty.is_integral() && expected_ty.is_integral() && actual_ty.get_size() != expected_ty.get_size() { |
| self.context.new_cast(None, actual_val, expected_ty) |
| } |
| else if on_stack_param_indices.contains(&index) { |
| actual_val.dereference(None).to_rvalue() |
| } |
| else { |
| assert!(!((actual_ty.is_vector() && !expected_ty.is_vector()) || (!actual_ty.is_vector() && expected_ty.is_vector())), "{:?} ({}) -> {:?} ({}), index: {:?}[{}]", actual_ty, actual_ty.is_vector(), expected_ty, expected_ty.is_vector(), func_ptr, index); |
| // TODO(antoyo): perhaps use __builtin_convertvector for vector casting. |
| self.bitcast(actual_val, expected_ty) |
| } |
| } |
| else { |
| actual_val |
| } |
| }) |
| .collect(); |
| |
| Cow::Owned(casted_args) |
| } |
| |
| fn check_store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> { |
| let dest_ptr_ty = self.cx.val_ty(ptr).make_pointer(); // TODO(antoyo): make sure make_pointer() is okay here. |
| let stored_ty = self.cx.val_ty(val); |
| let stored_ptr_ty = self.cx.type_ptr_to(stored_ty); |
| |
| if dest_ptr_ty == stored_ptr_ty { |
| ptr |
| } |
| else { |
| self.bitcast(ptr, stored_ptr_ty) |
| } |
| } |
| |
| pub fn current_func(&self) -> Function<'gcc> { |
| self.block.get_function() |
| } |
| |
| fn function_call(&mut self, func: RValue<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> { |
| // TODO(antoyo): remove when the API supports a different type for functions. |
| let func: Function<'gcc> = self.cx.rvalue_as_function(func); |
| let args = self.check_call("call", func, args); |
| |
| // gccjit requires to use the result of functions, even when it's not used. |
| // That's why we assign the result to a local or call add_eval(). |
| let return_type = func.get_return_type(); |
| let void_type = self.context.new_type::<()>(); |
| let current_func = self.block.get_function(); |
| if return_type != void_type { |
| unsafe { RETURN_VALUE_COUNT += 1 }; |
| let result = current_func.new_local(None, return_type, &format!("returnValue{}", unsafe { RETURN_VALUE_COUNT })); |
| self.block.add_assignment(None, result, self.cx.context.new_call(None, func, &args)); |
| result.to_rvalue() |
| } |
| else { |
| self.block.add_eval(None, self.cx.context.new_call(None, func, &args)); |
| // Return dummy value when not having return value. |
| self.context.new_rvalue_from_long(self.isize_type, 0) |
| } |
| } |
| |
| fn function_ptr_call(&mut self, func_ptr: RValue<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> { |
| let args = self.check_ptr_call("call", func_ptr, args); |
| |
| // gccjit requires to use the result of functions, even when it's not used. |
| // That's why we assign the result to a local or call add_eval(). |
| let gcc_func = func_ptr.get_type().dyncast_function_ptr_type().expect("function ptr"); |
| let return_type = gcc_func.get_return_type(); |
| let void_type = self.context.new_type::<()>(); |
| let current_func = self.block.get_function(); |
| |
| if return_type != void_type { |
| unsafe { RETURN_VALUE_COUNT += 1 }; |
| let result = current_func.new_local(None, return_type, &format!("ptrReturnValue{}", unsafe { RETURN_VALUE_COUNT })); |
| let func_name = format!("{:?}", func_ptr); |
| let args = llvm::adjust_intrinsic_arguments(&self, gcc_func, args, &func_name); |
| self.block.add_assignment(None, result, self.cx.context.new_call_through_ptr(None, func_ptr, &args)); |
| result.to_rvalue() |
| } |
| else { |
| #[cfg(not(feature="master"))] |
| if gcc_func.get_param_count() == 0 { |
| // FIXME(antoyo): As a temporary workaround for unsupported LLVM intrinsics. |
| self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &[])); |
| } |
| else { |
| self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &args)); |
| } |
| #[cfg(feature="master")] |
| self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &args)); |
| // Return dummy value when not having return value. |
| let result = current_func.new_local(None, self.isize_type, "dummyValueThatShouldNeverBeUsed"); |
| self.block.add_assignment(None, result, self.context.new_rvalue_from_long(self.isize_type, 0)); |
| result.to_rvalue() |
| } |
| } |
| |
| pub fn overflow_call(&self, func: Function<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> { |
| // gccjit requires to use the result of functions, even when it's not used. |
| // That's why we assign the result to a local. |
| let return_type = self.context.new_type::<bool>(); |
| let current_func = self.block.get_function(); |
| // TODO(antoyo): return the new_call() directly? Since the overflow function has no side-effects. |
| unsafe { RETURN_VALUE_COUNT += 1 }; |
| let result = current_func.new_local(None, return_type, &format!("overflowReturnValue{}", unsafe { RETURN_VALUE_COUNT })); |
| self.block.add_assignment(None, result, self.cx.context.new_call(None, func, &args)); |
| result.to_rvalue() |
| } |
| } |
| |
| impl<'gcc, 'tcx> HasCodegen<'tcx> for Builder<'_, 'gcc, 'tcx> { |
| type CodegenCx = CodegenCx<'gcc, 'tcx>; |
| } |
| |
| impl<'tcx> HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> { |
| fn tcx(&self) -> TyCtxt<'tcx> { |
| self.cx.tcx() |
| } |
| } |
| |
| impl HasDataLayout for Builder<'_, '_, '_> { |
| fn data_layout(&self) -> &TargetDataLayout { |
| self.cx.data_layout() |
| } |
| } |
| |
| impl<'tcx> LayoutOfHelpers<'tcx> for Builder<'_, '_, 'tcx> { |
| type LayoutOfResult = TyAndLayout<'tcx>; |
| |
| #[inline] |
| fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! { |
| self.cx.handle_layout_err(err, span, ty) |
| } |
| } |
| |
| impl<'tcx> FnAbiOfHelpers<'tcx> for Builder<'_, '_, 'tcx> { |
| type FnAbiOfResult = &'tcx FnAbi<'tcx, Ty<'tcx>>; |
| |
| #[inline] |
| fn handle_fn_abi_err( |
| &self, |
| err: FnAbiError<'tcx>, |
| span: Span, |
| fn_abi_request: FnAbiRequest<'tcx>, |
| ) -> ! { |
| self.cx.handle_fn_abi_err(err, span, fn_abi_request) |
| } |
| } |
| |
| impl<'gcc, 'tcx> Deref for Builder<'_, 'gcc, 'tcx> { |
| type Target = CodegenCx<'gcc, 'tcx>; |
| |
| fn deref(&self) -> &Self::Target { |
| self.cx |
| } |
| } |
| |
| impl<'gcc, 'tcx> BackendTypes for Builder<'_, 'gcc, 'tcx> { |
| type Value = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Value; |
| type Function = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Function; |
| type BasicBlock = <CodegenCx<'gcc, 'tcx> as BackendTypes>::BasicBlock; |
| type Type = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Type; |
| type Funclet = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Funclet; |
| |
| type DIScope = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIScope; |
| type DILocation = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DILocation; |
| type DIVariable = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIVariable; |
| } |
| |
| impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> { |
| fn build(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Self { |
| Builder::with_cx(cx, block) |
| } |
| |
| fn llbb(&self) -> Block<'gcc> { |
| self.block |
| } |
| |
| fn append_block(cx: &'a CodegenCx<'gcc, 'tcx>, func: RValue<'gcc>, name: &str) -> Block<'gcc> { |
| let func = cx.rvalue_as_function(func); |
| func.new_block(name) |
| } |
| |
| fn append_sibling_block(&mut self, name: &str) -> Block<'gcc> { |
| let func = self.current_func(); |
| func.new_block(name) |
| } |
| |
| fn switch_to_block(&mut self, block: Self::BasicBlock) { |
| self.block = block; |
| } |
| |
| fn ret_void(&mut self) { |
| self.llbb().end_with_void_return(None) |
| } |
| |
| fn ret(&mut self, value: RValue<'gcc>) { |
| let value = |
| if self.structs_as_pointer.borrow().contains(&value) { |
| // NOTE: hack to workaround a limitation of the rustc API: see comment on |
| // CodegenCx.structs_as_pointer |
| value.dereference(None).to_rvalue() |
| } |
| else { |
| value |
| }; |
| self.llbb().end_with_return(None, value); |
| } |
| |
| fn br(&mut self, dest: Block<'gcc>) { |
| self.llbb().end_with_jump(None, dest) |
| } |
| |
| fn cond_br(&mut self, cond: RValue<'gcc>, then_block: Block<'gcc>, else_block: Block<'gcc>) { |
| self.llbb().end_with_conditional(None, cond, then_block, else_block) |
| } |
| |
| fn switch(&mut self, value: RValue<'gcc>, default_block: Block<'gcc>, cases: impl ExactSizeIterator<Item = (u128, Block<'gcc>)>) { |
| let mut gcc_cases = vec![]; |
| let typ = self.val_ty(value); |
| for (on_val, dest) in cases { |
| let on_val = self.const_uint_big(typ, on_val); |
| gcc_cases.push(self.context.new_case(on_val, on_val, dest)); |
| } |
| self.block.end_with_switch(None, value, default_block, &gcc_cases); |
| } |
| |
| fn invoke( |
| &mut self, |
| typ: Type<'gcc>, |
| fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, |
| func: RValue<'gcc>, |
| args: &[RValue<'gcc>], |
| then: Block<'gcc>, |
| catch: Block<'gcc>, |
| _funclet: Option<&Funclet>, |
| ) -> RValue<'gcc> { |
| // TODO(bjorn3): Properly implement unwinding. |
| let call_site = self.call(typ, None, func, args, None); |
| let condition = self.context.new_rvalue_from_int(self.bool_type, 1); |
| self.llbb().end_with_conditional(None, condition, then, catch); |
| if let Some(_fn_abi) = fn_abi { |
| // TODO(bjorn3): Apply function attributes |
| } |
| call_site |
| } |
| |
| fn unreachable(&mut self) { |
| let func = self.context.get_builtin_function("__builtin_unreachable"); |
| self.block.add_eval(None, self.context.new_call(None, func, &[])); |
| let return_type = self.block.get_function().get_return_type(); |
| let void_type = self.context.new_type::<()>(); |
| if return_type == void_type { |
| self.block.end_with_void_return(None) |
| } |
| else { |
| let return_value = self.current_func() |
| .new_local(None, return_type, "unreachableReturn"); |
| self.block.end_with_return(None, return_value) |
| } |
| } |
| |
| fn add(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_add(a, b) |
| } |
| |
| fn fadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| a + b |
| } |
| |
| fn sub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_sub(a, b) |
| } |
| |
| fn fsub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| a - b |
| } |
| |
| fn mul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_mul(a, b) |
| } |
| |
| fn fmul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| a * b |
| } |
| |
| fn udiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_udiv(a, b) |
| } |
| |
| fn exactudiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): poison if not exact. |
| let a_type = a.get_type().to_unsigned(self); |
| let a = self.gcc_int_cast(a, a_type); |
| let b_type = b.get_type().to_unsigned(self); |
| let b = self.gcc_int_cast(b, b_type); |
| a / b |
| } |
| |
| fn sdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_sdiv(a, b) |
| } |
| |
| fn exactsdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): poison if not exact. |
| // FIXME(antoyo): rustc_codegen_ssa::mir::intrinsic uses different types for a and b but they |
| // should be the same. |
| let typ = a.get_type().to_signed(self); |
| let b = self.context.new_cast(None, b, typ); |
| a / b |
| } |
| |
| fn fdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| a / b |
| } |
| |
| fn urem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_urem(a, b) |
| } |
| |
| fn srem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_srem(a, b) |
| } |
| |
| fn frem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| if a.get_type().is_compatible_with(self.cx.float_type) { |
| let fmodf = self.context.get_builtin_function("fmodf"); |
| // FIXME(antoyo): this seems to produce the wrong result. |
| return self.context.new_call(None, fmodf, &[a, b]); |
| } |
| assert_eq!(a.get_type().unqualified(), self.cx.double_type); |
| |
| let fmod = self.context.get_builtin_function("fmod"); |
| return self.context.new_call(None, fmod, &[a, b]); |
| } |
| |
| fn shl(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_shl(a, b) |
| } |
| |
| fn lshr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_lshr(a, b) |
| } |
| |
| fn ashr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): check whether behavior is an arithmetic shift for >> . |
| // It seems to be if the value is signed. |
| self.gcc_lshr(a, b) |
| } |
| |
| fn and(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_and(a, b) |
| } |
| |
| fn or(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.cx.gcc_or(a, b) |
| } |
| |
| fn xor(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_xor(a, b) |
| } |
| |
| fn neg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_neg(a) |
| } |
| |
| fn fneg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { |
| self.cx.context.new_unary_op(None, UnaryOp::Minus, a.get_type(), a) |
| } |
| |
| fn not(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_not(a) |
| } |
| |
| fn unchecked_sadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| a + b |
| } |
| |
| fn unchecked_uadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_add(a, b) |
| } |
| |
| fn unchecked_ssub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| a - b |
| } |
| |
| fn unchecked_usub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): should generate poison value? |
| self.gcc_sub(a, b) |
| } |
| |
| fn unchecked_smul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| a * b |
| } |
| |
| fn unchecked_umul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| a * b |
| } |
| |
| fn fadd_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| fn fsub_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| fn fmul_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| fn fdiv_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| fn frem_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| fn checked_binop(&mut self, oop: OverflowOp, typ: Ty<'_>, lhs: Self::Value, rhs: Self::Value) -> (Self::Value, Self::Value) { |
| self.gcc_checked_binop(oop, typ, lhs, rhs) |
| } |
| |
| fn alloca(&mut self, ty: Type<'gcc>, align: Align) -> RValue<'gcc> { |
| // FIXME(antoyo): this check that we don't call get_aligned() a second time on a type. |
| // Ideally, we shouldn't need to do this check. |
| let aligned_type = |
| if ty == self.cx.u128_type || ty == self.cx.i128_type { |
| ty |
| } |
| else { |
| ty.get_aligned(align.bytes()) |
| }; |
| // TODO(antoyo): It might be better to return a LValue, but fixing the rustc API is non-trivial. |
| self.stack_var_count.set(self.stack_var_count.get() + 1); |
| self.current_func().new_local(None, aligned_type, &format!("stack_var_{}", self.stack_var_count.get())).get_address(None) |
| } |
| |
| fn byte_array_alloca(&mut self, _len: RValue<'gcc>, _align: Align) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| fn load(&mut self, pointee_ty: Type<'gcc>, ptr: RValue<'gcc>, _align: Align) -> RValue<'gcc> { |
| let block = self.llbb(); |
| let function = block.get_function(); |
| // NOTE: instead of returning the dereference here, we have to assign it to a variable in |
| // the current basic block. Otherwise, it could be used in another basic block, causing a |
| // dereference after a drop, for instance. |
| // TODO(antoyo): handle align of the load instruction. |
| let ptr = self.context.new_cast(None, ptr, pointee_ty.make_pointer()); |
| let deref = ptr.dereference(None).to_rvalue(); |
| unsafe { RETURN_VALUE_COUNT += 1 }; |
| let loaded_value = function.new_local(None, pointee_ty, &format!("loadedValue{}", unsafe { RETURN_VALUE_COUNT })); |
| block.add_assignment(None, loaded_value, deref); |
| loaded_value.to_rvalue() |
| } |
| |
| fn volatile_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): use ty. |
| let ptr = self.context.new_cast(None, ptr, ptr.get_type().make_volatile()); |
| ptr.dereference(None).to_rvalue() |
| } |
| |
| fn atomic_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>, order: AtomicOrdering, size: Size) -> RValue<'gcc> { |
| // TODO(antoyo): use ty. |
| // TODO(antoyo): handle alignment. |
| let atomic_load = self.context.get_builtin_function(&format!("__atomic_load_{}", size.bytes())); |
| let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); |
| |
| let volatile_const_void_ptr_type = self.context.new_type::<()>() |
| .make_const() |
| .make_volatile() |
| .make_pointer(); |
| let ptr = self.context.new_cast(None, ptr, volatile_const_void_ptr_type); |
| self.context.new_call(None, atomic_load, &[ptr, ordering]) |
| } |
| |
| fn load_operand(&mut self, place: PlaceRef<'tcx, RValue<'gcc>>) -> OperandRef<'tcx, RValue<'gcc>> { |
| assert_eq!(place.llextra.is_some(), place.layout.is_unsized()); |
| |
| if place.layout.is_zst() { |
| return OperandRef::new_zst(self, place.layout); |
| } |
| |
| fn scalar_load_metadata<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, load: RValue<'gcc>, scalar: &abi::Scalar) { |
| let vr = scalar.valid_range(bx); |
| match scalar.primitive() { |
| abi::Int(..) => { |
| if !scalar.is_always_valid(bx) { |
| bx.range_metadata(load, vr); |
| } |
| } |
| abi::Pointer if vr.start < vr.end && !vr.contains(0) => { |
| bx.nonnull_metadata(load); |
| } |
| _ => {} |
| } |
| } |
| |
| let val = |
| if let Some(llextra) = place.llextra { |
| OperandValue::Ref(place.llval, Some(llextra), place.align) |
| } |
| else if place.layout.is_gcc_immediate() { |
| let load = self.load( |
| place.layout.gcc_type(self, false), |
| place.llval, |
| place.align, |
| ); |
| if let abi::Abi::Scalar(ref scalar) = place.layout.abi { |
| scalar_load_metadata(self, load, scalar); |
| } |
| OperandValue::Immediate(self.to_immediate(load, place.layout)) |
| } |
| else if let abi::Abi::ScalarPair(ref a, ref b) = place.layout.abi { |
| let b_offset = a.size(self).align_to(b.align(self).abi); |
| let pair_type = place.layout.gcc_type(self, false); |
| |
| let mut load = |i, scalar: &abi::Scalar, align| { |
| let llptr = self.struct_gep(pair_type, place.llval, i as u64); |
| let llty = place.layout.scalar_pair_element_gcc_type(self, i, false); |
| let load = self.load(llty, llptr, align); |
| scalar_load_metadata(self, load, scalar); |
| if scalar.is_bool() { self.trunc(load, self.type_i1()) } else { load } |
| }; |
| |
| OperandValue::Pair( |
| load(0, a, place.align), |
| load(1, b, place.align.restrict_for_offset(b_offset)), |
| ) |
| } |
| else { |
| OperandValue::Ref(place.llval, None, place.align) |
| }; |
| |
| OperandRef { val, layout: place.layout } |
| } |
| |
| fn write_operand_repeatedly(mut self, cg_elem: OperandRef<'tcx, RValue<'gcc>>, count: u64, dest: PlaceRef<'tcx, RValue<'gcc>>) -> Self { |
| let zero = self.const_usize(0); |
| let count = self.const_usize(count); |
| let start = dest.project_index(&mut self, zero).llval; |
| let end = dest.project_index(&mut self, count).llval; |
| |
| let header_bb = self.append_sibling_block("repeat_loop_header"); |
| let body_bb = self.append_sibling_block("repeat_loop_body"); |
| let next_bb = self.append_sibling_block("repeat_loop_next"); |
| |
| let ptr_type = start.get_type(); |
| let current = self.llbb().get_function().new_local(None, ptr_type, "loop_var"); |
| let current_val = current.to_rvalue(); |
| self.assign(current, start); |
| |
| self.br(header_bb); |
| |
| self.switch_to_block(header_bb); |
| let keep_going = self.icmp(IntPredicate::IntNE, current_val, end); |
| self.cond_br(keep_going, body_bb, next_bb); |
| |
| self.switch_to_block(body_bb); |
| let align = dest.align.restrict_for_offset(dest.layout.field(self.cx(), 0).size); |
| cg_elem.val.store(&mut self, PlaceRef::new_sized_aligned(current_val, cg_elem.layout, align)); |
| |
| let next = self.inbounds_gep(self.backend_type(cg_elem.layout), current.to_rvalue(), &[self.const_usize(1)]); |
| self.llbb().add_assignment(None, current, next); |
| self.br(header_bb); |
| |
| self.switch_to_block(next_bb); |
| self |
| } |
| |
| fn range_metadata(&mut self, _load: RValue<'gcc>, _range: WrappingRange) { |
| // TODO(antoyo) |
| } |
| |
| fn nonnull_metadata(&mut self, _load: RValue<'gcc>) { |
| // TODO(antoyo) |
| } |
| |
| fn store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> { |
| self.store_with_flags(val, ptr, align, MemFlags::empty()) |
| } |
| |
| fn store_with_flags(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align, _flags: MemFlags) -> RValue<'gcc> { |
| let ptr = self.check_store(val, ptr); |
| let destination = ptr.dereference(None); |
| // NOTE: libgccjit does not support specifying the alignment on the assignment, so we cast |
| // to type so it gets the proper alignment. |
| let destination_type = destination.to_rvalue().get_type().unqualified(); |
| let aligned_type = destination_type.get_aligned(align.bytes()).make_pointer(); |
| let aligned_destination = self.cx.context.new_bitcast(None, ptr, aligned_type); |
| let aligned_destination = aligned_destination.dereference(None); |
| self.llbb().add_assignment(None, aligned_destination, val); |
| // TODO(antoyo): handle align and flags. |
| // NOTE: dummy value here since it's never used. FIXME(antoyo): API should not return a value here? |
| self.cx.context.new_rvalue_zero(self.type_i32()) |
| } |
| |
| fn atomic_store(&mut self, value: RValue<'gcc>, ptr: RValue<'gcc>, order: AtomicOrdering, size: Size) { |
| // TODO(antoyo): handle alignment. |
| let atomic_store = self.context.get_builtin_function(&format!("__atomic_store_{}", size.bytes())); |
| let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); |
| let volatile_const_void_ptr_type = self.context.new_type::<()>() |
| .make_volatile() |
| .make_pointer(); |
| let ptr = self.context.new_cast(None, ptr, volatile_const_void_ptr_type); |
| |
| // FIXME(antoyo): fix libgccjit to allow comparing an integer type with an aligned integer type because |
| // the following cast is required to avoid this error: |
| // gcc_jit_context_new_call: mismatching types for argument 2 of function "__atomic_store_4": assignment to param arg1 (type: int) from loadedValue3577 (type: unsigned int __attribute__((aligned(4)))) |
| let int_type = atomic_store.get_param(1).to_rvalue().get_type(); |
| let value = self.context.new_cast(None, value, int_type); |
| self.llbb() |
| .add_eval(None, self.context.new_call(None, atomic_store, &[ptr, value, ordering])); |
| } |
| |
| fn gep(&mut self, _typ: Type<'gcc>, ptr: RValue<'gcc>, indices: &[RValue<'gcc>]) -> RValue<'gcc> { |
| let mut result = ptr; |
| for index in indices { |
| result = self.context.new_array_access(None, result, *index).get_address(None).to_rvalue(); |
| } |
| result |
| } |
| |
| fn inbounds_gep(&mut self, _typ: Type<'gcc>, ptr: RValue<'gcc>, indices: &[RValue<'gcc>]) -> RValue<'gcc> { |
| // FIXME(antoyo): would be safer if doing the same thing (loop) as gep. |
| // TODO(antoyo): specify inbounds somehow. |
| match indices.len() { |
| 1 => { |
| self.context.new_array_access(None, ptr, indices[0]).get_address(None) |
| }, |
| 2 => { |
| let array = ptr.dereference(None); // TODO(antoyo): assert that first index is 0? |
| self.context.new_array_access(None, array, indices[1]).get_address(None) |
| }, |
| _ => unimplemented!(), |
| } |
| } |
| |
| fn struct_gep(&mut self, value_type: Type<'gcc>, ptr: RValue<'gcc>, idx: u64) -> RValue<'gcc> { |
| // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays. |
| assert_eq!(idx as usize as u64, idx); |
| let value = ptr.dereference(None).to_rvalue(); |
| |
| if value_type.dyncast_array().is_some() { |
| let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); |
| let element = self.context.new_array_access(None, value, index); |
| element.get_address(None) |
| } |
| else if let Some(vector_type) = value_type.dyncast_vector() { |
| let array_type = vector_type.get_element_type().make_pointer(); |
| let array = self.bitcast(ptr, array_type); |
| let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); |
| let element = self.context.new_array_access(None, array, index); |
| element.get_address(None) |
| } |
| else if let Some(struct_type) = value_type.is_struct() { |
| ptr.dereference_field(None, struct_type.get_field(idx as i32)).get_address(None) |
| } |
| else { |
| panic!("Unexpected type {:?}", value_type); |
| } |
| } |
| |
| /* Casts */ |
| fn trunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): check that it indeed truncate the value. |
| self.gcc_int_cast(value, dest_ty) |
| } |
| |
| fn sext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): check that it indeed sign extend the value. |
| if dest_ty.dyncast_vector().is_some() { |
| // TODO(antoyo): nothing to do as it is only for LLVM? |
| return value; |
| } |
| self.context.new_cast(None, value, dest_ty) |
| } |
| |
| fn fptoui(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| self.gcc_float_to_uint_cast(value, dest_ty) |
| } |
| |
| fn fptosi(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| self.gcc_float_to_int_cast(value, dest_ty) |
| } |
| |
| fn uitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| self.gcc_uint_to_float_cast(value, dest_ty) |
| } |
| |
| fn sitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| self.gcc_int_to_float_cast(value, dest_ty) |
| } |
| |
| fn fptrunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): make sure it truncates. |
| self.context.new_cast(None, value, dest_ty) |
| } |
| |
| fn fpext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| self.context.new_cast(None, value, dest_ty) |
| } |
| |
| fn ptrtoint(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| let usize_value = self.cx.const_bitcast(value, self.cx.type_isize()); |
| self.intcast(usize_value, dest_ty, false) |
| } |
| |
| fn inttoptr(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| let usize_value = self.intcast(value, self.cx.type_isize(), false); |
| self.cx.const_bitcast(usize_value, dest_ty) |
| } |
| |
| fn bitcast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| self.cx.const_bitcast(value, dest_ty) |
| } |
| |
| fn intcast(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>, _is_signed: bool) -> RValue<'gcc> { |
| // NOTE: is_signed is for value, not dest_typ. |
| self.gcc_int_cast(value, dest_typ) |
| } |
| |
| fn pointercast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| let val_type = value.get_type(); |
| match (type_is_pointer(val_type), type_is_pointer(dest_ty)) { |
| (false, true) => { |
| // NOTE: Projecting a field of a pointer type will attempt a cast from a signed char to |
| // a pointer, which is not supported by gccjit. |
| return self.cx.context.new_cast(None, self.inttoptr(value, val_type.make_pointer()), dest_ty); |
| }, |
| (false, false) => { |
| // When they are not pointers, we want a transmute (or reinterpret_cast). |
| self.bitcast(value, dest_ty) |
| }, |
| (true, true) => self.cx.context.new_cast(None, value, dest_ty), |
| (true, false) => unimplemented!(), |
| } |
| } |
| |
| /* Comparisons */ |
| fn icmp(&mut self, op: IntPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_icmp(op, lhs, rhs) |
| } |
| |
| fn fcmp(&mut self, op: RealPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| self.context.new_comparison(None, op.to_gcc_comparison(), lhs, rhs) |
| } |
| |
| /* Miscellaneous instructions */ |
| fn memcpy(&mut self, dst: RValue<'gcc>, _dst_align: Align, src: RValue<'gcc>, _src_align: Align, size: RValue<'gcc>, flags: MemFlags) { |
| assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memcpy not supported"); |
| let size = self.intcast(size, self.type_size_t(), false); |
| let _is_volatile = flags.contains(MemFlags::VOLATILE); |
| let dst = self.pointercast(dst, self.type_i8p()); |
| let src = self.pointercast(src, self.type_ptr_to(self.type_void())); |
| let memcpy = self.context.get_builtin_function("memcpy"); |
| // TODO(antoyo): handle aligns and is_volatile. |
| self.block.add_eval(None, self.context.new_call(None, memcpy, &[dst, src, size])); |
| } |
| |
| fn memmove(&mut self, dst: RValue<'gcc>, dst_align: Align, src: RValue<'gcc>, src_align: Align, size: RValue<'gcc>, flags: MemFlags) { |
| if flags.contains(MemFlags::NONTEMPORAL) { |
| // HACK(nox): This is inefficient but there is no nontemporal memmove. |
| let val = self.load(src.get_type().get_pointee().expect("get_pointee"), src, src_align); |
| let ptr = self.pointercast(dst, self.type_ptr_to(self.val_ty(val))); |
| self.store_with_flags(val, ptr, dst_align, flags); |
| return; |
| } |
| let size = self.intcast(size, self.type_size_t(), false); |
| let _is_volatile = flags.contains(MemFlags::VOLATILE); |
| let dst = self.pointercast(dst, self.type_i8p()); |
| let src = self.pointercast(src, self.type_ptr_to(self.type_void())); |
| |
| let memmove = self.context.get_builtin_function("memmove"); |
| // TODO(antoyo): handle is_volatile. |
| self.block.add_eval(None, self.context.new_call(None, memmove, &[dst, src, size])); |
| } |
| |
| fn memset(&mut self, ptr: RValue<'gcc>, fill_byte: RValue<'gcc>, size: RValue<'gcc>, _align: Align, flags: MemFlags) { |
| let _is_volatile = flags.contains(MemFlags::VOLATILE); |
| let ptr = self.pointercast(ptr, self.type_i8p()); |
| let memset = self.context.get_builtin_function("memset"); |
| // TODO(antoyo): handle align and is_volatile. |
| let fill_byte = self.context.new_cast(None, fill_byte, self.i32_type); |
| let size = self.intcast(size, self.type_size_t(), false); |
| self.block.add_eval(None, self.context.new_call(None, memset, &[ptr, fill_byte, size])); |
| } |
| |
| fn select(&mut self, cond: RValue<'gcc>, then_val: RValue<'gcc>, mut else_val: RValue<'gcc>) -> RValue<'gcc> { |
| let func = self.current_func(); |
| let variable = func.new_local(None, then_val.get_type(), "selectVar"); |
| let then_block = func.new_block("then"); |
| let else_block = func.new_block("else"); |
| let after_block = func.new_block("after"); |
| self.llbb().end_with_conditional(None, cond, then_block, else_block); |
| |
| then_block.add_assignment(None, variable, then_val); |
| then_block.end_with_jump(None, after_block); |
| |
| if !then_val.get_type().is_compatible_with(else_val.get_type()) { |
| else_val = self.context.new_cast(None, else_val, then_val.get_type()); |
| } |
| else_block.add_assignment(None, variable, else_val); |
| else_block.end_with_jump(None, after_block); |
| |
| // NOTE: since jumps were added in a place rustc does not expect, the current block in the |
| // state need to be updated. |
| self.switch_to_block(after_block); |
| |
| variable.to_rvalue() |
| } |
| |
| #[allow(dead_code)] |
| fn va_arg(&mut self, _list: RValue<'gcc>, _ty: Type<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| fn extract_element(&mut self, _vec: RValue<'gcc>, _idx: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| fn vector_splat(&mut self, _num_elts: usize, _elt: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| fn extract_value(&mut self, aggregate_value: RValue<'gcc>, idx: u64) -> RValue<'gcc> { |
| // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays. |
| assert_eq!(idx as usize as u64, idx); |
| let value_type = aggregate_value.get_type(); |
| |
| if value_type.dyncast_array().is_some() { |
| let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); |
| let element = self.context.new_array_access(None, aggregate_value, index); |
| element.get_address(None) |
| } |
| else if value_type.dyncast_vector().is_some() { |
| panic!(); |
| } |
| else if let Some(pointer_type) = value_type.get_pointee() { |
| if let Some(struct_type) = pointer_type.is_struct() { |
| // NOTE: hack to workaround a limitation of the rustc API: see comment on |
| // CodegenCx.structs_as_pointer |
| aggregate_value.dereference_field(None, struct_type.get_field(idx as i32)).to_rvalue() |
| } |
| else { |
| panic!("Unexpected type {:?}", value_type); |
| } |
| } |
| else if let Some(struct_type) = value_type.is_struct() { |
| aggregate_value.access_field(None, struct_type.get_field(idx as i32)).to_rvalue() |
| } |
| else { |
| panic!("Unexpected type {:?}", value_type); |
| } |
| } |
| |
| fn insert_value(&mut self, aggregate_value: RValue<'gcc>, value: RValue<'gcc>, idx: u64) -> RValue<'gcc> { |
| // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays. |
| assert_eq!(idx as usize as u64, idx); |
| let value_type = aggregate_value.get_type(); |
| |
| let lvalue = |
| if value_type.dyncast_array().is_some() { |
| let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); |
| self.context.new_array_access(None, aggregate_value, index) |
| } |
| else if value_type.dyncast_vector().is_some() { |
| panic!(); |
| } |
| else if let Some(pointer_type) = value_type.get_pointee() { |
| if let Some(struct_type) = pointer_type.is_struct() { |
| // NOTE: hack to workaround a limitation of the rustc API: see comment on |
| // CodegenCx.structs_as_pointer |
| aggregate_value.dereference_field(None, struct_type.get_field(idx as i32)) |
| } |
| else { |
| panic!("Unexpected type {:?}", value_type); |
| } |
| } |
| else { |
| panic!("Unexpected type {:?}", value_type); |
| }; |
| |
| let lvalue_type = lvalue.to_rvalue().get_type(); |
| let value = |
| // NOTE: sometimes, rustc will create a value with the wrong type. |
| if lvalue_type != value.get_type() { |
| self.context.new_cast(None, value, lvalue_type) |
| } |
| else { |
| value |
| }; |
| |
| self.llbb().add_assignment(None, lvalue, value); |
| |
| aggregate_value |
| } |
| |
| fn set_personality_fn(&mut self, _personality: RValue<'gcc>) { |
| // TODO(antoyo) |
| } |
| |
| fn cleanup_landing_pad(&mut self, _ty: Type<'gcc>, _pers_fn: RValue<'gcc>) -> RValue<'gcc> { |
| let field1 = self.context.new_field(None, self.u8_type.make_pointer(), "landing_pad_field_1"); |
| let field2 = self.context.new_field(None, self.i32_type, "landing_pad_field_1"); |
| let struct_type = self.context.new_struct_type(None, "landing_pad", &[field1, field2]); |
| self.current_func().new_local(None, struct_type.as_type(), "landing_pad") |
| .to_rvalue() |
| // TODO(antoyo): Properly implement unwinding. |
| // the above is just to make the compilation work as it seems |
| // rustc_codegen_ssa now calls the unwinding builder methods even on panic=abort. |
| } |
| |
| fn resume(&mut self, _exn: RValue<'gcc>) { |
| // TODO(bjorn3): Properly implement unwinding. |
| self.unreachable(); |
| } |
| |
| fn cleanup_pad(&mut self, _parent: Option<RValue<'gcc>>, _args: &[RValue<'gcc>]) -> Funclet { |
| unimplemented!(); |
| } |
| |
| fn cleanup_ret(&mut self, _funclet: &Funclet, _unwind: Option<Block<'gcc>>) { |
| unimplemented!(); |
| } |
| |
| fn catch_pad(&mut self, _parent: RValue<'gcc>, _args: &[RValue<'gcc>]) -> Funclet { |
| unimplemented!(); |
| } |
| |
| fn catch_switch( |
| &mut self, |
| _parent: Option<RValue<'gcc>>, |
| _unwind: Option<Block<'gcc>>, |
| _handlers: &[Block<'gcc>], |
| ) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| // Atomic Operations |
| fn atomic_cmpxchg(&mut self, dst: RValue<'gcc>, cmp: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering, failure_order: AtomicOrdering, weak: bool) -> RValue<'gcc> { |
| let expected = self.current_func().new_local(None, cmp.get_type(), "expected"); |
| self.llbb().add_assignment(None, expected, cmp); |
| let success = self.compare_exchange(dst, expected, src, order, failure_order, weak); |
| |
| let pair_type = self.cx.type_struct(&[src.get_type(), self.bool_type], false); |
| let result = self.current_func().new_local(None, pair_type, "atomic_cmpxchg_result"); |
| let align = Align::from_bits(64).expect("align"); // TODO(antoyo): use good align. |
| |
| let value_type = result.to_rvalue().get_type(); |
| if let Some(struct_type) = value_type.is_struct() { |
| self.store(success, result.access_field(None, struct_type.get_field(1)).get_address(None), align); |
| // NOTE: since success contains the call to the intrinsic, it must be stored before |
| // expected so that we store expected after the call. |
| self.store(expected.to_rvalue(), result.access_field(None, struct_type.get_field(0)).get_address(None), align); |
| } |
| // TODO(antoyo): handle when value is not a struct. |
| |
| result.to_rvalue() |
| } |
| |
| fn atomic_rmw(&mut self, op: AtomicRmwBinOp, dst: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering) -> RValue<'gcc> { |
| let size = src.get_type().get_size(); |
| let name = |
| match op { |
| AtomicRmwBinOp::AtomicXchg => format!("__atomic_exchange_{}", size), |
| AtomicRmwBinOp::AtomicAdd => format!("__atomic_fetch_add_{}", size), |
| AtomicRmwBinOp::AtomicSub => format!("__atomic_fetch_sub_{}", size), |
| AtomicRmwBinOp::AtomicAnd => format!("__atomic_fetch_and_{}", size), |
| AtomicRmwBinOp::AtomicNand => format!("__atomic_fetch_nand_{}", size), |
| AtomicRmwBinOp::AtomicOr => format!("__atomic_fetch_or_{}", size), |
| AtomicRmwBinOp::AtomicXor => format!("__atomic_fetch_xor_{}", size), |
| AtomicRmwBinOp::AtomicMax => return self.atomic_extremum(ExtremumOperation::Max, dst, src, order), |
| AtomicRmwBinOp::AtomicMin => return self.atomic_extremum(ExtremumOperation::Min, dst, src, order), |
| AtomicRmwBinOp::AtomicUMax => return self.atomic_extremum(ExtremumOperation::Max, dst, src, order), |
| AtomicRmwBinOp::AtomicUMin => return self.atomic_extremum(ExtremumOperation::Min, dst, src, order), |
| }; |
| |
| |
| let atomic_function = self.context.get_builtin_function(name); |
| let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); |
| |
| let void_ptr_type = self.context.new_type::<*mut ()>(); |
| let volatile_void_ptr_type = void_ptr_type.make_volatile(); |
| let dst = self.context.new_cast(None, dst, volatile_void_ptr_type); |
| // FIXME(antoyo): not sure why, but we have the wrong type here. |
| let new_src_type = atomic_function.get_param(1).to_rvalue().get_type(); |
| let src = self.context.new_cast(None, src, new_src_type); |
| let res = self.context.new_call(None, atomic_function, &[dst, src, order]); |
| self.context.new_cast(None, res, src.get_type()) |
| } |
| |
| fn atomic_fence(&mut self, order: AtomicOrdering, scope: SynchronizationScope) { |
| let name = |
| match scope { |
| SynchronizationScope::SingleThread => "__atomic_signal_fence", |
| SynchronizationScope::CrossThread => "__atomic_thread_fence", |
| }; |
| let thread_fence = self.context.get_builtin_function(name); |
| let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); |
| self.llbb().add_eval(None, self.context.new_call(None, thread_fence, &[order])); |
| } |
| |
| fn set_invariant_load(&mut self, load: RValue<'gcc>) { |
| // NOTE: Hack to consider vtable function pointer as non-global-variable function pointer. |
| self.normal_function_addresses.borrow_mut().insert(load); |
| // TODO(antoyo) |
| } |
| |
| fn lifetime_start(&mut self, _ptr: RValue<'gcc>, _size: Size) { |
| // TODO(antoyo) |
| } |
| |
| fn lifetime_end(&mut self, _ptr: RValue<'gcc>, _size: Size) { |
| // TODO(antoyo) |
| } |
| |
| fn call( |
| &mut self, |
| _typ: Type<'gcc>, |
| fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, |
| func: RValue<'gcc>, |
| args: &[RValue<'gcc>], |
| funclet: Option<&Funclet>, |
| ) -> RValue<'gcc> { |
| // FIXME(antoyo): remove when having a proper API. |
| let gcc_func = unsafe { std::mem::transmute(func) }; |
| let call = if self.functions.borrow().values().find(|value| **value == gcc_func).is_some() { |
| self.function_call(func, args, funclet) |
| } |
| else { |
| // If it's a not function that was defined, it's a function pointer. |
| self.function_ptr_call(func, args, funclet) |
| }; |
| if let Some(_fn_abi) = fn_abi { |
| // TODO(bjorn3): Apply function attributes |
| } |
| call |
| } |
| |
| fn zext(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>) -> RValue<'gcc> { |
| // FIXME(antoyo): this does not zero-extend. |
| if value.get_type().is_bool() && dest_typ.is_i8(&self.cx) { |
| // FIXME(antoyo): hack because base::from_immediate converts i1 to i8. |
| // Fix the code in codegen_ssa::base::from_immediate. |
| return value; |
| } |
| self.gcc_int_cast(value, dest_typ) |
| } |
| |
| fn cx(&self) -> &CodegenCx<'gcc, 'tcx> { |
| self.cx |
| } |
| |
| fn do_not_inline(&mut self, _llret: RValue<'gcc>) { |
| // FIXME(bjorn3): implement |
| } |
| |
| fn set_span(&mut self, _span: Span) {} |
| |
| fn from_immediate(&mut self, val: Self::Value) -> Self::Value { |
| if self.cx().val_ty(val) == self.cx().type_i1() { |
| self.zext(val, self.cx().type_i8()) |
| } |
| else { |
| val |
| } |
| } |
| |
| fn to_immediate_scalar(&mut self, val: Self::Value, scalar: abi::Scalar) -> Self::Value { |
| if scalar.is_bool() { |
| return self.trunc(val, self.cx().type_i1()); |
| } |
| val |
| } |
| |
| fn fptoui_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| self.fptoint_sat(false, val, dest_ty) |
| } |
| |
| fn fptosi_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| self.fptoint_sat(true, val, dest_ty) |
| } |
| |
| fn instrprof_increment(&mut self, _fn_name: RValue<'gcc>, _hash: RValue<'gcc>, _num_counters: RValue<'gcc>, _index: RValue<'gcc>) { |
| unimplemented!(); |
| } |
| } |
| |
| impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> { |
| fn fptoint_sat(&mut self, signed: bool, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| let src_ty = self.cx.val_ty(val); |
| let (float_ty, int_ty) = if self.cx.type_kind(src_ty) == TypeKind::Vector { |
| assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty)); |
| (self.cx.element_type(src_ty), self.cx.element_type(dest_ty)) |
| } else { |
| (src_ty, dest_ty) |
| }; |
| |
| // FIXME(jistone): the following was originally the fallback SSA implementation, before LLVM 13 |
| // added native `fptosi.sat` and `fptoui.sat` conversions, but it was used by GCC as well. |
| // Now that LLVM always relies on its own, the code has been moved to GCC, but the comments are |
| // still LLVM-specific. This should be updated, and use better GCC specifics if possible. |
| |
| let int_width = self.cx.int_width(int_ty); |
| let float_width = self.cx.float_width(float_ty); |
| // LLVM's fpto[su]i returns undef when the input val is infinite, NaN, or does not fit into the |
| // destination integer type after rounding towards zero. This `undef` value can cause UB in |
| // safe code (see issue #10184), so we implement a saturating conversion on top of it: |
| // Semantically, the mathematical value of the input is rounded towards zero to the next |
| // mathematical integer, and then the result is clamped into the range of the destination |
| // integer type. Positive and negative infinity are mapped to the maximum and minimum value of |
| // the destination integer type. NaN is mapped to 0. |
| // |
| // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to |
| // a value representable in int_ty. |
| // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits. |
| // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two. |
| // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly |
| // representable. Note that this only works if float_ty's exponent range is sufficiently large. |
| // f16 or 256 bit integers would break this property. Right now the smallest float type is f32 |
| // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127. |
| // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because |
| // we're rounding towards zero, we just get float_ty::MAX (which is always an integer). |
| // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX. |
| let int_max = |signed: bool, int_width: u64| -> u128 { |
| let shift_amount = 128 - int_width; |
| if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount } |
| }; |
| let int_min = |signed: bool, int_width: u64| -> i128 { |
| if signed { i128::MIN >> (128 - int_width) } else { 0 } |
| }; |
| |
| let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) { |
| let rounded_min = |
| ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero); |
| assert_eq!(rounded_min.status, Status::OK); |
| let rounded_max = |
| ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero); |
| assert!(rounded_max.value.is_finite()); |
| (rounded_min.value.to_bits(), rounded_max.value.to_bits()) |
| }; |
| let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) { |
| let rounded_min = |
| ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero); |
| assert_eq!(rounded_min.status, Status::OK); |
| let rounded_max = |
| ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero); |
| assert!(rounded_max.value.is_finite()); |
| (rounded_min.value.to_bits(), rounded_max.value.to_bits()) |
| }; |
| // To implement saturation, we perform the following steps: |
| // |
| // 1. Cast val to an integer with fpto[su]i. This may result in undef. |
| // 2. Compare val to f_min and f_max, and use the comparison results to select: |
| // a) int_ty::MIN if val < f_min or val is NaN |
| // b) int_ty::MAX if val > f_max |
| // c) the result of fpto[su]i otherwise |
| // 3. If val is NaN, return 0.0, otherwise return the result of step 2. |
| // |
| // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the |
| // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of |
| // undef does not introduce any non-determinism either. |
| // More importantly, the above procedure correctly implements saturating conversion. |
| // Proof (sketch): |
| // If val is NaN, 0 is returned by definition. |
| // Otherwise, val is finite or infinite and thus can be compared with f_min and f_max. |
| // This yields three cases to consider: |
| // (1) if val in [f_min, f_max], the result of fpto[su]i is returned, which agrees with |
| // saturating conversion for inputs in that range. |
| // (2) if val > f_max, then val is larger than int_ty::MAX. This holds even if f_max is rounded |
| // (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger |
| // than int_ty::MAX. Because val is larger than int_ty::MAX, the return value of int_ty::MAX |
| // is correct. |
| // (3) if val < f_min, then val is smaller than int_ty::MIN. As shown earlier, f_min exactly equals |
| // int_ty::MIN and therefore the return value of int_ty::MIN is correct. |
| // QED. |
| |
| let float_bits_to_llval = |bx: &mut Self, bits| { |
| let bits_llval = match float_width { |
| 32 => bx.cx().const_u32(bits as u32), |
| 64 => bx.cx().const_u64(bits as u64), |
| n => bug!("unsupported float width {}", n), |
| }; |
| bx.bitcast(bits_llval, float_ty) |
| }; |
| let (f_min, f_max) = match float_width { |
| 32 => compute_clamp_bounds_single(signed, int_width), |
| 64 => compute_clamp_bounds_double(signed, int_width), |
| n => bug!("unsupported float width {}", n), |
| }; |
| let f_min = float_bits_to_llval(self, f_min); |
| let f_max = float_bits_to_llval(self, f_max); |
| let int_max = self.cx.const_uint_big(int_ty, int_max(signed, int_width)); |
| let int_min = self.cx.const_uint_big(int_ty, int_min(signed, int_width) as u128); |
| let zero = self.cx.const_uint(int_ty, 0); |
| |
| // If we're working with vectors, constants must be "splatted": the constant is duplicated |
| // into each lane of the vector. The algorithm stays the same, we are just using the |
| // same constant across all lanes. |
| let maybe_splat = |bx: &mut Self, val| { |
| if bx.cx().type_kind(dest_ty) == TypeKind::Vector { |
| bx.vector_splat(bx.vector_length(dest_ty), val) |
| } else { |
| val |
| } |
| }; |
| let f_min = maybe_splat(self, f_min); |
| let f_max = maybe_splat(self, f_max); |
| let int_max = maybe_splat(self, int_max); |
| let int_min = maybe_splat(self, int_min); |
| let zero = maybe_splat(self, zero); |
| |
| // Step 1 ... |
| let fptosui_result = if signed { self.fptosi(val, dest_ty) } else { self.fptoui(val, dest_ty) }; |
| let less_or_nan = self.fcmp(RealPredicate::RealULT, val, f_min); |
| let greater = self.fcmp(RealPredicate::RealOGT, val, f_max); |
| |
| // Step 2: We use two comparisons and two selects, with %s1 being the |
| // result: |
| // %less_or_nan = fcmp ult %val, %f_min |
| // %greater = fcmp olt %val, %f_max |
| // %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result |
| // %s1 = select %greater, int_ty::MAX, %s0 |
| // Note that %less_or_nan uses an *unordered* comparison. This |
| // comparison is true if the operands are not comparable (i.e., if val is |
| // NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if |
| // val is NaN. |
| // |
| // Performance note: Unordered comparison can be lowered to a "flipped" |
| // comparison and a negation, and the negation can be merged into the |
| // select. Therefore, it not necessarily any more expensive than an |
| // ordered ("normal") comparison. Whether these optimizations will be |
| // performed is ultimately up to the backend, but at least x86 does |
| // perform them. |
| let s0 = self.select(less_or_nan, int_min, fptosui_result); |
| let s1 = self.select(greater, int_max, s0); |
| |
| // Step 3: NaN replacement. |
| // For unsigned types, the above step already yielded int_ty::MIN == 0 if val is NaN. |
| // Therefore we only need to execute this step for signed integer types. |
| if signed { |
| // LLVM has no isNaN predicate, so we use (val == val) instead |
| let cmp = self.fcmp(RealPredicate::RealOEQ, val, val); |
| self.select(cmp, s1, zero) |
| } else { |
| s1 |
| } |
| } |
| |
| #[cfg(feature="master")] |
| pub fn shuffle_vector(&mut self, v1: RValue<'gcc>, v2: RValue<'gcc>, mask: RValue<'gcc>) -> RValue<'gcc> { |
| let struct_type = mask.get_type().is_struct().expect("mask of struct type"); |
| |
| // TODO(antoyo): use a recursive unqualified() here. |
| let vector_type = v1.get_type().unqualified().dyncast_vector().expect("vector type"); |
| let element_type = vector_type.get_element_type(); |
| let vec_num_units = vector_type.get_num_units(); |
| |
| let mask_num_units = struct_type.get_field_count(); |
| let mut vector_elements = vec![]; |
| let mask_element_type = |
| if element_type.is_integral() { |
| element_type |
| } |
| else { |
| #[cfg(feature="master")] |
| { |
| self.cx.type_ix(element_type.get_size() as u64 * 8) |
| } |
| #[cfg(not(feature="master"))] |
| self.int_type |
| }; |
| for i in 0..mask_num_units { |
| let field = struct_type.get_field(i as i32); |
| vector_elements.push(self.context.new_cast(None, mask.access_field(None, field).to_rvalue(), mask_element_type)); |
| } |
| |
| // NOTE: the mask needs to be the same length as the input vectors, so add the missing |
| // elements in the mask if needed. |
| for _ in mask_num_units..vec_num_units { |
| vector_elements.push(self.context.new_rvalue_zero(mask_element_type)); |
| } |
| |
| let array_type = self.context.new_array_type(None, element_type, vec_num_units as i32); |
| let result_type = self.context.new_vector_type(element_type, mask_num_units as u64); |
| let (v1, v2) = |
| if vec_num_units < mask_num_units { |
| // NOTE: the mask needs to be the same length as the input vectors, so join the 2 |
| // vectors and create a dummy second vector. |
| // TODO(antoyo): switch to using new_vector_access. |
| let array = self.context.new_bitcast(None, v1, array_type); |
| let mut elements = vec![]; |
| for i in 0..vec_num_units { |
| elements.push(self.context.new_array_access(None, array, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue()); |
| } |
| // TODO(antoyo): switch to using new_vector_access. |
| let array = self.context.new_bitcast(None, v2, array_type); |
| for i in 0..(mask_num_units - vec_num_units) { |
| elements.push(self.context.new_array_access(None, array, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue()); |
| } |
| let v1 = self.context.new_rvalue_from_vector(None, result_type, &elements); |
| let zero = self.context.new_rvalue_zero(element_type); |
| let v2 = self.context.new_rvalue_from_vector(None, result_type, &vec![zero; mask_num_units]); |
| (v1, v2) |
| } |
| else { |
| (v1, v2) |
| }; |
| |
| let new_mask_num_units = std::cmp::max(mask_num_units, vec_num_units); |
| let mask_type = self.context.new_vector_type(mask_element_type, new_mask_num_units as u64); |
| let mask = self.context.new_rvalue_from_vector(None, mask_type, &vector_elements); |
| let result = self.context.new_rvalue_vector_perm(None, v1, v2, mask); |
| |
| if vec_num_units != mask_num_units { |
| // NOTE: if padding was added, only select the number of elements of the masks to |
| // remove that padding in the result. |
| let mut elements = vec![]; |
| // TODO(antoyo): switch to using new_vector_access. |
| let array = self.context.new_bitcast(None, result, array_type); |
| for i in 0..mask_num_units { |
| elements.push(self.context.new_array_access(None, array, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue()); |
| } |
| self.context.new_rvalue_from_vector(None, result_type, &elements) |
| } |
| else { |
| result |
| } |
| } |
| |
| #[cfg(not(feature="master"))] |
| pub fn shuffle_vector(&mut self, _v1: RValue<'gcc>, _v2: RValue<'gcc>, _mask: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| #[cfg(feature="master")] |
| pub fn vector_reduce<F>(&mut self, src: RValue<'gcc>, op: F) -> RValue<'gcc> |
| where F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc> |
| { |
| let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); |
| let element_count = vector_type.get_num_units(); |
| let mut vector_elements = vec![]; |
| for i in 0..element_count { |
| vector_elements.push(i); |
| } |
| let mask_type = self.context.new_vector_type(self.int_type, element_count as u64); |
| let mut shift = 1; |
| let mut res = src; |
| while shift < element_count { |
| let vector_elements: Vec<_> = |
| vector_elements.iter() |
| .map(|i| self.context.new_rvalue_from_int(self.int_type, ((i + shift) % element_count) as i32)) |
| .collect(); |
| let mask = self.context.new_rvalue_from_vector(None, mask_type, &vector_elements); |
| let shifted = self.context.new_rvalue_vector_perm(None, res, res, mask); |
| shift *= 2; |
| res = op(res, shifted, &self.context); |
| } |
| self.context.new_vector_access(None, res, self.context.new_rvalue_zero(self.int_type)) |
| .to_rvalue() |
| } |
| |
| #[cfg(not(feature="master"))] |
| pub fn vector_reduce<F>(&mut self, src: RValue<'gcc>, op: F) -> RValue<'gcc> |
| where F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc> |
| { |
| unimplemented!(); |
| } |
| |
| pub fn vector_reduce_op(&mut self, src: RValue<'gcc>, op: BinaryOp) -> RValue<'gcc> { |
| self.vector_reduce(src, |a, b, context| context.new_binary_op(None, op, a.get_type(), a, b)) |
| } |
| |
| pub fn vector_reduce_fadd_fast(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| pub fn vector_reduce_fmul_fast(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| // Inspired by Hacker's Delight min implementation. |
| pub fn vector_reduce_min(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { |
| self.vector_reduce(src, |a, b, context| { |
| let differences_or_zeros = difference_or_zero(a, b, context); |
| context.new_binary_op(None, BinaryOp::Minus, a.get_type(), a, differences_or_zeros) |
| }) |
| } |
| |
| // Inspired by Hacker's Delight max implementation. |
| pub fn vector_reduce_max(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { |
| self.vector_reduce(src, |a, b, context| { |
| let differences_or_zeros = difference_or_zero(a, b, context); |
| context.new_binary_op(None, BinaryOp::Plus, b.get_type(), b, differences_or_zeros) |
| }) |
| } |
| |
| pub fn vector_select(&mut self, cond: RValue<'gcc>, then_val: RValue<'gcc>, else_val: RValue<'gcc>) -> RValue<'gcc> { |
| // cond is a vector of integers, not of bools. |
| let cond_type = cond.get_type(); |
| let vector_type = cond_type.unqualified().dyncast_vector().expect("vector type"); |
| let num_units = vector_type.get_num_units(); |
| let element_type = vector_type.get_element_type(); |
| let zeros = vec![self.context.new_rvalue_zero(element_type); num_units]; |
| let zeros = self.context.new_rvalue_from_vector(None, cond_type, &zeros); |
| |
| let masks = self.context.new_comparison(None, ComparisonOp::NotEquals, cond, zeros); |
| let then_vals = masks & then_val; |
| |
| let ones = vec![self.context.new_rvalue_one(element_type); num_units]; |
| let ones = self.context.new_rvalue_from_vector(None, cond_type, &ones); |
| let inverted_masks = masks + ones; |
| // NOTE: sometimes, the type of else_val can be different than the type of then_val in |
| // libgccjit (vector of int vs vector of int32_t), but they should be the same for the AND |
| // operation to work. |
| let else_val = self.context.new_bitcast(None, else_val, then_val.get_type()); |
| let else_vals = inverted_masks & else_val; |
| |
| then_vals | else_vals |
| } |
| } |
| |
| fn difference_or_zero<'gcc>(a: RValue<'gcc>, b: RValue<'gcc>, context: &'gcc Context<'gcc>) -> RValue<'gcc> { |
| let difference = a - b; |
| let masks = context.new_comparison(None, ComparisonOp::GreaterThanEquals, b, a); |
| difference & masks |
| } |
| |
| impl<'a, 'gcc, 'tcx> StaticBuilderMethods for Builder<'a, 'gcc, 'tcx> { |
| fn get_static(&mut self, def_id: DefId) -> RValue<'gcc> { |
| // Forward to the `get_static` method of `CodegenCx` |
| self.cx().get_static(def_id).get_address(None) |
| } |
| } |
| |
| impl<'tcx> HasParamEnv<'tcx> for Builder<'_, '_, 'tcx> { |
| fn param_env(&self) -> ParamEnv<'tcx> { |
| self.cx.param_env() |
| } |
| } |
| |
| impl<'tcx> HasTargetSpec for Builder<'_, '_, 'tcx> { |
| fn target_spec(&self) -> &Target { |
| &self.cx.target_spec() |
| } |
| } |
| |
| pub trait ToGccComp { |
| fn to_gcc_comparison(&self) -> ComparisonOp; |
| } |
| |
| impl ToGccComp for IntPredicate { |
| fn to_gcc_comparison(&self) -> ComparisonOp { |
| match *self { |
| IntPredicate::IntEQ => ComparisonOp::Equals, |
| IntPredicate::IntNE => ComparisonOp::NotEquals, |
| IntPredicate::IntUGT => ComparisonOp::GreaterThan, |
| IntPredicate::IntUGE => ComparisonOp::GreaterThanEquals, |
| IntPredicate::IntULT => ComparisonOp::LessThan, |
| IntPredicate::IntULE => ComparisonOp::LessThanEquals, |
| IntPredicate::IntSGT => ComparisonOp::GreaterThan, |
| IntPredicate::IntSGE => ComparisonOp::GreaterThanEquals, |
| IntPredicate::IntSLT => ComparisonOp::LessThan, |
| IntPredicate::IntSLE => ComparisonOp::LessThanEquals, |
| } |
| } |
| } |
| |
| impl ToGccComp for RealPredicate { |
| fn to_gcc_comparison(&self) -> ComparisonOp { |
| // TODO(antoyo): check that ordered vs non-ordered is respected. |
| match *self { |
| RealPredicate::RealPredicateFalse => unreachable!(), |
| RealPredicate::RealOEQ => ComparisonOp::Equals, |
| RealPredicate::RealOGT => ComparisonOp::GreaterThan, |
| RealPredicate::RealOGE => ComparisonOp::GreaterThanEquals, |
| RealPredicate::RealOLT => ComparisonOp::LessThan, |
| RealPredicate::RealOLE => ComparisonOp::LessThanEquals, |
| RealPredicate::RealONE => ComparisonOp::NotEquals, |
| RealPredicate::RealORD => unreachable!(), |
| RealPredicate::RealUNO => unreachable!(), |
| RealPredicate::RealUEQ => ComparisonOp::Equals, |
| RealPredicate::RealUGT => ComparisonOp::GreaterThan, |
| RealPredicate::RealUGE => ComparisonOp::GreaterThan, |
| RealPredicate::RealULT => ComparisonOp::LessThan, |
| RealPredicate::RealULE => ComparisonOp::LessThan, |
| RealPredicate::RealUNE => ComparisonOp::NotEquals, |
| RealPredicate::RealPredicateTrue => unreachable!(), |
| } |
| } |
| } |
| |
| #[repr(C)] |
| #[allow(non_camel_case_types)] |
| enum MemOrdering { |
| __ATOMIC_RELAXED, |
| __ATOMIC_CONSUME, |
| __ATOMIC_ACQUIRE, |
| __ATOMIC_RELEASE, |
| __ATOMIC_ACQ_REL, |
| __ATOMIC_SEQ_CST, |
| } |
| |
| trait ToGccOrdering { |
| fn to_gcc(self) -> i32; |
| } |
| |
| impl ToGccOrdering for AtomicOrdering { |
| fn to_gcc(self) -> i32 { |
| use MemOrdering::*; |
| |
| let ordering = |
| match self { |
| AtomicOrdering::Unordered => __ATOMIC_RELAXED, |
| AtomicOrdering::Relaxed => __ATOMIC_RELAXED, // TODO(antoyo): check if that's the same. |
| AtomicOrdering::Acquire => __ATOMIC_ACQUIRE, |
| AtomicOrdering::Release => __ATOMIC_RELEASE, |
| AtomicOrdering::AcquireRelease => __ATOMIC_ACQ_REL, |
| AtomicOrdering::SequentiallyConsistent => __ATOMIC_SEQ_CST, |
| }; |
| ordering as i32 |
| } |
| } |