| //! Defines the various compiler queries. |
| //! |
| //! For more information on the query system, see |
| //! ["Queries: demand-driven compilation"](https://rustc-dev-guide.rust-lang.org/query.html). |
| //! This chapter includes instructions for adding new queries. |
| |
| use crate::ty::{self, print::describe_as_module, TyCtxt}; |
| use rustc_span::def_id::LOCAL_CRATE; |
| |
| // Each of these queries corresponds to a function pointer field in the |
| // `Providers` struct for requesting a value of that type, and a method |
| // on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way |
| // which memoizes and does dep-graph tracking, wrapping around the actual |
| // `Providers` that the driver creates (using several `rustc_*` crates). |
| // |
| // The result type of each query must implement `Clone`, and additionally |
| // `ty::query::values::Value`, which produces an appropriate placeholder |
| // (error) value if the query resulted in a query cycle. |
| // Queries marked with `fatal_cycle` do not need the latter implementation, |
| // as they will raise an fatal error on query cycles instead. |
| rustc_queries! { |
| query trigger_delay_span_bug(key: DefId) -> () { |
| desc { "triggering a delay span bug" } |
| } |
| |
| query resolutions(_: ()) -> &'tcx ty::ResolverGlobalCtxt { |
| eval_always |
| no_hash |
| desc { "getting the resolver outputs" } |
| } |
| |
| query resolver_for_lowering(_: ()) -> &'tcx Steal<ty::ResolverAstLowering> { |
| eval_always |
| no_hash |
| desc { "getting the resolver for lowering" } |
| } |
| |
| /// Return the span for a definition. |
| /// Contrary to `def_span` below, this query returns the full absolute span of the definition. |
| /// This span is meant for dep-tracking rather than diagnostics. It should not be used outside |
| /// of rustc_middle::hir::source_map. |
| query source_span(key: LocalDefId) -> Span { |
| desc { "getting the source span" } |
| } |
| |
| /// Represents crate as a whole (as distinct from the top-level crate module). |
| /// If you call `hir_crate` (e.g., indirectly by calling `tcx.hir().krate()`), |
| /// we will have to assume that any change means that you need to be recompiled. |
| /// This is because the `hir_crate` query gives you access to all other items. |
| /// To avoid this fate, do not call `tcx.hir().krate()`; instead, |
| /// prefer wrappers like `tcx.visit_all_items_in_krate()`. |
| query hir_crate(key: ()) -> Crate<'tcx> { |
| arena_cache |
| eval_always |
| desc { "getting the crate HIR" } |
| } |
| |
| /// All items in the crate. |
| query hir_crate_items(_: ()) -> rustc_middle::hir::ModuleItems { |
| arena_cache |
| eval_always |
| desc { "getting HIR crate items" } |
| } |
| |
| /// The items in a module. |
| /// |
| /// This can be conveniently accessed by `tcx.hir().visit_item_likes_in_module`. |
| /// Avoid calling this query directly. |
| query hir_module_items(key: LocalDefId) -> rustc_middle::hir::ModuleItems { |
| arena_cache |
| desc { |tcx| "getting HIR module items in `{}`", tcx.def_path_str(key.to_def_id()) } |
| cache_on_disk_if { true } |
| } |
| |
| /// Gives access to the HIR node for the HIR owner `key`. |
| /// |
| /// This can be conveniently accessed by methods on `tcx.hir()`. |
| /// Avoid calling this query directly. |
| query hir_owner(key: hir::OwnerId) -> Option<crate::hir::Owner<'tcx>> { |
| desc { |tcx| "getting HIR owner of `{}`", tcx.def_path_str(key.to_def_id()) } |
| } |
| |
| /// Gives access to the HIR ID for the given `LocalDefId` owner `key`. |
| /// |
| /// This can be conveniently accessed by methods on `tcx.hir()`. |
| /// Avoid calling this query directly. |
| query local_def_id_to_hir_id(key: LocalDefId) -> hir::HirId { |
| desc { |tcx| "getting HIR ID of `{}`", tcx.def_path_str(key.to_def_id()) } |
| } |
| |
| /// Gives access to the HIR node's parent for the HIR owner `key`. |
| /// |
| /// This can be conveniently accessed by methods on `tcx.hir()`. |
| /// Avoid calling this query directly. |
| query hir_owner_parent(key: hir::OwnerId) -> hir::HirId { |
| desc { |tcx| "getting HIR parent of `{}`", tcx.def_path_str(key.to_def_id()) } |
| } |
| |
| /// Gives access to the HIR nodes and bodies inside the HIR owner `key`. |
| /// |
| /// This can be conveniently accessed by methods on `tcx.hir()`. |
| /// Avoid calling this query directly. |
| query hir_owner_nodes(key: hir::OwnerId) -> hir::MaybeOwner<&'tcx hir::OwnerNodes<'tcx>> { |
| desc { |tcx| "getting HIR owner items in `{}`", tcx.def_path_str(key.to_def_id()) } |
| } |
| |
| /// Gives access to the HIR attributes inside the HIR owner `key`. |
| /// |
| /// This can be conveniently accessed by methods on `tcx.hir()`. |
| /// Avoid calling this query directly. |
| query hir_attrs(key: hir::OwnerId) -> &'tcx hir::AttributeMap<'tcx> { |
| desc { |tcx| "getting HIR owner attributes in `{}`", tcx.def_path_str(key.to_def_id()) } |
| } |
| |
| /// Computes the `DefId` of the corresponding const parameter in case the `key` is a |
| /// const argument and returns `None` otherwise. |
| /// |
| /// ```ignore (incomplete) |
| /// let a = foo::<7>(); |
| /// // ^ Calling `opt_const_param_of` for this argument, |
| /// |
| /// fn foo<const N: usize>() |
| /// // ^ returns this `DefId`. |
| /// |
| /// fn bar() { |
| /// // ^ While calling `opt_const_param_of` for other bodies returns `None`. |
| /// } |
| /// ``` |
| // It looks like caching this query on disk actually slightly |
| // worsened performance in #74376. |
| // |
| // Once const generics are more prevalently used, we might want to |
| // consider only caching calls returning `Some`. |
| query opt_const_param_of(key: LocalDefId) -> Option<DefId> { |
| desc { |tcx| "computing the optional const parameter of `{}`", tcx.def_path_str(key.to_def_id()) } |
| } |
| |
| /// Given the def_id of a const-generic parameter, computes the associated default const |
| /// parameter. e.g. `fn example<const N: usize=3>` called on `N` would return `3`. |
| query const_param_default(param: DefId) -> ty::Const<'tcx> { |
| desc { |tcx| "computing const default for a given parameter `{}`", tcx.def_path_str(param) } |
| cache_on_disk_if { param.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Returns the [`Ty`][rustc_middle::ty::Ty] of the given [`DefId`]. If the [`DefId`] points |
| /// to an alias, it will "skip" this alias to return the aliased type. |
| /// |
| /// [`DefId`]: rustc_hir::def_id::DefId |
| query type_of(key: DefId) -> Ty<'tcx> { |
| desc { |tcx| |
| "{action} `{path}`", |
| action = { |
| use rustc_hir::def::DefKind; |
| match tcx.def_kind(key) { |
| DefKind::TyAlias => "expanding type alias", |
| DefKind::TraitAlias => "expanding trait alias", |
| _ => "computing type of", |
| } |
| }, |
| path = tcx.def_path_str(key), |
| } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query collect_trait_impl_trait_tys(key: DefId) |
| -> Result<&'tcx FxHashMap<DefId, Ty<'tcx>>, ErrorGuaranteed> |
| { |
| desc { "comparing an impl and trait method signature, inferring any hidden `impl Trait` types in the process" } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query analysis(key: ()) -> Result<(), ErrorGuaranteed> { |
| eval_always |
| desc { "running analysis passes on this crate" } |
| } |
| |
| /// This query checks the fulfillment of collected lint expectations. |
| /// All lint emitting queries have to be done before this is executed |
| /// to ensure that all expectations can be fulfilled. |
| /// |
| /// This is an extra query to enable other drivers (like rustdoc) to |
| /// only execute a small subset of the `analysis` query, while allowing |
| /// lints to be expected. In rustc, this query will be executed as part of |
| /// the `analysis` query and doesn't have to be called a second time. |
| /// |
| /// Tools can additionally pass in a tool filter. That will restrict the |
| /// expectations to only trigger for lints starting with the listed tool |
| /// name. This is useful for cases were not all linting code from rustc |
| /// was called. With the default `None` all registered lints will also |
| /// be checked for expectation fulfillment. |
| query check_expectations(key: Option<Symbol>) -> () { |
| eval_always |
| desc { "checking lint expectations (RFC 2383)" } |
| } |
| |
| /// Maps from the `DefId` of an item (trait/struct/enum/fn) to its |
| /// associated generics. |
| query generics_of(key: DefId) -> ty::Generics { |
| desc { |tcx| "computing generics of `{}`", tcx.def_path_str(key) } |
| arena_cache |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the |
| /// predicates (where-clauses) that must be proven true in order |
| /// to reference it. This is almost always the "predicates query" |
| /// that you want. |
| /// |
| /// `predicates_of` builds on `predicates_defined_on` -- in fact, |
| /// it is almost always the same as that query, except for the |
| /// case of traits. For traits, `predicates_of` contains |
| /// an additional `Self: Trait<...>` predicate that users don't |
| /// actually write. This reflects the fact that to invoke the |
| /// trait (e.g., via `Default::default`) you must supply types |
| /// that actually implement the trait. (However, this extra |
| /// predicate gets in the way of some checks, which are intended |
| /// to operate over only the actual where-clauses written by the |
| /// user.) |
| query predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| } |
| |
| /// Returns the list of bounds that can be used for |
| /// `SelectionCandidate::ProjectionCandidate(_)` and |
| /// `ProjectionTyCandidate::TraitDef`. |
| /// Specifically this is the bounds written on the trait's type |
| /// definition, or those after the `impl` keyword |
| /// |
| /// ```ignore (incomplete) |
| /// type X: Bound + 'lt |
| /// // ^^^^^^^^^^^ |
| /// impl Debug + Display |
| /// // ^^^^^^^^^^^^^^^ |
| /// ``` |
| /// |
| /// `key` is the `DefId` of the associated type or opaque type. |
| /// |
| /// Bounds from the parent (e.g. with nested impl trait) are not included. |
| query explicit_item_bounds(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] { |
| desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Elaborated version of the predicates from `explicit_item_bounds`. |
| /// |
| /// For example: |
| /// |
| /// ``` |
| /// trait MyTrait { |
| /// type MyAType: Eq + ?Sized; |
| /// } |
| /// ``` |
| /// |
| /// `explicit_item_bounds` returns `[<Self as MyTrait>::MyAType: Eq]`, |
| /// and `item_bounds` returns |
| /// ```text |
| /// [ |
| /// <Self as Trait>::MyAType: Eq, |
| /// <Self as Trait>::MyAType: PartialEq<<Self as Trait>::MyAType> |
| /// ] |
| /// ``` |
| /// |
| /// Bounds from the parent (e.g. with nested impl trait) are not included. |
| query item_bounds(key: DefId) -> &'tcx ty::List<ty::Predicate<'tcx>> { |
| desc { |tcx| "elaborating item bounds for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query native_libraries(_: CrateNum) -> Vec<NativeLib> { |
| arena_cache |
| desc { "looking up the native libraries of a linked crate" } |
| separate_provide_extern |
| } |
| |
| query shallow_lint_levels_on(key: hir::OwnerId) -> rustc_middle::lint::ShallowLintLevelMap { |
| eval_always // fetches `resolutions` |
| arena_cache |
| desc { |tcx| "looking up lint levels for `{}`", tcx.def_path_str(key.to_def_id()) } |
| } |
| |
| query lint_expectations(_: ()) -> Vec<(LintExpectationId, LintExpectation)> { |
| arena_cache |
| desc { "computing `#[expect]`ed lints in this crate" } |
| } |
| |
| query parent_module_from_def_id(key: LocalDefId) -> LocalDefId { |
| eval_always |
| desc { |tcx| "getting the parent module of `{}`", tcx.def_path_str(key.to_def_id()) } |
| } |
| |
| query expn_that_defined(key: DefId) -> rustc_span::ExpnId { |
| desc { |tcx| "getting the expansion that defined `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| } |
| |
| query is_panic_runtime(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if the crate is_panic_runtime" } |
| separate_provide_extern |
| } |
| |
| /// Checks whether a type is representable or infinitely sized |
| query representability(_: LocalDefId) -> rustc_middle::ty::Representability { |
| desc { "checking if `{}` is representable", tcx.def_path_str(key.to_def_id()) } |
| // infinitely sized types will cause a cycle |
| cycle_delay_bug |
| // we don't want recursive representability calls to be forced with |
| // incremental compilation because, if a cycle occurs, we need the |
| // entire cycle to be in memory for diagnostics |
| anon |
| } |
| |
| /// An implementation detail for the `representability` query |
| query representability_adt_ty(_: Ty<'tcx>) -> rustc_middle::ty::Representability { |
| desc { "checking if `{}` is representable", key } |
| cycle_delay_bug |
| anon |
| } |
| |
| /// Set of param indexes for type params that are in the type's representation |
| query params_in_repr(key: DefId) -> rustc_index::bit_set::BitSet<u32> { |
| desc { "finding type parameters in the representation" } |
| arena_cache |
| no_hash |
| separate_provide_extern |
| } |
| |
| /// Fetch the THIR for a given body. If typeck for that body failed, returns an empty `Thir`. |
| query thir_body(key: ty::WithOptConstParam<LocalDefId>) |
| -> Result<(&'tcx Steal<thir::Thir<'tcx>>, thir::ExprId), ErrorGuaranteed> |
| { |
| // Perf tests revealed that hashing THIR is inefficient (see #85729). |
| no_hash |
| desc { |tcx| "building THIR for `{}`", tcx.def_path_str(key.did.to_def_id()) } |
| } |
| |
| /// Create a THIR tree for debugging. |
| query thir_tree(key: ty::WithOptConstParam<LocalDefId>) -> String { |
| no_hash |
| arena_cache |
| desc { |tcx| "constructing THIR tree for `{}`", tcx.def_path_str(key.did.to_def_id()) } |
| } |
| |
| /// Set of all the `DefId`s in this crate that have MIR associated with |
| /// them. This includes all the body owners, but also things like struct |
| /// constructors. |
| query mir_keys(_: ()) -> rustc_data_structures::fx::FxIndexSet<LocalDefId> { |
| arena_cache |
| desc { "getting a list of all mir_keys" } |
| } |
| |
| /// Maps DefId's that have an associated `mir::Body` to the result |
| /// of the MIR const-checking pass. This is the set of qualifs in |
| /// the final value of a `const`. |
| query mir_const_qualif(key: DefId) -> mir::ConstQualifs { |
| desc { |tcx| "const checking `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query mir_const_qualif_const_arg( |
| key: (LocalDefId, DefId) |
| ) -> mir::ConstQualifs { |
| desc { |
| |tcx| "const checking the const argument `{}`", |
| tcx.def_path_str(key.0.to_def_id()) |
| } |
| } |
| |
| /// Fetch the MIR for a given `DefId` right after it's built - this includes |
| /// unreachable code. |
| query mir_built(key: ty::WithOptConstParam<LocalDefId>) -> &'tcx Steal<mir::Body<'tcx>> { |
| desc { |tcx| "building MIR for `{}`", tcx.def_path_str(key.did.to_def_id()) } |
| } |
| |
| /// Fetch the MIR for a given `DefId` up till the point where it is |
| /// ready for const qualification. |
| /// |
| /// See the README for the `mir` module for details. |
| query mir_const(key: ty::WithOptConstParam<LocalDefId>) -> &'tcx Steal<mir::Body<'tcx>> { |
| desc { |
| |tcx| "preparing {}`{}` for borrow checking", |
| if key.const_param_did.is_some() { "the const argument " } else { "" }, |
| tcx.def_path_str(key.did.to_def_id()), |
| } |
| no_hash |
| } |
| |
| /// Try to build an abstract representation of the given constant. |
| query thir_abstract_const( |
| key: DefId |
| ) -> Result<Option<&'tcx [ty::abstract_const::Node<'tcx>]>, ErrorGuaranteed> { |
| desc { |
| |tcx| "building an abstract representation for `{}`", tcx.def_path_str(key), |
| } |
| separate_provide_extern |
| } |
| /// Try to build an abstract representation of the given constant. |
| query thir_abstract_const_of_const_arg( |
| key: (LocalDefId, DefId) |
| ) -> Result<Option<&'tcx [ty::abstract_const::Node<'tcx>]>, ErrorGuaranteed> { |
| desc { |
| |tcx| |
| "building an abstract representation for the const argument `{}`", |
| tcx.def_path_str(key.0.to_def_id()), |
| } |
| } |
| |
| query try_unify_abstract_consts(key: |
| ty::ParamEnvAnd<'tcx, (ty::UnevaluatedConst<'tcx>, ty::UnevaluatedConst<'tcx> |
| )>) -> bool { |
| desc { |
| |tcx| "trying to unify the generic constants `{}` and `{}`", |
| tcx.def_path_str(key.value.0.def.did), tcx.def_path_str(key.value.1.def.did) |
| } |
| } |
| |
| query mir_drops_elaborated_and_const_checked( |
| key: ty::WithOptConstParam<LocalDefId> |
| ) -> &'tcx Steal<mir::Body<'tcx>> { |
| no_hash |
| desc { |tcx| "elaborating drops for `{}`", tcx.def_path_str(key.did.to_def_id()) } |
| } |
| |
| query mir_for_ctfe( |
| key: DefId |
| ) -> &'tcx mir::Body<'tcx> { |
| desc { |tcx| "caching mir of `{}` for CTFE", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query mir_for_ctfe_of_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::Body<'tcx> { |
| desc { |
| |tcx| "caching MIR for CTFE of the const argument `{}`", |
| tcx.def_path_str(key.0.to_def_id()) |
| } |
| } |
| |
| query mir_promoted(key: ty::WithOptConstParam<LocalDefId>) -> |
| ( |
| &'tcx Steal<mir::Body<'tcx>>, |
| &'tcx Steal<IndexVec<mir::Promoted, mir::Body<'tcx>>> |
| ) { |
| no_hash |
| desc { |
| |tcx| "processing MIR for {}`{}`", |
| if key.const_param_did.is_some() { "the const argument " } else { "" }, |
| tcx.def_path_str(key.did.to_def_id()), |
| } |
| } |
| |
| query symbols_for_closure_captures( |
| key: (LocalDefId, LocalDefId) |
| ) -> Vec<rustc_span::Symbol> { |
| arena_cache |
| desc { |
| |tcx| "finding symbols for captures of closure `{}` in `{}`", |
| tcx.def_path_str(key.1.to_def_id()), |
| tcx.def_path_str(key.0.to_def_id()) |
| } |
| } |
| |
| /// MIR after our optimization passes have run. This is MIR that is ready |
| /// for codegen. This is also the only query that can fetch non-local MIR, at present. |
| query optimized_mir(key: DefId) -> &'tcx mir::Body<'tcx> { |
| desc { |tcx| "optimizing MIR for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Returns coverage summary info for a function, after executing the `InstrumentCoverage` |
| /// MIR pass (assuming the -Cinstrument-coverage option is enabled). |
| query coverageinfo(key: ty::InstanceDef<'tcx>) -> mir::CoverageInfo { |
| desc { |tcx| "retrieving coverage info from MIR for `{}`", tcx.def_path_str(key.def_id()) } |
| arena_cache |
| } |
| |
| /// Returns the `CodeRegions` for a function that has instrumented coverage, in case the |
| /// function was optimized out before codegen, and before being added to the Coverage Map. |
| query covered_code_regions(key: DefId) -> Vec<&'tcx mir::coverage::CodeRegion> { |
| desc { |
| |tcx| "retrieving the covered `CodeRegion`s, if instrumented, for `{}`", |
| tcx.def_path_str(key) |
| } |
| arena_cache |
| cache_on_disk_if { key.is_local() } |
| } |
| |
| /// The `DefId` is the `DefId` of the containing MIR body. Promoteds do not have their own |
| /// `DefId`. This function returns all promoteds in the specified body. The body references |
| /// promoteds by the `DefId` and the `mir::Promoted` index. This is necessary, because |
| /// after inlining a body may refer to promoteds from other bodies. In that case you still |
| /// need to use the `DefId` of the original body. |
| query promoted_mir(key: DefId) -> &'tcx IndexVec<mir::Promoted, mir::Body<'tcx>> { |
| desc { |tcx| "optimizing promoted MIR for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query promoted_mir_of_const_arg( |
| key: (LocalDefId, DefId) |
| ) -> &'tcx IndexVec<mir::Promoted, mir::Body<'tcx>> { |
| desc { |
| |tcx| "optimizing promoted MIR for the const argument `{}`", |
| tcx.def_path_str(key.0.to_def_id()), |
| } |
| } |
| |
| /// Erases regions from `ty` to yield a new type. |
| /// Normally you would just use `tcx.erase_regions(value)`, |
| /// however, which uses this query as a kind of cache. |
| query erase_regions_ty(ty: Ty<'tcx>) -> Ty<'tcx> { |
| // This query is not expected to have input -- as a result, it |
| // is not a good candidates for "replay" because it is essentially a |
| // pure function of its input (and hence the expectation is that |
| // no caller would be green **apart** from just these |
| // queries). Making it anonymous avoids hashing the result, which |
| // may save a bit of time. |
| anon |
| desc { "erasing regions from `{}`", ty } |
| } |
| |
| query wasm_import_module_map(_: CrateNum) -> FxHashMap<DefId, String> { |
| arena_cache |
| desc { "getting wasm import module map" } |
| } |
| |
| /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the |
| /// predicates (where-clauses) directly defined on it. This is |
| /// equal to the `explicit_predicates_of` predicates plus the |
| /// `inferred_outlives_of` predicates. |
| query predicates_defined_on(key: DefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Returns everything that looks like a predicate written explicitly |
| /// by the user on a trait item. |
| /// |
| /// Traits are unusual, because predicates on associated types are |
| /// converted into bounds on that type for backwards compatibility: |
| /// |
| /// trait X where Self::U: Copy { type U; } |
| /// |
| /// becomes |
| /// |
| /// trait X { type U: Copy; } |
| /// |
| /// `explicit_predicates_of` and `explicit_item_bounds` will then take |
| /// the appropriate subsets of the predicates here. |
| query trait_explicit_predicates_and_bounds(key: LocalDefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing explicit predicates of trait `{}`", tcx.def_path_str(key.to_def_id()) } |
| } |
| |
| /// Returns the predicates written explicitly by the user. |
| query explicit_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing explicit predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Returns the inferred outlives predicates (e.g., for `struct |
| /// Foo<'a, T> { x: &'a T }`, this would return `T: 'a`). |
| query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] { |
| desc { |tcx| "computing inferred outlives predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Maps from the `DefId` of a trait to the list of |
| /// super-predicates. This is a subset of the full list of |
| /// predicates. We store these in a separate map because we must |
| /// evaluate them even during type conversion, often before the |
| /// full predicates are available (note that supertraits have |
| /// additional acyclicity requirements). |
| query super_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing the super predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// The `Option<Ident>` is the name of an associated type. If it is `None`, then this query |
| /// returns the full set of predicates. If `Some<Ident>`, then the query returns only the |
| /// subset of super-predicates that reference traits that define the given associated type. |
| /// This is used to avoid cycles in resolving types like `T::Item`. |
| query super_predicates_that_define_assoc_type(key: (DefId, Option<rustc_span::symbol::Ident>)) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing the super traits of `{}`{}", |
| tcx.def_path_str(key.0), |
| if let Some(assoc_name) = key.1 { format!(" with associated type name `{}`", assoc_name) } else { "".to_string() }, |
| } |
| } |
| |
| /// To avoid cycles within the predicates of a single item we compute |
| /// per-type-parameter predicates for resolving `T::AssocTy`. |
| query type_param_predicates(key: (DefId, LocalDefId, rustc_span::symbol::Ident)) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing the bounds for type parameter `{}`", tcx.hir().ty_param_name(key.1) } |
| } |
| |
| query trait_def(key: DefId) -> ty::TraitDef { |
| desc { |tcx| "computing trait definition for `{}`", tcx.def_path_str(key) } |
| arena_cache |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query adt_def(key: DefId) -> ty::AdtDef<'tcx> { |
| desc { |tcx| "computing ADT definition for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query adt_destructor(key: DefId) -> Option<ty::Destructor> { |
| desc { |tcx| "computing `Drop` impl for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query adt_sized_constraint(key: DefId) -> &'tcx [Ty<'tcx>] { |
| desc { |tcx| "computing `Sized` constraints for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query adt_dtorck_constraint( |
| key: DefId |
| ) -> Result<&'tcx DropckConstraint<'tcx>, NoSolution> { |
| desc { |tcx| "computing drop-check constraints for `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Returns `true` if this is a const fn, use the `is_const_fn` to know whether your crate |
| /// actually sees it as const fn (e.g., the const-fn-ness might be unstable and you might |
| /// not have the feature gate active). |
| /// |
| /// **Do not call this function manually.** It is only meant to cache the base data for the |
| /// `is_const_fn` function. Consider using `is_const_fn` or `is_const_fn_raw` instead. |
| query constness(key: DefId) -> hir::Constness { |
| desc { |tcx| "checking if item is const: `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query asyncness(key: DefId) -> hir::IsAsync { |
| desc { |tcx| "checking if the function is async: `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Returns `true` if calls to the function may be promoted. |
| /// |
| /// This is either because the function is e.g., a tuple-struct or tuple-variant |
| /// constructor, or because it has the `#[rustc_promotable]` attribute. The attribute should |
| /// be removed in the future in favour of some form of check which figures out whether the |
| /// function does not inspect the bits of any of its arguments (so is essentially just a |
| /// constructor function). |
| query is_promotable_const_fn(key: DefId) -> bool { |
| desc { |tcx| "checking if item is promotable: `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Returns `true` if this is a foreign item (i.e., linked via `extern { ... }`). |
| query is_foreign_item(key: DefId) -> bool { |
| desc { |tcx| "checking if `{}` is a foreign item", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Returns `Some(generator_kind)` if the node pointed to by `def_id` is a generator. |
| query generator_kind(def_id: DefId) -> Option<hir::GeneratorKind> { |
| desc { |tcx| "looking up generator kind of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Gets a map with the variance of every item; use `item_variance` instead. |
| query crate_variances(_: ()) -> ty::CrateVariancesMap<'tcx> { |
| arena_cache |
| desc { "computing the variances for items in this crate" } |
| } |
| |
| /// Maps from the `DefId` of a type or region parameter to its (inferred) variance. |
| query variances_of(def_id: DefId) -> &'tcx [ty::Variance] { |
| desc { |tcx| "computing the variances of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Maps from thee `DefId` of a type to its (inferred) outlives. |
| query inferred_outlives_crate(_: ()) -> ty::CratePredicatesMap<'tcx> { |
| arena_cache |
| desc { "computing the inferred outlives predicates for items in this crate" } |
| } |
| |
| /// Maps from an impl/trait `DefId` to a list of the `DefId`s of its items. |
| query associated_item_def_ids(key: DefId) -> &'tcx [DefId] { |
| desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Maps from a trait item to the trait item "descriptor". |
| query associated_item(key: DefId) -> ty::AssocItem { |
| desc { |tcx| "computing associated item data for `{}`", tcx.def_path_str(key) } |
| arena_cache |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Collects the associated items defined on a trait or impl. |
| query associated_items(key: DefId) -> ty::AssocItems<'tcx> { |
| arena_cache |
| desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Maps from associated items on a trait to the corresponding associated |
| /// item on the impl specified by `impl_id`. |
| /// |
| /// For example, with the following code |
| /// |
| /// ``` |
| /// struct Type {} |
| /// // DefId |
| /// trait Trait { // trait_id |
| /// fn f(); // trait_f |
| /// fn g() {} // trait_g |
| /// } |
| /// |
| /// impl Trait for Type { // impl_id |
| /// fn f() {} // impl_f |
| /// fn g() {} // impl_g |
| /// } |
| /// ``` |
| /// |
| /// The map returned for `tcx.impl_item_implementor_ids(impl_id)` would be |
| ///`{ trait_f: impl_f, trait_g: impl_g }` |
| query impl_item_implementor_ids(impl_id: DefId) -> FxHashMap<DefId, DefId> { |
| arena_cache |
| desc { |tcx| "comparing impl items against trait for `{}`", tcx.def_path_str(impl_id) } |
| } |
| |
| /// Given an `impl_id`, return the trait it implements. |
| /// Return `None` if this is an inherent impl. |
| query impl_trait_ref(impl_id: DefId) -> Option<ty::TraitRef<'tcx>> { |
| desc { |tcx| "computing trait implemented by `{}`", tcx.def_path_str(impl_id) } |
| cache_on_disk_if { impl_id.is_local() } |
| separate_provide_extern |
| } |
| query impl_polarity(impl_id: DefId) -> ty::ImplPolarity { |
| desc { |tcx| "computing implementation polarity of `{}`", tcx.def_path_str(impl_id) } |
| cache_on_disk_if { impl_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query issue33140_self_ty(key: DefId) -> Option<ty::Ty<'tcx>> { |
| desc { |tcx| "computing Self type wrt issue #33140 `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Maps a `DefId` of a type to a list of its inherent impls. |
| /// Contains implementations of methods that are inherent to a type. |
| /// Methods in these implementations don't need to be exported. |
| query inherent_impls(key: DefId) -> &'tcx [DefId] { |
| desc { |tcx| "collecting inherent impls for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query incoherent_impls(key: SimplifiedType) -> &'tcx [DefId] { |
| desc { |tcx| "collecting all inherent impls for `{:?}`", key } |
| } |
| |
| /// The result of unsafety-checking this `LocalDefId`. |
| query unsafety_check_result(key: LocalDefId) -> &'tcx mir::UnsafetyCheckResult { |
| desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) } |
| cache_on_disk_if { true } |
| } |
| query unsafety_check_result_for_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::UnsafetyCheckResult { |
| desc { |
| |tcx| "unsafety-checking the const argument `{}`", |
| tcx.def_path_str(key.0.to_def_id()) |
| } |
| } |
| |
| /// Unsafety-check this `LocalDefId` with THIR unsafeck. This should be |
| /// used with `-Zthir-unsafeck`. |
| query thir_check_unsafety(key: LocalDefId) { |
| desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) } |
| cache_on_disk_if { true } |
| } |
| query thir_check_unsafety_for_const_arg(key: (LocalDefId, DefId)) { |
| desc { |
| |tcx| "unsafety-checking the const argument `{}`", |
| tcx.def_path_str(key.0.to_def_id()) |
| } |
| } |
| |
| /// HACK: when evaluated, this reports an "unsafe derive on repr(packed)" error. |
| /// |
| /// Unsafety checking is executed for each method separately, but we only want |
| /// to emit this error once per derive. As there are some impls with multiple |
| /// methods, we use a query for deduplication. |
| query unsafe_derive_on_repr_packed(key: LocalDefId) -> () { |
| desc { |tcx| "processing `{}`", tcx.def_path_str(key.to_def_id()) } |
| } |
| |
| /// Returns the types assumed to be well formed while "inside" of the given item. |
| /// |
| /// Note that we've liberated the late bound regions of function signatures, so |
| /// this can not be used to check whether these types are well formed. |
| query assumed_wf_types(key: DefId) -> &'tcx ty::List<Ty<'tcx>> { |
| desc { |tcx| "computing the implied bounds of `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Computes the signature of the function. |
| query fn_sig(key: DefId) -> ty::PolyFnSig<'tcx> { |
| desc { |tcx| "computing function signature of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| cycle_delay_bug |
| } |
| |
| /// Performs lint checking for the module. |
| query lint_mod(key: LocalDefId) -> () { |
| desc { |tcx| "linting {}", describe_as_module(key, tcx) } |
| } |
| |
| /// Checks the attributes in the module. |
| query check_mod_attrs(key: LocalDefId) -> () { |
| desc { |tcx| "checking attributes in {}", describe_as_module(key, tcx) } |
| } |
| |
| /// Checks for uses of unstable APIs in the module. |
| query check_mod_unstable_api_usage(key: LocalDefId) -> () { |
| desc { |tcx| "checking for unstable API usage in {}", describe_as_module(key, tcx) } |
| } |
| |
| /// Checks the const bodies in the module for illegal operations (e.g. `if` or `loop`). |
| query check_mod_const_bodies(key: LocalDefId) -> () { |
| desc { |tcx| "checking consts in {}", describe_as_module(key, tcx) } |
| } |
| |
| /// Checks the loops in the module. |
| query check_mod_loops(key: LocalDefId) -> () { |
| desc { |tcx| "checking loops in {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_mod_naked_functions(key: LocalDefId) -> () { |
| desc { |tcx| "checking naked functions in {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_mod_item_types(key: LocalDefId) -> () { |
| desc { |tcx| "checking item types in {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_mod_privacy(key: LocalDefId) -> () { |
| desc { |tcx| "checking privacy in {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_liveness(key: DefId) { |
| desc { |tcx| "checking liveness of variables in `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Return the live symbols in the crate for dead code check. |
| /// |
| /// The second return value maps from ADTs to ignored derived traits (e.g. Debug and Clone) and |
| /// their respective impl (i.e., part of the derive macro) |
| query live_symbols_and_ignored_derived_traits(_: ()) -> ( |
| FxHashSet<LocalDefId>, |
| FxHashMap<LocalDefId, Vec<(DefId, DefId)>> |
| ) { |
| arena_cache |
| desc { "finding live symbols in crate" } |
| } |
| |
| query check_mod_deathness(key: LocalDefId) -> () { |
| desc { |tcx| "checking deathness of variables in {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_mod_impl_wf(key: LocalDefId) -> () { |
| desc { |tcx| "checking that impls are well-formed in {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_mod_type_wf(key: LocalDefId) -> () { |
| desc { |tcx| "checking that types are well-formed in {}", describe_as_module(key, tcx) } |
| } |
| |
| query collect_mod_item_types(key: LocalDefId) -> () { |
| desc { |tcx| "collecting item types in {}", describe_as_module(key, tcx) } |
| } |
| |
| /// Caches `CoerceUnsized` kinds for impls on custom types. |
| query coerce_unsized_info(key: DefId) -> ty::adjustment::CoerceUnsizedInfo { |
| desc { |tcx| "computing CoerceUnsized info for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query typeck_item_bodies(_: ()) -> () { |
| desc { "type-checking all item bodies" } |
| } |
| |
| query typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> { |
| desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) } |
| cache_on_disk_if { true } |
| } |
| query typeck_const_arg( |
| key: (LocalDefId, DefId) |
| ) -> &'tcx ty::TypeckResults<'tcx> { |
| desc { |
| |tcx| "type-checking the const argument `{}`", |
| tcx.def_path_str(key.0.to_def_id()), |
| } |
| } |
| query diagnostic_only_typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> { |
| desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) } |
| cache_on_disk_if { true } |
| } |
| |
| query used_trait_imports(key: LocalDefId) -> &'tcx UnordSet<LocalDefId> { |
| desc { |tcx| "finding used_trait_imports `{}`", tcx.def_path_str(key.to_def_id()) } |
| cache_on_disk_if { true } |
| } |
| |
| query has_typeck_results(def_id: DefId) -> bool { |
| desc { |tcx| "checking whether `{}` has a body", tcx.def_path_str(def_id) } |
| } |
| |
| query coherent_trait(def_id: DefId) -> () { |
| desc { |tcx| "coherence checking all impls of trait `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Borrow-checks the function body. If this is a closure, returns |
| /// additional requirements that the closure's creator must verify. |
| query mir_borrowck(key: LocalDefId) -> &'tcx mir::BorrowCheckResult<'tcx> { |
| desc { |tcx| "borrow-checking `{}`", tcx.def_path_str(key.to_def_id()) } |
| cache_on_disk_if(tcx) { tcx.is_typeck_child(key.to_def_id()) } |
| } |
| query mir_borrowck_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::BorrowCheckResult<'tcx> { |
| desc { |
| |tcx| "borrow-checking the const argument`{}`", |
| tcx.def_path_str(key.0.to_def_id()) |
| } |
| } |
| |
| /// Gets a complete map from all types to their inherent impls. |
| /// Not meant to be used directly outside of coherence. |
| query crate_inherent_impls(k: ()) -> CrateInherentImpls { |
| arena_cache |
| desc { "finding all inherent impls defined in crate" } |
| } |
| |
| /// Checks all types in the crate for overlap in their inherent impls. Reports errors. |
| /// Not meant to be used directly outside of coherence. |
| query crate_inherent_impls_overlap_check(_: ()) -> () { |
| desc { "check for overlap between inherent impls defined in this crate" } |
| } |
| |
| /// Checks whether all impls in the crate pass the overlap check, returning |
| /// which impls fail it. If all impls are correct, the returned slice is empty. |
| query orphan_check_impl(key: LocalDefId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| |
| "checking whether impl `{}` follows the orphan rules", |
| tcx.def_path_str(key.to_def_id()), |
| } |
| } |
| |
| /// Check whether the function has any recursion that could cause the inliner to trigger |
| /// a cycle. Returns the call stack causing the cycle. The call stack does not contain the |
| /// current function, just all intermediate functions. |
| query mir_callgraph_reachable(key: (ty::Instance<'tcx>, LocalDefId)) -> bool { |
| fatal_cycle |
| desc { |tcx| |
| "computing if `{}` (transitively) calls `{}`", |
| key.0, |
| tcx.def_path_str(key.1.to_def_id()), |
| } |
| } |
| |
| /// Obtain all the calls into other local functions |
| query mir_inliner_callees(key: ty::InstanceDef<'tcx>) -> &'tcx [(DefId, SubstsRef<'tcx>)] { |
| fatal_cycle |
| desc { |tcx| |
| "computing all local function calls in `{}`", |
| tcx.def_path_str(key.def_id()), |
| } |
| } |
| |
| /// Evaluates a constant and returns the computed allocation. |
| /// |
| /// **Do not use this** directly, use the `tcx.eval_static_initializer` wrapper. |
| query eval_to_allocation_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>) |
| -> EvalToAllocationRawResult<'tcx> { |
| desc { |tcx| |
| "const-evaluating + checking `{}`", |
| key.value.display(tcx) |
| } |
| cache_on_disk_if { true } |
| } |
| |
| /// Evaluates const items or anonymous constants |
| /// (such as enum variant explicit discriminants or array lengths) |
| /// into a representation suitable for the type system and const generics. |
| /// |
| /// **Do not use this** directly, use one of the following wrappers: `tcx.const_eval_poly`, |
| /// `tcx.const_eval_resolve`, `tcx.const_eval_instance`, or `tcx.const_eval_global_id`. |
| query eval_to_const_value_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>) |
| -> EvalToConstValueResult<'tcx> { |
| desc { |tcx| |
| "simplifying constant for the type system `{}`", |
| key.value.display(tcx) |
| } |
| cache_on_disk_if { true } |
| } |
| |
| /// Evaluate a constant and convert it to a type level constant or |
| /// return `None` if that is not possible. |
| query eval_to_valtree( |
| key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>> |
| ) -> EvalToValTreeResult<'tcx> { |
| desc { "evaluating type-level constant" } |
| } |
| |
| /// Converts a type level constant value into `ConstValue` |
| query valtree_to_const_val(key: (Ty<'tcx>, ty::ValTree<'tcx>)) -> ConstValue<'tcx> { |
| desc { "converting type-level constant value to mir constant value"} |
| } |
| |
| /// Destructures array, ADT or tuple constants into the constants |
| /// of their fields. |
| query destructure_const(key: ty::Const<'tcx>) -> ty::DestructuredConst<'tcx> { |
| desc { "destructuring type level constant"} |
| } |
| |
| /// Tries to destructure an `mir::ConstantKind` ADT or array into its variant index |
| /// and its field values. |
| query try_destructure_mir_constant( |
| key: ty::ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>> |
| ) -> Option<mir::DestructuredConstant<'tcx>> { |
| desc { "destructuring MIR constant"} |
| remap_env_constness |
| } |
| |
| /// Dereference a constant reference or raw pointer and turn the result into a constant |
| /// again. |
| query deref_mir_constant( |
| key: ty::ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>> |
| ) -> mir::ConstantKind<'tcx> { |
| desc { "dereferencing MIR constant" } |
| remap_env_constness |
| } |
| |
| query const_caller_location(key: (rustc_span::Symbol, u32, u32)) -> ConstValue<'tcx> { |
| desc { "getting a &core::panic::Location referring to a span" } |
| } |
| |
| // FIXME get rid of this with valtrees |
| query lit_to_const( |
| key: LitToConstInput<'tcx> |
| ) -> Result<ty::Const<'tcx>, LitToConstError> { |
| desc { "converting literal to const" } |
| } |
| |
| query lit_to_mir_constant(key: LitToConstInput<'tcx>) -> Result<mir::ConstantKind<'tcx>, LitToConstError> { |
| desc { "converting literal to mir constant" } |
| } |
| |
| query check_match(key: DefId) { |
| desc { |tcx| "match-checking `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| } |
| |
| /// Performs part of the privacy check and computes effective visibilities. |
| query effective_visibilities(_: ()) -> &'tcx EffectiveVisibilities { |
| eval_always |
| desc { "checking effective visibilities" } |
| } |
| query check_private_in_public(_: ()) -> () { |
| eval_always |
| desc { "checking for private elements in public interfaces" } |
| } |
| |
| query reachable_set(_: ()) -> FxHashSet<LocalDefId> { |
| arena_cache |
| desc { "reachability" } |
| } |
| |
| /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body; |
| /// in the case of closures, this will be redirected to the enclosing function. |
| query region_scope_tree(def_id: DefId) -> &'tcx crate::middle::region::ScopeTree { |
| desc { |tcx| "computing drop scopes for `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Generates a MIR body for the shim. |
| query mir_shims(key: ty::InstanceDef<'tcx>) -> mir::Body<'tcx> { |
| arena_cache |
| desc { |tcx| "generating MIR shim for `{}`", tcx.def_path_str(key.def_id()) } |
| } |
| |
| /// The `symbol_name` query provides the symbol name for calling a |
| /// given instance from the local crate. In particular, it will also |
| /// look up the correct symbol name of instances from upstream crates. |
| query symbol_name(key: ty::Instance<'tcx>) -> ty::SymbolName<'tcx> { |
| desc { "computing the symbol for `{}`", key } |
| cache_on_disk_if { true } |
| } |
| |
| query opt_def_kind(def_id: DefId) -> Option<DefKind> { |
| desc { |tcx| "looking up definition kind of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Gets the span for the definition. |
| query def_span(def_id: DefId) -> Span { |
| desc { |tcx| "looking up span for `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Gets the span for the identifier of the definition. |
| query def_ident_span(def_id: DefId) -> Option<Span> { |
| desc { |tcx| "looking up span for `{}`'s identifier", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query lookup_stability(def_id: DefId) -> Option<attr::Stability> { |
| desc { |tcx| "looking up stability of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query lookup_const_stability(def_id: DefId) -> Option<attr::ConstStability> { |
| desc { |tcx| "looking up const stability of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query lookup_default_body_stability(def_id: DefId) -> Option<attr::DefaultBodyStability> { |
| desc { |tcx| "looking up default body stability of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query should_inherit_track_caller(def_id: DefId) -> bool { |
| desc { |tcx| "computing should_inherit_track_caller of `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| query lookup_deprecation_entry(def_id: DefId) -> Option<DeprecationEntry> { |
| desc { |tcx| "checking whether `{}` is deprecated", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Determines whether an item is annotated with `doc(hidden)`. |
| query is_doc_hidden(def_id: DefId) -> bool { |
| desc { |tcx| "checking whether `{}` is `doc(hidden)`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Determines whether an item is annotated with `doc(notable_trait)`. |
| query is_doc_notable_trait(def_id: DefId) -> bool { |
| desc { |tcx| "checking whether `{}` is `doc(notable_trait)`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Returns the attributes on the item at `def_id`. |
| /// |
| /// Do not use this directly, use `tcx.get_attrs` instead. |
| query item_attrs(def_id: DefId) -> &'tcx [ast::Attribute] { |
| desc { |tcx| "collecting attributes of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query codegen_fn_attrs(def_id: DefId) -> CodegenFnAttrs { |
| desc { |tcx| "computing codegen attributes of `{}`", tcx.def_path_str(def_id) } |
| arena_cache |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query asm_target_features(def_id: DefId) -> &'tcx FxHashSet<Symbol> { |
| desc { |tcx| "computing target features for inline asm of `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| query fn_arg_names(def_id: DefId) -> &'tcx [rustc_span::symbol::Ident] { |
| desc { |tcx| "looking up function parameter names for `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| /// Gets the rendered value of the specified constant or associated constant. |
| /// Used by rustdoc. |
| query rendered_const(def_id: DefId) -> String { |
| arena_cache |
| desc { |tcx| "rendering constant initializer of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| query impl_parent(def_id: DefId) -> Option<DefId> { |
| desc { |tcx| "computing specialization parent impl of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query is_ctfe_mir_available(key: DefId) -> bool { |
| desc { |tcx| "checking if item has CTFE MIR available: `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query is_mir_available(key: DefId) -> bool { |
| desc { |tcx| "checking if item has MIR available: `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query own_existential_vtable_entries( |
| key: DefId |
| ) -> &'tcx [DefId] { |
| desc { |tcx| "finding all existential vtable entries for trait `{}`", tcx.def_path_str(key) } |
| } |
| |
| query vtable_entries(key: ty::PolyTraitRef<'tcx>) |
| -> &'tcx [ty::VtblEntry<'tcx>] { |
| desc { |tcx| "finding all vtable entries for trait `{}`", tcx.def_path_str(key.def_id()) } |
| } |
| |
| query vtable_trait_upcasting_coercion_new_vptr_slot(key: (Ty<'tcx>, Ty<'tcx>)) -> Option<usize> { |
| desc { |tcx| "finding the slot within vtable for trait object `{}` vtable ptr during trait upcasting coercion from `{}` vtable", |
| key.1, key.0 } |
| } |
| |
| query vtable_allocation(key: (Ty<'tcx>, Option<ty::PolyExistentialTraitRef<'tcx>>)) -> mir::interpret::AllocId { |
| desc { |tcx| "vtable const allocation for <{} as {}>", |
| key.0, |
| key.1.map(|trait_ref| format!("{}", trait_ref)).unwrap_or("_".to_owned()) |
| } |
| } |
| |
| query codegen_select_candidate( |
| key: (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>) |
| ) -> Result<&'tcx ImplSource<'tcx, ()>, traits::CodegenObligationError> { |
| cache_on_disk_if { true } |
| desc { |tcx| "computing candidate for `{}`", key.1 } |
| } |
| |
| /// Return all `impl` blocks in the current crate. |
| query all_local_trait_impls(_: ()) -> &'tcx rustc_data_structures::fx::FxIndexMap<DefId, Vec<LocalDefId>> { |
| desc { "finding local trait impls" } |
| } |
| |
| /// Given a trait `trait_id`, return all known `impl` blocks. |
| query trait_impls_of(trait_id: DefId) -> ty::trait_def::TraitImpls { |
| arena_cache |
| desc { |tcx| "finding trait impls of `{}`", tcx.def_path_str(trait_id) } |
| } |
| |
| query specialization_graph_of(trait_id: DefId) -> specialization_graph::Graph { |
| arena_cache |
| desc { |tcx| "building specialization graph of trait `{}`", tcx.def_path_str(trait_id) } |
| cache_on_disk_if { true } |
| } |
| query object_safety_violations(trait_id: DefId) -> &'tcx [traits::ObjectSafetyViolation] { |
| desc { |tcx| "determining object safety of trait `{}`", tcx.def_path_str(trait_id) } |
| } |
| |
| /// Gets the ParameterEnvironment for a given item; this environment |
| /// will be in "user-facing" mode, meaning that it is suitable for |
| /// type-checking etc, and it does not normalize specializable |
| /// associated types. This is almost always what you want, |
| /// unless you are doing MIR optimizations, in which case you |
| /// might want to use `reveal_all()` method to change modes. |
| query param_env(def_id: DefId) -> ty::ParamEnv<'tcx> { |
| desc { |tcx| "computing normalized predicates of `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Like `param_env`, but returns the `ParamEnv` in `Reveal::All` mode. |
| /// Prefer this over `tcx.param_env(def_id).with_reveal_all_normalized(tcx)`, |
| /// as this method is more efficient. |
| query param_env_reveal_all_normalized(def_id: DefId) -> ty::ParamEnv<'tcx> { |
| desc { |tcx| "computing revealed normalized predicates of `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Trait selection queries. These are best used by invoking `ty.is_copy_modulo_regions()`, |
| /// `ty.is_copy()`, etc, since that will prune the environment where possible. |
| query is_copy_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is `Copy`", env.value } |
| remap_env_constness |
| } |
| /// Query backing `Ty::is_sized`. |
| query is_sized_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is `Sized`", env.value } |
| remap_env_constness |
| } |
| /// Query backing `Ty::is_freeze`. |
| query is_freeze_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is freeze", env.value } |
| remap_env_constness |
| } |
| /// Query backing `Ty::is_unpin`. |
| query is_unpin_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is `Unpin`", env.value } |
| remap_env_constness |
| } |
| /// Query backing `Ty::needs_drop`. |
| query needs_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` needs drop", env.value } |
| remap_env_constness |
| } |
| /// Query backing `Ty::has_significant_drop_raw`. |
| query has_significant_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` has a significant drop", env.value } |
| remap_env_constness |
| } |
| |
| /// Query backing `Ty::is_structural_eq_shallow`. |
| /// |
| /// This is only correct for ADTs. Call `is_structural_eq_shallow` to handle all types |
| /// correctly. |
| query has_structural_eq_impls(ty: Ty<'tcx>) -> bool { |
| desc { |
| "computing whether `{}` implements `PartialStructuralEq` and `StructuralEq`", |
| ty |
| } |
| } |
| |
| /// A list of types where the ADT requires drop if and only if any of |
| /// those types require drop. If the ADT is known to always need drop |
| /// then `Err(AlwaysRequiresDrop)` is returned. |
| query adt_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> { |
| desc { |tcx| "computing when `{}` needs drop", tcx.def_path_str(def_id) } |
| cache_on_disk_if { true } |
| } |
| |
| /// A list of types where the ADT requires drop if and only if any of those types |
| /// has significant drop. A type marked with the attribute `rustc_insignificant_dtor` |
| /// is considered to not be significant. A drop is significant if it is implemented |
| /// by the user or does anything that will have any observable behavior (other than |
| /// freeing up memory). If the ADT is known to have a significant destructor then |
| /// `Err(AlwaysRequiresDrop)` is returned. |
| query adt_significant_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> { |
| desc { |tcx| "computing when `{}` has a significant destructor", tcx.def_path_str(def_id) } |
| cache_on_disk_if { false } |
| } |
| |
| /// Computes the layout of a type. Note that this implicitly |
| /// executes in "reveal all" mode, and will normalize the input type. |
| query layout_of( |
| key: ty::ParamEnvAnd<'tcx, Ty<'tcx>> |
| ) -> Result<ty::layout::TyAndLayout<'tcx>, ty::layout::LayoutError<'tcx>> { |
| depth_limit |
| desc { "computing layout of `{}`", key.value } |
| remap_env_constness |
| } |
| |
| /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers. |
| /// |
| /// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance` |
| /// instead, where the instance is an `InstanceDef::Virtual`. |
| query fn_abi_of_fn_ptr( |
| key: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)> |
| ) -> Result<&'tcx abi::call::FnAbi<'tcx, Ty<'tcx>>, ty::layout::FnAbiError<'tcx>> { |
| desc { "computing call ABI of `{}` function pointers", key.value.0 } |
| remap_env_constness |
| } |
| |
| /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for |
| /// direct calls to an `fn`. |
| /// |
| /// NB: that includes virtual calls, which are represented by "direct calls" |
| /// to an `InstanceDef::Virtual` instance (of `<dyn Trait as Trait>::fn`). |
| query fn_abi_of_instance( |
| key: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)> |
| ) -> Result<&'tcx abi::call::FnAbi<'tcx, Ty<'tcx>>, ty::layout::FnAbiError<'tcx>> { |
| desc { "computing call ABI of `{}`", key.value.0 } |
| remap_env_constness |
| } |
| |
| query dylib_dependency_formats(_: CrateNum) |
| -> &'tcx [(CrateNum, LinkagePreference)] { |
| desc { "getting dylib dependency formats of crate" } |
| separate_provide_extern |
| } |
| |
| query dependency_formats(_: ()) -> Lrc<crate::middle::dependency_format::Dependencies> { |
| arena_cache |
| desc { "getting the linkage format of all dependencies" } |
| } |
| |
| query is_compiler_builtins(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if the crate is_compiler_builtins" } |
| separate_provide_extern |
| } |
| query has_global_allocator(_: CrateNum) -> bool { |
| // This query depends on untracked global state in CStore |
| eval_always |
| fatal_cycle |
| desc { "checking if the crate has_global_allocator" } |
| separate_provide_extern |
| } |
| query has_panic_handler(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if the crate has_panic_handler" } |
| separate_provide_extern |
| } |
| query is_profiler_runtime(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if a crate is `#![profiler_runtime]`" } |
| separate_provide_extern |
| } |
| query has_ffi_unwind_calls(key: LocalDefId) -> bool { |
| desc { |tcx| "checking if `{}` contains FFI-unwind calls", tcx.def_path_str(key.to_def_id()) } |
| cache_on_disk_if { true } |
| } |
| query required_panic_strategy(_: CrateNum) -> Option<PanicStrategy> { |
| fatal_cycle |
| desc { "getting a crate's required panic strategy" } |
| separate_provide_extern |
| } |
| query panic_in_drop_strategy(_: CrateNum) -> PanicStrategy { |
| fatal_cycle |
| desc { "getting a crate's configured panic-in-drop strategy" } |
| separate_provide_extern |
| } |
| query is_no_builtins(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "getting whether a crate has `#![no_builtins]`" } |
| separate_provide_extern |
| } |
| query symbol_mangling_version(_: CrateNum) -> SymbolManglingVersion { |
| fatal_cycle |
| desc { "getting a crate's symbol mangling version" } |
| separate_provide_extern |
| } |
| |
| query extern_crate(def_id: DefId) -> Option<&'tcx ExternCrate> { |
| eval_always |
| desc { "getting crate's ExternCrateData" } |
| separate_provide_extern |
| } |
| |
| query specializes(_: (DefId, DefId)) -> bool { |
| desc { "computing whether impls specialize one another" } |
| } |
| query in_scope_traits_map(_: hir::OwnerId) |
| -> Option<&'tcx FxHashMap<ItemLocalId, Box<[TraitCandidate]>>> { |
| desc { "getting traits in scope at a block" } |
| } |
| |
| query module_reexports(def_id: LocalDefId) -> Option<&'tcx [ModChild]> { |
| desc { |tcx| "looking up reexports of module `{}`", tcx.def_path_str(def_id.to_def_id()) } |
| } |
| |
| query impl_defaultness(def_id: DefId) -> hir::Defaultness { |
| desc { |tcx| "looking up whether `{}` is a default impl", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query check_well_formed(key: hir::OwnerId) -> () { |
| desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) } |
| } |
| |
| // The `DefId`s of all non-generic functions and statics in the given crate |
| // that can be reached from outside the crate. |
| // |
| // We expect this items to be available for being linked to. |
| // |
| // This query can also be called for `LOCAL_CRATE`. In this case it will |
| // compute which items will be reachable to other crates, taking into account |
| // the kind of crate that is currently compiled. Crates with only a |
| // C interface have fewer reachable things. |
| // |
| // Does not include external symbols that don't have a corresponding DefId, |
| // like the compiler-generated `main` function and so on. |
| query reachable_non_generics(_: CrateNum) |
| -> DefIdMap<SymbolExportInfo> { |
| arena_cache |
| desc { "looking up the exported symbols of a crate" } |
| separate_provide_extern |
| } |
| query is_reachable_non_generic(def_id: DefId) -> bool { |
| desc { |tcx| "checking whether `{}` is an exported symbol", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| query is_unreachable_local_definition(def_id: LocalDefId) -> bool { |
| desc { |tcx| |
| "checking whether `{}` is reachable from outside the crate", |
| tcx.def_path_str(def_id.to_def_id()), |
| } |
| } |
| |
| /// The entire set of monomorphizations the local crate can safely link |
| /// to because they are exported from upstream crates. Do not depend on |
| /// this directly, as its value changes anytime a monomorphization gets |
| /// added or removed in any upstream crate. Instead use the narrower |
| /// `upstream_monomorphizations_for`, `upstream_drop_glue_for`, or, even |
| /// better, `Instance::upstream_monomorphization()`. |
| query upstream_monomorphizations(_: ()) -> DefIdMap<FxHashMap<SubstsRef<'tcx>, CrateNum>> { |
| arena_cache |
| desc { "collecting available upstream monomorphizations" } |
| } |
| |
| /// Returns the set of upstream monomorphizations available for the |
| /// generic function identified by the given `def_id`. The query makes |
| /// sure to make a stable selection if the same monomorphization is |
| /// available in multiple upstream crates. |
| /// |
| /// You likely want to call `Instance::upstream_monomorphization()` |
| /// instead of invoking this query directly. |
| query upstream_monomorphizations_for(def_id: DefId) |
| -> Option<&'tcx FxHashMap<SubstsRef<'tcx>, CrateNum>> |
| { |
| arena_cache |
| desc { |tcx| |
| "collecting available upstream monomorphizations for `{}`", |
| tcx.def_path_str(def_id), |
| } |
| separate_provide_extern |
| } |
| |
| /// Returns the upstream crate that exports drop-glue for the given |
| /// type (`substs` is expected to be a single-item list containing the |
| /// type one wants drop-glue for). |
| /// |
| /// This is a subset of `upstream_monomorphizations_for` in order to |
| /// increase dep-tracking granularity. Otherwise adding or removing any |
| /// type with drop-glue in any upstream crate would invalidate all |
| /// functions calling drop-glue of an upstream type. |
| /// |
| /// You likely want to call `Instance::upstream_monomorphization()` |
| /// instead of invoking this query directly. |
| /// |
| /// NOTE: This query could easily be extended to also support other |
| /// common functions that have are large set of monomorphizations |
| /// (like `Clone::clone` for example). |
| query upstream_drop_glue_for(substs: SubstsRef<'tcx>) -> Option<CrateNum> { |
| desc { "available upstream drop-glue for `{:?}`", substs } |
| } |
| |
| query foreign_modules(_: CrateNum) -> FxHashMap<DefId, ForeignModule> { |
| arena_cache |
| desc { "looking up the foreign modules of a linked crate" } |
| separate_provide_extern |
| } |
| |
| /// Identifies the entry-point (e.g., the `main` function) for a given |
| /// crate, returning `None` if there is no entry point (such as for library crates). |
| query entry_fn(_: ()) -> Option<(DefId, EntryFnType)> { |
| desc { "looking up the entry function of a crate" } |
| } |
| query proc_macro_decls_static(_: ()) -> Option<LocalDefId> { |
| desc { "looking up the derive registrar for a crate" } |
| } |
| // The macro which defines `rustc_metadata::provide_extern` depends on this query's name. |
| // Changing the name should cause a compiler error, but in case that changes, be aware. |
| query crate_hash(_: CrateNum) -> Svh { |
| eval_always |
| desc { "looking up the hash a crate" } |
| separate_provide_extern |
| } |
| query crate_host_hash(_: CrateNum) -> Option<Svh> { |
| eval_always |
| desc { "looking up the hash of a host version of a crate" } |
| separate_provide_extern |
| } |
| query extra_filename(_: CrateNum) -> String { |
| arena_cache |
| eval_always |
| desc { "looking up the extra filename for a crate" } |
| separate_provide_extern |
| } |
| query crate_extern_paths(_: CrateNum) -> Vec<PathBuf> { |
| arena_cache |
| eval_always |
| desc { "looking up the paths for extern crates" } |
| separate_provide_extern |
| } |
| |
| /// Given a crate and a trait, look up all impls of that trait in the crate. |
| /// Return `(impl_id, self_ty)`. |
| query implementations_of_trait(_: (CrateNum, DefId)) -> &'tcx [(DefId, Option<SimplifiedType>)] { |
| desc { "looking up implementations of a trait in a crate" } |
| separate_provide_extern |
| } |
| |
| /// Collects all incoherent impls for the given crate and type. |
| /// |
| /// Do not call this directly, but instead use the `incoherent_impls` query. |
| /// This query is only used to get the data necessary for that query. |
| query crate_incoherent_impls(key: (CrateNum, SimplifiedType)) -> &'tcx [DefId] { |
| desc { |tcx| "collecting all impls for a type in a crate" } |
| separate_provide_extern |
| } |
| |
| query native_library(def_id: DefId) -> Option<&'tcx NativeLib> { |
| desc { |tcx| "getting the native library for `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Does lifetime resolution, but does not descend into trait items. This |
| /// should only be used for resolving lifetimes of on trait definitions, |
| /// and is used to avoid cycles. Importantly, `resolve_lifetimes` still visits |
| /// the same lifetimes and is responsible for diagnostics. |
| /// See `rustc_resolve::late::lifetimes for details. |
| query resolve_lifetimes_trait_definition(_: LocalDefId) -> ResolveLifetimes { |
| arena_cache |
| desc { "resolving lifetimes for a trait definition" } |
| } |
| /// Does lifetime resolution on items. Importantly, we can't resolve |
| /// lifetimes directly on things like trait methods, because of trait params. |
| /// See `rustc_resolve::late::lifetimes for details. |
| query resolve_lifetimes(_: LocalDefId) -> ResolveLifetimes { |
| arena_cache |
| desc { "resolving lifetimes" } |
| } |
| query named_region_map(_: hir::OwnerId) -> |
| Option<&'tcx FxHashMap<ItemLocalId, Region>> { |
| desc { "looking up a named region" } |
| } |
| query is_late_bound_map(_: LocalDefId) -> Option<&'tcx FxIndexSet<LocalDefId>> { |
| desc { "testing if a region is late bound" } |
| } |
| /// For a given item's generic parameter, gets the default lifetimes to be used |
| /// for each parameter if a trait object were to be passed for that parameter. |
| /// For example, for `T` in `struct Foo<'a, T>`, this would be `'static`. |
| /// For `T` in `struct Foo<'a, T: 'a>`, this would instead be `'a`. |
| /// This query will panic if passed something that is not a type parameter. |
| query object_lifetime_default(key: DefId) -> ObjectLifetimeDefault { |
| desc { "looking up lifetime defaults for generic parameter `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| } |
| query late_bound_vars_map(_: hir::OwnerId) |
| -> Option<&'tcx FxHashMap<ItemLocalId, Vec<ty::BoundVariableKind>>> { |
| desc { "looking up late bound vars" } |
| } |
| |
| /// Computes the visibility of the provided `def_id`. |
| /// |
| /// If the item from the `def_id` doesn't have a visibility, it will panic. For example |
| /// a generic type parameter will panic if you call this method on it: |
| /// |
| /// ``` |
| /// pub trait Foo<T: Debug> {} |
| /// ``` |
| /// |
| /// In here, if you call `visibility` on `T`, it'll panic. |
| query visibility(def_id: DefId) -> ty::Visibility<DefId> { |
| desc { |tcx| "computing visibility of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query inhabited_predicate_adt(key: DefId) -> ty::inhabitedness::InhabitedPredicate<'tcx> { |
| desc { "computing the uninhabited predicate of `{:?}`", key } |
| } |
| |
| /// Do not call this query directly: invoke `Ty::inhabited_predicate` instead. |
| query inhabited_predicate_type(key: Ty<'tcx>) -> ty::inhabitedness::InhabitedPredicate<'tcx> { |
| desc { "computing the uninhabited predicate of `{}`", key } |
| } |
| |
| query dep_kind(_: CrateNum) -> CrateDepKind { |
| eval_always |
| desc { "fetching what a dependency looks like" } |
| separate_provide_extern |
| } |
| |
| /// Gets the name of the crate. |
| query crate_name(_: CrateNum) -> Symbol { |
| eval_always |
| desc { "fetching what a crate is named" } |
| separate_provide_extern |
| } |
| query module_children(def_id: DefId) -> &'tcx [ModChild] { |
| desc { |tcx| "collecting child items of module `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| query extern_mod_stmt_cnum(def_id: LocalDefId) -> Option<CrateNum> { |
| desc { |tcx| "computing crate imported by `{}`", tcx.def_path_str(def_id.to_def_id()) } |
| } |
| |
| query lib_features(_: ()) -> LibFeatures { |
| arena_cache |
| desc { "calculating the lib features map" } |
| } |
| query defined_lib_features(_: CrateNum) -> &'tcx [(Symbol, Option<Symbol>)] { |
| desc { "calculating the lib features defined in a crate" } |
| separate_provide_extern |
| } |
| query stability_implications(_: CrateNum) -> FxHashMap<Symbol, Symbol> { |
| arena_cache |
| desc { "calculating the implications between `#[unstable]` features defined in a crate" } |
| separate_provide_extern |
| } |
| /// Whether the function is an intrinsic |
| query is_intrinsic(def_id: DefId) -> bool { |
| desc { |tcx| "checking whether `{}` is an intrinsic", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| /// Returns the lang items defined in another crate by loading it from metadata. |
| query get_lang_items(_: ()) -> LanguageItems { |
| arena_cache |
| eval_always |
| desc { "calculating the lang items map" } |
| } |
| |
| /// Returns all diagnostic items defined in all crates. |
| query all_diagnostic_items(_: ()) -> rustc_hir::diagnostic_items::DiagnosticItems { |
| arena_cache |
| eval_always |
| desc { "calculating the diagnostic items map" } |
| } |
| |
| /// Returns the lang items defined in another crate by loading it from metadata. |
| query defined_lang_items(_: CrateNum) -> &'tcx [(DefId, usize)] { |
| desc { "calculating the lang items defined in a crate" } |
| separate_provide_extern |
| } |
| |
| /// Returns the diagnostic items defined in a crate. |
| query diagnostic_items(_: CrateNum) -> rustc_hir::diagnostic_items::DiagnosticItems { |
| arena_cache |
| desc { "calculating the diagnostic items map in a crate" } |
| separate_provide_extern |
| } |
| |
| query missing_lang_items(_: CrateNum) -> &'tcx [LangItem] { |
| desc { "calculating the missing lang items in a crate" } |
| separate_provide_extern |
| } |
| query visible_parent_map(_: ()) -> DefIdMap<DefId> { |
| arena_cache |
| desc { "calculating the visible parent map" } |
| } |
| query trimmed_def_paths(_: ()) -> FxHashMap<DefId, Symbol> { |
| arena_cache |
| desc { "calculating trimmed def paths" } |
| } |
| query missing_extern_crate_item(_: CrateNum) -> bool { |
| eval_always |
| desc { "seeing if we're missing an `extern crate` item for this crate" } |
| separate_provide_extern |
| } |
| query used_crate_source(_: CrateNum) -> Lrc<CrateSource> { |
| arena_cache |
| eval_always |
| desc { "looking at the source for a crate" } |
| separate_provide_extern |
| } |
| /// Returns the debugger visualizers defined for this crate. |
| query debugger_visualizers(_: CrateNum) -> Vec<rustc_span::DebuggerVisualizerFile> { |
| arena_cache |
| desc { "looking up the debugger visualizers for this crate" } |
| separate_provide_extern |
| } |
| query postorder_cnums(_: ()) -> &'tcx [CrateNum] { |
| eval_always |
| desc { "generating a postorder list of CrateNums" } |
| } |
| /// Returns whether or not the crate with CrateNum 'cnum' |
| /// is marked as a private dependency |
| query is_private_dep(c: CrateNum) -> bool { |
| eval_always |
| desc { "checking whether crate `{}` is a private dependency", c } |
| separate_provide_extern |
| } |
| query allocator_kind(_: ()) -> Option<AllocatorKind> { |
| eval_always |
| desc { "getting the allocator kind for the current crate" } |
| } |
| |
| query upvars_mentioned(def_id: DefId) -> Option<&'tcx FxIndexMap<hir::HirId, hir::Upvar>> { |
| desc { |tcx| "collecting upvars mentioned in `{}`", tcx.def_path_str(def_id) } |
| } |
| query maybe_unused_trait_imports(_: ()) -> &'tcx FxIndexSet<LocalDefId> { |
| desc { "fetching potentially unused trait imports" } |
| } |
| query maybe_unused_extern_crates(_: ()) -> &'tcx [(LocalDefId, Span)] { |
| desc { "looking up all possibly unused extern crates" } |
| } |
| query names_imported_by_glob_use(def_id: LocalDefId) -> &'tcx FxHashSet<Symbol> { |
| desc { |tcx| "finding names imported by glob use for `{}`", tcx.def_path_str(def_id.to_def_id()) } |
| } |
| |
| query stability_index(_: ()) -> stability::Index { |
| arena_cache |
| eval_always |
| desc { "calculating the stability index for the local crate" } |
| } |
| query crates(_: ()) -> &'tcx [CrateNum] { |
| eval_always |
| desc { "fetching all foreign CrateNum instances" } |
| } |
| |
| /// A list of all traits in a crate, used by rustdoc and error reporting. |
| /// NOTE: Not named just `traits` due to a naming conflict. |
| query traits_in_crate(_: CrateNum) -> &'tcx [DefId] { |
| desc { "fetching all traits in a crate" } |
| separate_provide_extern |
| } |
| |
| /// The list of symbols exported from the given crate. |
| /// |
| /// - All names contained in `exported_symbols(cnum)` are guaranteed to |
| /// correspond to a publicly visible symbol in `cnum` machine code. |
| /// - The `exported_symbols` sets of different crates do not intersect. |
| query exported_symbols(cnum: CrateNum) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] { |
| desc { "collecting exported symbols for crate `{}`", cnum} |
| cache_on_disk_if { *cnum == LOCAL_CRATE } |
| separate_provide_extern |
| } |
| |
| query collect_and_partition_mono_items(_: ()) -> (&'tcx DefIdSet, &'tcx [CodegenUnit<'tcx>]) { |
| eval_always |
| desc { "collect_and_partition_mono_items" } |
| } |
| |
| query is_codegened_item(def_id: DefId) -> bool { |
| desc { |tcx| "determining whether `{}` needs codegen", tcx.def_path_str(def_id) } |
| } |
| |
| /// All items participating in code generation together with items inlined into them. |
| query codegened_and_inlined_items(_: ()) -> &'tcx DefIdSet { |
| eval_always |
| desc { "collecting codegened and inlined items" } |
| } |
| |
| query codegen_unit(sym: Symbol) -> &'tcx CodegenUnit<'tcx> { |
| desc { "getting codegen unit `{sym}`" } |
| } |
| |
| query unused_generic_params(key: ty::InstanceDef<'tcx>) -> FiniteBitSet<u32> { |
| cache_on_disk_if { key.def_id().is_local() } |
| desc { |
| |tcx| "determining which generic parameters are unused by `{}`", |
| tcx.def_path_str(key.def_id()) |
| } |
| separate_provide_extern |
| } |
| |
| query backend_optimization_level(_: ()) -> OptLevel { |
| desc { "optimization level used by backend" } |
| } |
| |
| /// Return the filenames where output artefacts shall be stored. |
| /// |
| /// This query returns an `&Arc` because codegen backends need the value even after the `TyCtxt` |
| /// has been destroyed. |
| query output_filenames(_: ()) -> &'tcx Arc<OutputFilenames> { |
| eval_always |
| desc { "getting output filenames" } |
| } |
| |
| /// Do not call this query directly: invoke `normalize` instead. |
| query normalize_projection_ty( |
| goal: CanonicalProjectionGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{}`", goal.value.value } |
| remap_env_constness |
| } |
| |
| /// Do not call this query directly: invoke `try_normalize_erasing_regions` instead. |
| query try_normalize_generic_arg_after_erasing_regions( |
| goal: ParamEnvAnd<'tcx, GenericArg<'tcx>> |
| ) -> Result<GenericArg<'tcx>, NoSolution> { |
| desc { "normalizing `{}`", goal.value } |
| remap_env_constness |
| } |
| |
| query implied_outlives_bounds( |
| goal: CanonicalTyGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec<OutlivesBound<'tcx>>>>, |
| NoSolution, |
| > { |
| desc { "computing implied outlives bounds for `{}`", goal.value.value } |
| remap_env_constness |
| } |
| |
| /// Do not call this query directly: |
| /// invoke `DropckOutlives::new(dropped_ty)).fully_perform(typeck.infcx)` instead. |
| query dropck_outlives( |
| goal: CanonicalTyGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "computing dropck types for `{}`", goal.value.value } |
| remap_env_constness |
| } |
| |
| /// Do not call this query directly: invoke `infcx.predicate_may_hold()` or |
| /// `infcx.predicate_must_hold()` instead. |
| query evaluate_obligation( |
| goal: CanonicalPredicateGoal<'tcx> |
| ) -> Result<traits::EvaluationResult, traits::OverflowError> { |
| desc { "evaluating trait selection obligation `{}`", goal.value.value } |
| } |
| |
| query evaluate_goal( |
| goal: traits::CanonicalChalkEnvironmentAndGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, |
| NoSolution |
| > { |
| desc { "evaluating trait selection obligation `{}`", goal.value } |
| } |
| |
| /// Do not call this query directly: part of the `Eq` type-op |
| query type_op_ascribe_user_type( |
| goal: CanonicalTypeOpAscribeUserTypeGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, |
| NoSolution, |
| > { |
| desc { "evaluating `type_op_ascribe_user_type` `{:?}`", goal.value.value } |
| remap_env_constness |
| } |
| |
| /// Do not call this query directly: part of the `Eq` type-op |
| query type_op_eq( |
| goal: CanonicalTypeOpEqGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, |
| NoSolution, |
| > { |
| desc { "evaluating `type_op_eq` `{:?}`", goal.value.value } |
| remap_env_constness |
| } |
| |
| /// Do not call this query directly: part of the `Subtype` type-op |
| query type_op_subtype( |
| goal: CanonicalTypeOpSubtypeGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, |
| NoSolution, |
| > { |
| desc { "evaluating `type_op_subtype` `{:?}`", goal.value.value } |
| remap_env_constness |
| } |
| |
| /// Do not call this query directly: part of the `ProvePredicate` type-op |
| query type_op_prove_predicate( |
| goal: CanonicalTypeOpProvePredicateGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, |
| NoSolution, |
| > { |
| desc { "evaluating `type_op_prove_predicate` `{:?}`", goal.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_ty( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Ty<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{}`", goal.value.value.value } |
| remap_env_constness |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_predicate( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::Predicate<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::Predicate<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{:?}`", goal.value.value.value } |
| remap_env_constness |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_poly_fn_sig( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::PolyFnSig<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::PolyFnSig<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{:?}`", goal.value.value.value } |
| remap_env_constness |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_fn_sig( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::FnSig<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::FnSig<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{:?}`", goal.value.value.value } |
| remap_env_constness |
| } |
| |
| query subst_and_check_impossible_predicates(key: (DefId, SubstsRef<'tcx>)) -> bool { |
| desc { |tcx| |
| "checking impossible substituted predicates: `{}`", |
| tcx.def_path_str(key.0) |
| } |
| } |
| |
| query is_impossible_method(key: (DefId, DefId)) -> bool { |
| desc { |tcx| |
| "checking if `{}` is impossible to call within `{}`", |
| tcx.def_path_str(key.1), |
| tcx.def_path_str(key.0), |
| } |
| } |
| |
| query method_autoderef_steps( |
| goal: CanonicalTyGoal<'tcx> |
| ) -> MethodAutoderefStepsResult<'tcx> { |
| desc { "computing autoderef types for `{}`", goal.value.value } |
| remap_env_constness |
| } |
| |
| query supported_target_features(_: CrateNum) -> FxHashMap<String, Option<Symbol>> { |
| arena_cache |
| eval_always |
| desc { "looking up supported target features" } |
| } |
| |
| /// Get an estimate of the size of an InstanceDef based on its MIR for CGU partitioning. |
| query instance_def_size_estimate(def: ty::InstanceDef<'tcx>) |
| -> usize { |
| desc { |tcx| "estimating size for `{}`", tcx.def_path_str(def.def_id()) } |
| } |
| |
| query features_query(_: ()) -> &'tcx rustc_feature::Features { |
| eval_always |
| desc { "looking up enabled feature gates" } |
| } |
| |
| /// Attempt to resolve the given `DefId` to an `Instance`, for the |
| /// given generics args (`SubstsRef`), returning one of: |
| /// * `Ok(Some(instance))` on success |
| /// * `Ok(None)` when the `SubstsRef` are still too generic, |
| /// and therefore don't allow finding the final `Instance` |
| /// * `Err(ErrorGuaranteed)` when the `Instance` resolution process |
| /// couldn't complete due to errors elsewhere - this is distinct |
| /// from `Ok(None)` to avoid misleading diagnostics when an error |
| /// has already been/will be emitted, for the original cause |
| query resolve_instance( |
| key: ty::ParamEnvAnd<'tcx, (DefId, SubstsRef<'tcx>)> |
| ) -> Result<Option<ty::Instance<'tcx>>, ErrorGuaranteed> { |
| desc { "resolving instance `{}`", ty::Instance::new(key.value.0, key.value.1) } |
| remap_env_constness |
| } |
| |
| query resolve_instance_of_const_arg( |
| key: ty::ParamEnvAnd<'tcx, (LocalDefId, DefId, SubstsRef<'tcx>)> |
| ) -> Result<Option<ty::Instance<'tcx>>, ErrorGuaranteed> { |
| desc { |
| "resolving instance of the const argument `{}`", |
| ty::Instance::new(key.value.0.to_def_id(), key.value.2), |
| } |
| remap_env_constness |
| } |
| |
| query normalize_opaque_types(key: &'tcx ty::List<ty::Predicate<'tcx>>) -> &'tcx ty::List<ty::Predicate<'tcx>> { |
| desc { "normalizing opaque types in `{:?}`", key } |
| } |
| |
| /// Checks whether a type is definitely uninhabited. This is |
| /// conservative: for some types that are uninhabited we return `false`, |
| /// but we only return `true` for types that are definitely uninhabited. |
| /// `ty.conservative_is_privately_uninhabited` implies that any value of type `ty` |
| /// will be `Abi::Uninhabited`. (Note that uninhabited types may have nonzero |
| /// size, to account for partial initialisation. See #49298 for details.) |
| query conservative_is_privately_uninhabited(key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "conservatively checking if `{}` is privately uninhabited", key.value } |
| remap_env_constness |
| } |
| |
| query limits(key: ()) -> Limits { |
| desc { "looking up limits" } |
| } |
| |
| /// Performs an HIR-based well-formed check on the item with the given `HirId`. If |
| /// we get an `Unimplemented` error that matches the provided `Predicate`, return |
| /// the cause of the newly created obligation. |
| /// |
| /// This is only used by error-reporting code to get a better cause (in particular, a better |
| /// span) for an *existing* error. Therefore, it is best-effort, and may never handle |
| /// all of the cases that the normal `ty::Ty`-based wfcheck does. This is fine, |
| /// because the `ty::Ty`-based wfcheck is always run. |
| query diagnostic_hir_wf_check(key: (ty::Predicate<'tcx>, traits::WellFormedLoc)) -> Option<traits::ObligationCause<'tcx>> { |
| arena_cache |
| eval_always |
| no_hash |
| desc { "performing HIR wf-checking for predicate `{:?}` at item `{:?}`", key.0, key.1 } |
| } |
| |
| |
| /// The list of backend features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, |
| /// `--target` and similar). |
| query global_backend_features(_: ()) -> Vec<String> { |
| arena_cache |
| eval_always |
| desc { "computing the backend features for CLI flags" } |
| } |
| |
| query generator_diagnostic_data(key: DefId) -> Option<GeneratorDiagnosticData<'tcx>> { |
| arena_cache |
| desc { |tcx| "looking up generator diagnostic data of `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| } |
| |
| query permits_uninit_init(key: TyAndLayout<'tcx>) -> bool { |
| desc { "checking to see if `{}` permits being left uninit", key.ty } |
| } |
| |
| query permits_zero_init(key: TyAndLayout<'tcx>) -> bool { |
| desc { "checking to see if `{}` permits being left zeroed", key.ty } |
| } |
| |
| query compare_assoc_const_impl_item_with_trait_item( |
| key: (LocalDefId, DefId) |
| ) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| "checking assoc const `{}` has the same type as trait item", tcx.def_path_str(key.0.to_def_id()) } |
| } |
| |
| query deduced_param_attrs(def_id: DefId) -> &'tcx [ty::DeducedParamAttrs] { |
| desc { |tcx| "deducing parameter attributes for {}", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| } |