| #![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")] |
| #![feature(associated_type_defaults)] |
| #![feature(control_flow_enum)] |
| #![feature(rustc_private)] |
| #![feature(try_blocks)] |
| #![recursion_limit = "256"] |
| #![deny(rustc::untranslatable_diagnostic)] |
| #![deny(rustc::diagnostic_outside_of_impl)] |
| |
| #[macro_use] |
| extern crate tracing; |
| |
| mod errors; |
| |
| use rustc_ast::MacroDef; |
| use rustc_attr as attr; |
| use rustc_data_structures::fx::FxHashSet; |
| use rustc_data_structures::intern::Interned; |
| use rustc_hir as hir; |
| use rustc_hir::def::{DefKind, Res}; |
| use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID}; |
| use rustc_hir::intravisit::{self, Visitor}; |
| use rustc_hir::{AssocItemKind, HirIdSet, ItemId, Node, PatKind}; |
| use rustc_middle::bug; |
| use rustc_middle::hir::nested_filter; |
| use rustc_middle::middle::privacy::{EffectiveVisibilities, Level}; |
| use rustc_middle::span_bug; |
| use rustc_middle::ty::abstract_const::{walk_abstract_const, AbstractConst, Node as ACNode}; |
| use rustc_middle::ty::query::Providers; |
| use rustc_middle::ty::subst::InternalSubsts; |
| use rustc_middle::ty::{self, Const, DefIdTree, GenericParamDefKind}; |
| use rustc_middle::ty::{TraitRef, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor}; |
| use rustc_session::lint; |
| use rustc_span::hygiene::Transparency; |
| use rustc_span::symbol::{kw, sym, Ident}; |
| use rustc_span::Span; |
| |
| use std::marker::PhantomData; |
| use std::ops::ControlFlow; |
| use std::{cmp, fmt, mem}; |
| |
| use errors::{ |
| FieldIsPrivate, FieldIsPrivateLabel, FromPrivateDependencyInPublicInterface, InPublicInterface, |
| InPublicInterfaceTraits, ItemIsPrivate, PrivateInPublicLint, ReportEffectiveVisibility, |
| UnnamedItemIsPrivate, |
| }; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| /// Generic infrastructure used to implement specific visitors below. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| /// Implemented to visit all `DefId`s in a type. |
| /// Visiting `DefId`s is useful because visibilities and reachabilities are attached to them. |
| /// The idea is to visit "all components of a type", as documented in |
| /// <https://github.com/rust-lang/rfcs/blob/master/text/2145-type-privacy.md#how-to-determine-visibility-of-a-type>. |
| /// The default type visitor (`TypeVisitor`) does most of the job, but it has some shortcomings. |
| /// First, it doesn't have overridable `fn visit_trait_ref`, so we have to catch trait `DefId`s |
| /// manually. Second, it doesn't visit some type components like signatures of fn types, or traits |
| /// in `impl Trait`, see individual comments in `DefIdVisitorSkeleton::visit_ty`. |
| trait DefIdVisitor<'tcx> { |
| type BreakTy = (); |
| |
| fn tcx(&self) -> TyCtxt<'tcx>; |
| fn shallow(&self) -> bool { |
| false |
| } |
| fn skip_assoc_tys(&self) -> bool { |
| false |
| } |
| fn visit_def_id( |
| &mut self, |
| def_id: DefId, |
| kind: &str, |
| descr: &dyn fmt::Display, |
| ) -> ControlFlow<Self::BreakTy>; |
| |
| /// Not overridden, but used to actually visit types and traits. |
| fn skeleton(&mut self) -> DefIdVisitorSkeleton<'_, 'tcx, Self> { |
| DefIdVisitorSkeleton { |
| def_id_visitor: self, |
| visited_opaque_tys: Default::default(), |
| dummy: Default::default(), |
| } |
| } |
| fn visit(&mut self, ty_fragment: impl TypeVisitable<'tcx>) -> ControlFlow<Self::BreakTy> { |
| ty_fragment.visit_with(&mut self.skeleton()) |
| } |
| fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<Self::BreakTy> { |
| self.skeleton().visit_trait(trait_ref) |
| } |
| fn visit_projection_ty( |
| &mut self, |
| projection: ty::ProjectionTy<'tcx>, |
| ) -> ControlFlow<Self::BreakTy> { |
| self.skeleton().visit_projection_ty(projection) |
| } |
| fn visit_predicates( |
| &mut self, |
| predicates: ty::GenericPredicates<'tcx>, |
| ) -> ControlFlow<Self::BreakTy> { |
| self.skeleton().visit_predicates(predicates) |
| } |
| } |
| |
| struct DefIdVisitorSkeleton<'v, 'tcx, V: ?Sized> { |
| def_id_visitor: &'v mut V, |
| visited_opaque_tys: FxHashSet<DefId>, |
| dummy: PhantomData<TyCtxt<'tcx>>, |
| } |
| |
| impl<'tcx, V> DefIdVisitorSkeleton<'_, 'tcx, V> |
| where |
| V: DefIdVisitor<'tcx> + ?Sized, |
| { |
| fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<V::BreakTy> { |
| let TraitRef { def_id, substs } = trait_ref; |
| self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref.print_only_trait_path())?; |
| if self.def_id_visitor.shallow() { ControlFlow::CONTINUE } else { substs.visit_with(self) } |
| } |
| |
| fn visit_projection_ty( |
| &mut self, |
| projection: ty::ProjectionTy<'tcx>, |
| ) -> ControlFlow<V::BreakTy> { |
| let tcx = self.def_id_visitor.tcx(); |
| let (trait_ref, assoc_substs) = if tcx.def_kind(projection.item_def_id) |
| != DefKind::ImplTraitPlaceholder |
| { |
| projection.trait_ref_and_own_substs(tcx) |
| } else { |
| // HACK(RPITIT): Remove this when RPITITs are lowered to regular assoc tys |
| let def_id = tcx.impl_trait_in_trait_parent(projection.item_def_id); |
| let trait_generics = tcx.generics_of(def_id); |
| ( |
| ty::TraitRef { def_id, substs: projection.substs.truncate_to(tcx, trait_generics) }, |
| &projection.substs[trait_generics.count()..], |
| ) |
| }; |
| self.visit_trait(trait_ref)?; |
| if self.def_id_visitor.shallow() { |
| ControlFlow::CONTINUE |
| } else { |
| assoc_substs.iter().try_for_each(|subst| subst.visit_with(self)) |
| } |
| } |
| |
| fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> ControlFlow<V::BreakTy> { |
| match predicate.kind().skip_binder() { |
| ty::PredicateKind::Trait(ty::TraitPredicate { |
| trait_ref, |
| constness: _, |
| polarity: _, |
| }) => self.visit_trait(trait_ref), |
| ty::PredicateKind::Projection(ty::ProjectionPredicate { projection_ty, term }) => { |
| term.visit_with(self)?; |
| self.visit_projection_ty(projection_ty) |
| } |
| ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty, _region)) => { |
| ty.visit_with(self) |
| } |
| ty::PredicateKind::RegionOutlives(..) => ControlFlow::CONTINUE, |
| ty::PredicateKind::ConstEvaluatable(ct) => ct.visit_with(self), |
| ty::PredicateKind::WellFormed(arg) => arg.visit_with(self), |
| _ => bug!("unexpected predicate: {:?}", predicate), |
| } |
| } |
| |
| fn visit_predicates( |
| &mut self, |
| predicates: ty::GenericPredicates<'tcx>, |
| ) -> ControlFlow<V::BreakTy> { |
| let ty::GenericPredicates { parent: _, predicates } = predicates; |
| predicates.iter().try_for_each(|&(predicate, _span)| self.visit_predicate(predicate)) |
| } |
| } |
| |
| impl<'tcx, V> TypeVisitor<'tcx> for DefIdVisitorSkeleton<'_, 'tcx, V> |
| where |
| V: DefIdVisitor<'tcx> + ?Sized, |
| { |
| type BreakTy = V::BreakTy; |
| |
| fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<V::BreakTy> { |
| let tcx = self.def_id_visitor.tcx(); |
| // InternalSubsts are not visited here because they are visited below |
| // in `super_visit_with`. |
| match *ty.kind() { |
| ty::Adt(ty::AdtDef(Interned(&ty::AdtDefData { did: def_id, .. }, _)), ..) |
| | ty::Foreign(def_id) |
| | ty::FnDef(def_id, ..) |
| | ty::Closure(def_id, ..) |
| | ty::Generator(def_id, ..) => { |
| self.def_id_visitor.visit_def_id(def_id, "type", &ty)?; |
| if self.def_id_visitor.shallow() { |
| return ControlFlow::CONTINUE; |
| } |
| // Default type visitor doesn't visit signatures of fn types. |
| // Something like `fn() -> Priv {my_func}` is considered a private type even if |
| // `my_func` is public, so we need to visit signatures. |
| if let ty::FnDef(..) = ty.kind() { |
| tcx.fn_sig(def_id).visit_with(self)?; |
| } |
| // Inherent static methods don't have self type in substs. |
| // Something like `fn() {my_method}` type of the method |
| // `impl Pub<Priv> { pub fn my_method() {} }` is considered a private type, |
| // so we need to visit the self type additionally. |
| if let Some(assoc_item) = tcx.opt_associated_item(def_id) { |
| if let Some(impl_def_id) = assoc_item.impl_container(tcx) { |
| tcx.type_of(impl_def_id).visit_with(self)?; |
| } |
| } |
| } |
| ty::Projection(proj) => { |
| if self.def_id_visitor.skip_assoc_tys() { |
| // Visitors searching for minimal visibility/reachability want to |
| // conservatively approximate associated types like `<Type as Trait>::Alias` |
| // as visible/reachable even if both `Type` and `Trait` are private. |
| // Ideally, associated types should be substituted in the same way as |
| // free type aliases, but this isn't done yet. |
| return ControlFlow::CONTINUE; |
| } |
| // This will also visit substs if necessary, so we don't need to recurse. |
| return self.visit_projection_ty(proj); |
| } |
| ty::Dynamic(predicates, ..) => { |
| // All traits in the list are considered the "primary" part of the type |
| // and are visited by shallow visitors. |
| for predicate in predicates { |
| let trait_ref = match predicate.skip_binder() { |
| ty::ExistentialPredicate::Trait(trait_ref) => trait_ref, |
| ty::ExistentialPredicate::Projection(proj) => proj.trait_ref(tcx), |
| ty::ExistentialPredicate::AutoTrait(def_id) => { |
| ty::ExistentialTraitRef { def_id, substs: InternalSubsts::empty() } |
| } |
| }; |
| let ty::ExistentialTraitRef { def_id, substs: _ } = trait_ref; |
| self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref)?; |
| } |
| } |
| ty::Opaque(def_id, ..) => { |
| // Skip repeated `Opaque`s to avoid infinite recursion. |
| if self.visited_opaque_tys.insert(def_id) { |
| // The intent is to treat `impl Trait1 + Trait2` identically to |
| // `dyn Trait1 + Trait2`. Therefore we ignore def-id of the opaque type itself |
| // (it either has no visibility, or its visibility is insignificant, like |
| // visibilities of type aliases) and recurse into bounds instead to go |
| // through the trait list (default type visitor doesn't visit those traits). |
| // All traits in the list are considered the "primary" part of the type |
| // and are visited by shallow visitors. |
| self.visit_predicates(ty::GenericPredicates { |
| parent: None, |
| predicates: tcx.explicit_item_bounds(def_id), |
| })?; |
| } |
| } |
| // These types don't have their own def-ids (but may have subcomponents |
| // with def-ids that should be visited recursively). |
| ty::Bool |
| | ty::Char |
| | ty::Int(..) |
| | ty::Uint(..) |
| | ty::Float(..) |
| | ty::Str |
| | ty::Never |
| | ty::Array(..) |
| | ty::Slice(..) |
| | ty::Tuple(..) |
| | ty::RawPtr(..) |
| | ty::Ref(..) |
| | ty::FnPtr(..) |
| | ty::Param(..) |
| | ty::Error(_) |
| | ty::GeneratorWitness(..) => {} |
| ty::Bound(..) | ty::Placeholder(..) | ty::Infer(..) => { |
| bug!("unexpected type: {:?}", ty) |
| } |
| } |
| |
| if self.def_id_visitor.shallow() { |
| ControlFlow::CONTINUE |
| } else { |
| ty.super_visit_with(self) |
| } |
| } |
| |
| fn visit_const(&mut self, c: Const<'tcx>) -> ControlFlow<Self::BreakTy> { |
| self.visit_ty(c.ty())?; |
| let tcx = self.def_id_visitor.tcx(); |
| if let Ok(Some(ct)) = AbstractConst::from_const(tcx, c) { |
| walk_abstract_const(tcx, ct, |node| match node.root(tcx) { |
| ACNode::Leaf(leaf) => self.visit_const(leaf), |
| ACNode::Cast(_, _, ty) => self.visit_ty(ty), |
| ACNode::Binop(..) | ACNode::UnaryOp(..) | ACNode::FunctionCall(_, _) => { |
| ControlFlow::CONTINUE |
| } |
| }) |
| } else { |
| ControlFlow::CONTINUE |
| } |
| } |
| } |
| |
| fn min(vis1: ty::Visibility, vis2: ty::Visibility, tcx: TyCtxt<'_>) -> ty::Visibility { |
| if vis1.is_at_least(vis2, tcx) { vis2 } else { vis1 } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| /// Visitor used to determine impl visibility and reachability. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| struct FindMin<'a, 'tcx, VL: VisibilityLike> { |
| tcx: TyCtxt<'tcx>, |
| effective_visibilities: &'a EffectiveVisibilities, |
| min: VL, |
| } |
| |
| impl<'a, 'tcx, VL: VisibilityLike> DefIdVisitor<'tcx> for FindMin<'a, 'tcx, VL> { |
| fn tcx(&self) -> TyCtxt<'tcx> { |
| self.tcx |
| } |
| fn shallow(&self) -> bool { |
| VL::SHALLOW |
| } |
| fn skip_assoc_tys(&self) -> bool { |
| true |
| } |
| fn visit_def_id( |
| &mut self, |
| def_id: DefId, |
| _kind: &str, |
| _descr: &dyn fmt::Display, |
| ) -> ControlFlow<Self::BreakTy> { |
| if let Some(def_id) = def_id.as_local() { |
| self.min = VL::new_min(self, def_id); |
| } |
| ControlFlow::CONTINUE |
| } |
| } |
| |
| trait VisibilityLike: Sized { |
| const MAX: Self; |
| const SHALLOW: bool = false; |
| fn new_min(find: &FindMin<'_, '_, Self>, def_id: LocalDefId) -> Self; |
| |
| // Returns an over-approximation (`skip_assoc_tys` = true) of visibility due to |
| // associated types for which we can't determine visibility precisely. |
| fn of_impl( |
| def_id: LocalDefId, |
| tcx: TyCtxt<'_>, |
| effective_visibilities: &EffectiveVisibilities, |
| ) -> Self { |
| let mut find = FindMin { tcx, effective_visibilities, min: Self::MAX }; |
| find.visit(tcx.type_of(def_id)); |
| if let Some(trait_ref) = tcx.impl_trait_ref(def_id) { |
| find.visit_trait(trait_ref); |
| } |
| find.min |
| } |
| } |
| impl VisibilityLike for ty::Visibility { |
| const MAX: Self = ty::Visibility::Public; |
| fn new_min(find: &FindMin<'_, '_, Self>, def_id: LocalDefId) -> Self { |
| min(find.tcx.local_visibility(def_id), find.min, find.tcx) |
| } |
| } |
| impl VisibilityLike for Option<Level> { |
| const MAX: Self = Some(Level::Direct); |
| // Type inference is very smart sometimes. |
| // It can make an impl reachable even some components of its type or trait are unreachable. |
| // E.g. methods of `impl ReachableTrait<UnreachableTy> for ReachableTy<UnreachableTy> { ... }` |
| // can be usable from other crates (#57264). So we skip substs when calculating reachability |
| // and consider an impl reachable if its "shallow" type and trait are reachable. |
| // |
| // The assumption we make here is that type-inference won't let you use an impl without knowing |
| // both "shallow" version of its self type and "shallow" version of its trait if it exists |
| // (which require reaching the `DefId`s in them). |
| const SHALLOW: bool = true; |
| fn new_min(find: &FindMin<'_, '_, Self>, def_id: LocalDefId) -> Self { |
| cmp::min(find.effective_visibilities.public_at_level(def_id), find.min) |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| /// The embargo visitor, used to determine the exports of the AST. |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| struct EmbargoVisitor<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| |
| /// Effective visibilities for reachable nodes. |
| effective_visibilities: EffectiveVisibilities, |
| /// A set of pairs corresponding to modules, where the first module is |
| /// reachable via a macro that's defined in the second module. This cannot |
| /// be represented as reachable because it can't handle the following case: |
| /// |
| /// pub mod n { // Should be `Public` |
| /// pub(crate) mod p { // Should *not* be accessible |
| /// pub fn f() -> i32 { 12 } // Must be `Reachable` |
| /// } |
| /// } |
| /// pub macro m() { |
| /// n::p::f() |
| /// } |
| macro_reachable: FxHashSet<(LocalDefId, LocalDefId)>, |
| /// Previous visibility level; `None` means unreachable. |
| prev_level: Option<Level>, |
| /// Has something changed in the level map? |
| changed: bool, |
| } |
| |
| struct ReachEverythingInTheInterfaceVisitor<'a, 'tcx> { |
| level: Option<Level>, |
| item_def_id: LocalDefId, |
| ev: &'a mut EmbargoVisitor<'tcx>, |
| } |
| |
| impl<'tcx> EmbargoVisitor<'tcx> { |
| fn get(&self, def_id: LocalDefId) -> Option<Level> { |
| self.effective_visibilities.public_at_level(def_id) |
| } |
| |
| fn update_with_hir_id(&mut self, hir_id: hir::HirId, level: Option<Level>) -> Option<Level> { |
| let def_id = self.tcx.hir().local_def_id(hir_id); |
| self.update(def_id, level) |
| } |
| |
| /// Updates node level and returns the updated level. |
| fn update(&mut self, def_id: LocalDefId, level: Option<Level>) -> Option<Level> { |
| let old_level = self.get(def_id); |
| // Visibility levels can only grow. |
| if level > old_level { |
| self.effective_visibilities.set_public_at_level( |
| def_id, |
| || ty::Visibility::Restricted(self.tcx.parent_module_from_def_id(def_id)), |
| level.unwrap(), |
| ); |
| self.changed = true; |
| level |
| } else { |
| old_level |
| } |
| } |
| |
| fn reach( |
| &mut self, |
| def_id: LocalDefId, |
| level: Option<Level>, |
| ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> { |
| ReachEverythingInTheInterfaceVisitor { |
| level: cmp::min(level, Some(Level::Reachable)), |
| item_def_id: def_id, |
| ev: self, |
| } |
| } |
| |
| // We have to make sure that the items that macros might reference |
| // are reachable, since they might be exported transitively. |
| fn update_reachability_from_macro(&mut self, local_def_id: LocalDefId, md: &MacroDef) { |
| // Non-opaque macros cannot make other items more accessible than they already are. |
| |
| let hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id); |
| let attrs = self.tcx.hir().attrs(hir_id); |
| if attr::find_transparency(attrs, md.macro_rules).0 != Transparency::Opaque { |
| return; |
| } |
| |
| let macro_module_def_id = self.tcx.local_parent(local_def_id); |
| if self.tcx.opt_def_kind(macro_module_def_id) != Some(DefKind::Mod) { |
| // The macro's parent doesn't correspond to a `mod`, return early (#63164, #65252). |
| return; |
| } |
| |
| if self.get(local_def_id).is_none() { |
| return; |
| } |
| |
| // Since we are starting from an externally visible module, |
| // all the parents in the loop below are also guaranteed to be modules. |
| let mut module_def_id = macro_module_def_id; |
| loop { |
| let changed_reachability = |
| self.update_macro_reachable(module_def_id, macro_module_def_id); |
| if changed_reachability || module_def_id == CRATE_DEF_ID { |
| break; |
| } |
| module_def_id = self.tcx.local_parent(module_def_id); |
| } |
| } |
| |
| /// Updates the item as being reachable through a macro defined in the given |
| /// module. Returns `true` if the level has changed. |
| fn update_macro_reachable( |
| &mut self, |
| module_def_id: LocalDefId, |
| defining_mod: LocalDefId, |
| ) -> bool { |
| if self.macro_reachable.insert((module_def_id, defining_mod)) { |
| self.update_macro_reachable_mod(module_def_id, defining_mod); |
| true |
| } else { |
| false |
| } |
| } |
| |
| fn update_macro_reachable_mod(&mut self, module_def_id: LocalDefId, defining_mod: LocalDefId) { |
| let module = self.tcx.hir().get_module(module_def_id).0; |
| for item_id in module.item_ids { |
| let def_kind = self.tcx.def_kind(item_id.owner_id); |
| let vis = self.tcx.local_visibility(item_id.owner_id.def_id); |
| self.update_macro_reachable_def(item_id.owner_id.def_id, def_kind, vis, defining_mod); |
| } |
| if let Some(exports) = self.tcx.module_reexports(module_def_id) { |
| for export in exports { |
| if export.vis.is_accessible_from(defining_mod, self.tcx) { |
| if let Res::Def(def_kind, def_id) = export.res { |
| if let Some(def_id) = def_id.as_local() { |
| let vis = self.tcx.local_visibility(def_id); |
| self.update_macro_reachable_def(def_id, def_kind, vis, defining_mod); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| fn update_macro_reachable_def( |
| &mut self, |
| def_id: LocalDefId, |
| def_kind: DefKind, |
| vis: ty::Visibility, |
| module: LocalDefId, |
| ) { |
| let level = Some(Level::Reachable); |
| if vis.is_public() { |
| self.update(def_id, level); |
| } |
| match def_kind { |
| // No type privacy, so can be directly marked as reachable. |
| DefKind::Const | DefKind::Static(_) | DefKind::TraitAlias | DefKind::TyAlias => { |
| if vis.is_accessible_from(module, self.tcx) { |
| self.update(def_id, level); |
| } |
| } |
| |
| // Hygiene isn't really implemented for `macro_rules!` macros at the |
| // moment. Accordingly, marking them as reachable is unwise. `macro` macros |
| // have normal hygiene, so we can treat them like other items without type |
| // privacy and mark them reachable. |
| DefKind::Macro(_) => { |
| let item = self.tcx.hir().expect_item(def_id); |
| if let hir::ItemKind::Macro(MacroDef { macro_rules: false, .. }, _) = item.kind { |
| if vis.is_accessible_from(module, self.tcx) { |
| self.update(def_id, level); |
| } |
| } |
| } |
| |
| // We can't use a module name as the final segment of a path, except |
| // in use statements. Since re-export checking doesn't consider |
| // hygiene these don't need to be marked reachable. The contents of |
| // the module, however may be reachable. |
| DefKind::Mod => { |
| if vis.is_accessible_from(module, self.tcx) { |
| self.update_macro_reachable(def_id, module); |
| } |
| } |
| |
| DefKind::Struct | DefKind::Union => { |
| // While structs and unions have type privacy, their fields do not. |
| if vis.is_public() { |
| let item = self.tcx.hir().expect_item(def_id); |
| if let hir::ItemKind::Struct(ref struct_def, _) |
| | hir::ItemKind::Union(ref struct_def, _) = item.kind |
| { |
| for field in struct_def.fields() { |
| let def_id = self.tcx.hir().local_def_id(field.hir_id); |
| let field_vis = self.tcx.local_visibility(def_id); |
| if field_vis.is_accessible_from(module, self.tcx) { |
| self.reach(def_id, level).ty(); |
| } |
| } |
| } else { |
| bug!("item {:?} with DefKind {:?}", item, def_kind); |
| } |
| } |
| } |
| |
| // These have type privacy, so are not reachable unless they're |
| // public, or are not namespaced at all. |
| DefKind::AssocConst |
| | DefKind::AssocTy |
| | DefKind::ConstParam |
| | DefKind::Ctor(_, _) |
| | DefKind::Enum |
| | DefKind::ForeignTy |
| | DefKind::Fn |
| | DefKind::OpaqueTy |
| | DefKind::ImplTraitPlaceholder |
| | DefKind::AssocFn |
| | DefKind::Trait |
| | DefKind::TyParam |
| | DefKind::Variant |
| | DefKind::LifetimeParam |
| | DefKind::ExternCrate |
| | DefKind::Use |
| | DefKind::ForeignMod |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::Field |
| | DefKind::GlobalAsm |
| | DefKind::Impl |
| | DefKind::Closure |
| | DefKind::Generator => (), |
| } |
| } |
| } |
| |
| impl<'tcx> Visitor<'tcx> for EmbargoVisitor<'tcx> { |
| type NestedFilter = nested_filter::All; |
| |
| /// We want to visit items in the context of their containing |
| /// module and so forth, so supply a crate for doing a deep walk. |
| fn nested_visit_map(&mut self) -> Self::Map { |
| self.tcx.hir() |
| } |
| |
| fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { |
| let item_level = match item.kind { |
| hir::ItemKind::Impl { .. } => { |
| let impl_level = Option::<Level>::of_impl( |
| item.owner_id.def_id, |
| self.tcx, |
| &self.effective_visibilities, |
| ); |
| self.update(item.owner_id.def_id, impl_level) |
| } |
| _ => self.get(item.owner_id.def_id), |
| }; |
| |
| // Update levels of nested things. |
| match item.kind { |
| hir::ItemKind::Enum(ref def, _) => { |
| for variant in def.variants { |
| let variant_level = self.update_with_hir_id(variant.id, item_level); |
| if let Some(ctor_hir_id) = variant.data.ctor_hir_id() { |
| self.update_with_hir_id(ctor_hir_id, item_level); |
| } |
| for field in variant.data.fields() { |
| self.update_with_hir_id(field.hir_id, variant_level); |
| } |
| } |
| } |
| hir::ItemKind::Impl(ref impl_) => { |
| for impl_item_ref in impl_.items { |
| if impl_.of_trait.is_some() |
| || self.tcx.visibility(impl_item_ref.id.owner_id).is_public() |
| { |
| self.update(impl_item_ref.id.owner_id.def_id, item_level); |
| } |
| } |
| } |
| hir::ItemKind::Trait(.., trait_item_refs) => { |
| for trait_item_ref in trait_item_refs { |
| self.update(trait_item_ref.id.owner_id.def_id, item_level); |
| } |
| } |
| hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => { |
| if let Some(ctor_hir_id) = def.ctor_hir_id() { |
| self.update_with_hir_id(ctor_hir_id, item_level); |
| } |
| for field in def.fields() { |
| let def_id = self.tcx.hir().local_def_id(field.hir_id); |
| let vis = self.tcx.visibility(def_id); |
| if vis.is_public() { |
| self.update_with_hir_id(field.hir_id, item_level); |
| } |
| } |
| } |
| hir::ItemKind::Macro(ref macro_def, _) => { |
| self.update_reachability_from_macro(item.owner_id.def_id, macro_def); |
| } |
| hir::ItemKind::ForeignMod { items, .. } => { |
| for foreign_item in items { |
| if self.tcx.visibility(foreign_item.id.owner_id).is_public() { |
| self.update(foreign_item.id.owner_id.def_id, item_level); |
| } |
| } |
| } |
| |
| hir::ItemKind::OpaqueTy(..) |
| | hir::ItemKind::Use(..) |
| | hir::ItemKind::Static(..) |
| | hir::ItemKind::Const(..) |
| | hir::ItemKind::GlobalAsm(..) |
| | hir::ItemKind::TyAlias(..) |
| | hir::ItemKind::Mod(..) |
| | hir::ItemKind::TraitAlias(..) |
| | hir::ItemKind::Fn(..) |
| | hir::ItemKind::ExternCrate(..) => {} |
| } |
| |
| // Mark all items in interfaces of reachable items as reachable. |
| match item.kind { |
| // The interface is empty. |
| hir::ItemKind::Macro(..) | hir::ItemKind::ExternCrate(..) => {} |
| // All nested items are checked by `visit_item`. |
| hir::ItemKind::Mod(..) => {} |
| // Handled in `rustc_resolve`. |
| hir::ItemKind::Use(..) => {} |
| // The interface is empty. |
| hir::ItemKind::GlobalAsm(..) => {} |
| hir::ItemKind::OpaqueTy(ref opaque) => { |
| // HACK(jynelson): trying to infer the type of `impl trait` breaks `async-std` (and `pub async fn` in general) |
| // Since rustdoc never needs to do codegen and doesn't care about link-time reachability, |
| // mark this as unreachable. |
| // See https://github.com/rust-lang/rust/issues/75100 |
| if !opaque.in_trait && !self.tcx.sess.opts.actually_rustdoc { |
| // FIXME: This is some serious pessimization intended to workaround deficiencies |
| // in the reachability pass (`middle/reachable.rs`). Types are marked as link-time |
| // reachable if they are returned via `impl Trait`, even from private functions. |
| let exist_level = cmp::max(item_level, Some(Level::ReachableThroughImplTrait)); |
| self.reach(item.owner_id.def_id, exist_level).generics().predicates().ty(); |
| } |
| } |
| // Visit everything. |
| hir::ItemKind::Const(..) |
| | hir::ItemKind::Static(..) |
| | hir::ItemKind::Fn(..) |
| | hir::ItemKind::TyAlias(..) => { |
| if item_level.is_some() { |
| self.reach(item.owner_id.def_id, item_level).generics().predicates().ty(); |
| } |
| } |
| hir::ItemKind::Trait(.., trait_item_refs) => { |
| if item_level.is_some() { |
| self.reach(item.owner_id.def_id, item_level).generics().predicates(); |
| |
| for trait_item_ref in trait_item_refs { |
| let tcx = self.tcx; |
| let mut reach = self.reach(trait_item_ref.id.owner_id.def_id, item_level); |
| reach.generics().predicates(); |
| |
| if trait_item_ref.kind == AssocItemKind::Type |
| && !tcx.impl_defaultness(trait_item_ref.id.owner_id).has_value() |
| { |
| // No type to visit. |
| } else { |
| reach.ty(); |
| } |
| } |
| } |
| } |
| hir::ItemKind::TraitAlias(..) => { |
| if item_level.is_some() { |
| self.reach(item.owner_id.def_id, item_level).generics().predicates(); |
| } |
| } |
| // Visit everything except for private impl items. |
| hir::ItemKind::Impl(ref impl_) => { |
| if item_level.is_some() { |
| self.reach(item.owner_id.def_id, item_level) |
| .generics() |
| .predicates() |
| .ty() |
| .trait_ref(); |
| |
| for impl_item_ref in impl_.items { |
| let impl_item_level = self.get(impl_item_ref.id.owner_id.def_id); |
| if impl_item_level.is_some() { |
| self.reach(impl_item_ref.id.owner_id.def_id, impl_item_level) |
| .generics() |
| .predicates() |
| .ty(); |
| } |
| } |
| } |
| } |
| |
| // Visit everything, but enum variants have their own levels. |
| hir::ItemKind::Enum(ref def, _) => { |
| if item_level.is_some() { |
| self.reach(item.owner_id.def_id, item_level).generics().predicates(); |
| } |
| for variant in def.variants { |
| let variant_level = self.get(self.tcx.hir().local_def_id(variant.id)); |
| if variant_level.is_some() { |
| for field in variant.data.fields() { |
| self.reach(self.tcx.hir().local_def_id(field.hir_id), variant_level) |
| .ty(); |
| } |
| // Corner case: if the variant is reachable, but its |
| // enum is not, make the enum reachable as well. |
| self.reach(item.owner_id.def_id, variant_level).ty(); |
| } |
| if let Some(hir_id) = variant.data.ctor_hir_id() { |
| let ctor_def_id = self.tcx.hir().local_def_id(hir_id); |
| let ctor_level = self.get(ctor_def_id); |
| if ctor_level.is_some() { |
| self.reach(item.owner_id.def_id, ctor_level).ty(); |
| } |
| } |
| } |
| } |
| // Visit everything, but foreign items have their own levels. |
| hir::ItemKind::ForeignMod { items, .. } => { |
| for foreign_item in items { |
| let foreign_item_level = self.get(foreign_item.id.owner_id.def_id); |
| if foreign_item_level.is_some() { |
| self.reach(foreign_item.id.owner_id.def_id, foreign_item_level) |
| .generics() |
| .predicates() |
| .ty(); |
| } |
| } |
| } |
| // Visit everything except for private fields. |
| hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => { |
| if item_level.is_some() { |
| self.reach(item.owner_id.def_id, item_level).generics().predicates(); |
| for field in struct_def.fields() { |
| let def_id = self.tcx.hir().local_def_id(field.hir_id); |
| let field_level = self.get(def_id); |
| if field_level.is_some() { |
| self.reach(def_id, field_level).ty(); |
| } |
| } |
| } |
| if let Some(hir_id) = struct_def.ctor_hir_id() { |
| let ctor_def_id = self.tcx.hir().local_def_id(hir_id); |
| let ctor_level = self.get(ctor_def_id); |
| if ctor_level.is_some() { |
| self.reach(item.owner_id.def_id, ctor_level).ty(); |
| } |
| } |
| } |
| } |
| |
| let orig_level = mem::replace(&mut self.prev_level, item_level); |
| intravisit::walk_item(self, item); |
| self.prev_level = orig_level; |
| } |
| |
| fn visit_block(&mut self, b: &'tcx hir::Block<'tcx>) { |
| // Blocks can have public items, for example impls, but they always |
| // start as completely private regardless of publicity of a function, |
| // constant, type, field, etc., in which this block resides. |
| let orig_level = mem::replace(&mut self.prev_level, None); |
| intravisit::walk_block(self, b); |
| self.prev_level = orig_level; |
| } |
| } |
| |
| impl ReachEverythingInTheInterfaceVisitor<'_, '_> { |
| fn generics(&mut self) -> &mut Self { |
| for param in &self.ev.tcx.generics_of(self.item_def_id).params { |
| match param.kind { |
| GenericParamDefKind::Lifetime => {} |
| GenericParamDefKind::Type { has_default, .. } => { |
| if has_default { |
| self.visit(self.ev.tcx.type_of(param.def_id)); |
| } |
| } |
| GenericParamDefKind::Const { has_default } => { |
| self.visit(self.ev.tcx.type_of(param.def_id)); |
| if has_default { |
| self.visit(self.ev.tcx.const_param_default(param.def_id)); |
| } |
| } |
| } |
| } |
| self |
| } |
| |
| fn predicates(&mut self) -> &mut Self { |
| self.visit_predicates(self.ev.tcx.predicates_of(self.item_def_id)); |
| self |
| } |
| |
| fn ty(&mut self) -> &mut Self { |
| self.visit(self.ev.tcx.type_of(self.item_def_id)); |
| self |
| } |
| |
| fn trait_ref(&mut self) -> &mut Self { |
| if let Some(trait_ref) = self.ev.tcx.impl_trait_ref(self.item_def_id) { |
| self.visit_trait(trait_ref); |
| } |
| self |
| } |
| } |
| |
| impl<'tcx> DefIdVisitor<'tcx> for ReachEverythingInTheInterfaceVisitor<'_, 'tcx> { |
| fn tcx(&self) -> TyCtxt<'tcx> { |
| self.ev.tcx |
| } |
| fn visit_def_id( |
| &mut self, |
| def_id: DefId, |
| _kind: &str, |
| _descr: &dyn fmt::Display, |
| ) -> ControlFlow<Self::BreakTy> { |
| if let Some(def_id) = def_id.as_local() { |
| if let (ty::Visibility::Public, _) | (_, Some(Level::ReachableThroughImplTrait)) = |
| (self.tcx().visibility(def_id.to_def_id()), self.level) |
| { |
| self.ev.update(def_id, self.level); |
| } |
| } |
| ControlFlow::CONTINUE |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| /// Visitor, used for EffectiveVisibilities table checking |
| //////////////////////////////////////////////////////////////////////////////// |
| pub struct TestReachabilityVisitor<'tcx, 'a> { |
| tcx: TyCtxt<'tcx>, |
| effective_visibilities: &'a EffectiveVisibilities, |
| } |
| |
| impl<'tcx, 'a> TestReachabilityVisitor<'tcx, 'a> { |
| fn effective_visibility_diagnostic(&mut self, def_id: LocalDefId) { |
| if self.tcx.has_attr(def_id.to_def_id(), sym::rustc_effective_visibility) { |
| let mut error_msg = String::new(); |
| let span = self.tcx.def_span(def_id.to_def_id()); |
| if let Some(effective_vis) = self.effective_visibilities.effective_vis(def_id) { |
| for level in Level::all_levels() { |
| let vis_str = match effective_vis.at_level(level) { |
| ty::Visibility::Restricted(restricted_id) => { |
| if restricted_id.is_top_level_module() { |
| "pub(crate)".to_string() |
| } else if *restricted_id == self.tcx.parent_module_from_def_id(def_id) { |
| "pub(self)".to_string() |
| } else { |
| format!("pub({})", self.tcx.item_name(restricted_id.to_def_id())) |
| } |
| } |
| ty::Visibility::Public => "pub".to_string(), |
| }; |
| if level != Level::Direct { |
| error_msg.push_str(", "); |
| } |
| error_msg.push_str(&format!("{:?}: {}", level, vis_str)); |
| } |
| } else { |
| error_msg.push_str("not in the table"); |
| } |
| self.tcx.sess.emit_err(ReportEffectiveVisibility { span, descr: error_msg }); |
| } |
| } |
| } |
| |
| impl<'tcx, 'a> Visitor<'tcx> for TestReachabilityVisitor<'tcx, 'a> { |
| fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { |
| self.effective_visibility_diagnostic(item.owner_id.def_id); |
| |
| match item.kind { |
| hir::ItemKind::Enum(ref def, _) => { |
| for variant in def.variants.iter() { |
| let variant_id = self.tcx.hir().local_def_id(variant.id); |
| self.effective_visibility_diagnostic(variant_id); |
| for field in variant.data.fields() { |
| let def_id = self.tcx.hir().local_def_id(field.hir_id); |
| self.effective_visibility_diagnostic(def_id); |
| } |
| } |
| } |
| hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => { |
| for field in def.fields() { |
| let def_id = self.tcx.hir().local_def_id(field.hir_id); |
| self.effective_visibility_diagnostic(def_id); |
| } |
| } |
| _ => {} |
| } |
| } |
| |
| fn visit_trait_item(&mut self, item: &'tcx hir::TraitItem<'tcx>) { |
| self.effective_visibility_diagnostic(item.owner_id.def_id); |
| } |
| fn visit_impl_item(&mut self, item: &'tcx hir::ImplItem<'tcx>) { |
| self.effective_visibility_diagnostic(item.owner_id.def_id); |
| } |
| fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) { |
| self.effective_visibility_diagnostic(item.owner_id.def_id); |
| } |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////////////// |
| /// Name privacy visitor, checks privacy and reports violations. |
| /// Most of name privacy checks are performed during the main resolution phase, |
| /// or later in type checking when field accesses and associated items are resolved. |
| /// This pass performs remaining checks for fields in struct expressions and patterns. |
| ////////////////////////////////////////////////////////////////////////////////////// |
| |
| struct NamePrivacyVisitor<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>, |
| current_item: LocalDefId, |
| } |
| |
| impl<'tcx> NamePrivacyVisitor<'tcx> { |
| /// Gets the type-checking results for the current body. |
| /// As this will ICE if called outside bodies, only call when working with |
| /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies). |
| #[track_caller] |
| fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> { |
| self.maybe_typeck_results |
| .expect("`NamePrivacyVisitor::typeck_results` called outside of body") |
| } |
| |
| // Checks that a field in a struct constructor (expression or pattern) is accessible. |
| fn check_field( |
| &mut self, |
| use_ctxt: Span, // syntax context of the field name at the use site |
| span: Span, // span of the field pattern, e.g., `x: 0` |
| def: ty::AdtDef<'tcx>, // definition of the struct or enum |
| field: &'tcx ty::FieldDef, |
| in_update_syntax: bool, |
| ) { |
| if def.is_enum() { |
| return; |
| } |
| |
| // definition of the field |
| let ident = Ident::new(kw::Empty, use_ctxt); |
| let hir_id = self.tcx.hir().local_def_id_to_hir_id(self.current_item); |
| let def_id = self.tcx.adjust_ident_and_get_scope(ident, def.did(), hir_id).1; |
| if !field.vis.is_accessible_from(def_id, self.tcx) { |
| self.tcx.sess.emit_err(FieldIsPrivate { |
| span, |
| field_name: field.name, |
| variant_descr: def.variant_descr(), |
| def_path_str: self.tcx.def_path_str(def.did()), |
| label: if in_update_syntax { |
| FieldIsPrivateLabel::IsUpdateSyntax { span, field_name: field.name } |
| } else { |
| FieldIsPrivateLabel::Other { span } |
| }, |
| }); |
| } |
| } |
| } |
| |
| impl<'tcx> Visitor<'tcx> for NamePrivacyVisitor<'tcx> { |
| type NestedFilter = nested_filter::All; |
| |
| /// We want to visit items in the context of their containing |
| /// module and so forth, so supply a crate for doing a deep walk. |
| fn nested_visit_map(&mut self) -> Self::Map { |
| self.tcx.hir() |
| } |
| |
| fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) { |
| // Don't visit nested modules, since we run a separate visitor walk |
| // for each module in `effective_visibilities` |
| } |
| |
| fn visit_nested_body(&mut self, body: hir::BodyId) { |
| let old_maybe_typeck_results = |
| self.maybe_typeck_results.replace(self.tcx.typeck_body(body)); |
| let body = self.tcx.hir().body(body); |
| self.visit_body(body); |
| self.maybe_typeck_results = old_maybe_typeck_results; |
| } |
| |
| fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { |
| let orig_current_item = mem::replace(&mut self.current_item, item.owner_id.def_id); |
| intravisit::walk_item(self, item); |
| self.current_item = orig_current_item; |
| } |
| |
| fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) { |
| if let hir::ExprKind::Struct(qpath, fields, ref base) = expr.kind { |
| let res = self.typeck_results().qpath_res(qpath, expr.hir_id); |
| let adt = self.typeck_results().expr_ty(expr).ty_adt_def().unwrap(); |
| let variant = adt.variant_of_res(res); |
| if let Some(base) = *base { |
| // If the expression uses FRU we need to make sure all the unmentioned fields |
| // are checked for privacy (RFC 736). Rather than computing the set of |
| // unmentioned fields, just check them all. |
| for (vf_index, variant_field) in variant.fields.iter().enumerate() { |
| let field = fields.iter().find(|f| { |
| self.tcx.field_index(f.hir_id, self.typeck_results()) == vf_index |
| }); |
| let (use_ctxt, span) = match field { |
| Some(field) => (field.ident.span, field.span), |
| None => (base.span, base.span), |
| }; |
| self.check_field(use_ctxt, span, adt, variant_field, true); |
| } |
| } else { |
| for field in fields { |
| let use_ctxt = field.ident.span; |
| let index = self.tcx.field_index(field.hir_id, self.typeck_results()); |
| self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false); |
| } |
| } |
| } |
| |
| intravisit::walk_expr(self, expr); |
| } |
| |
| fn visit_pat(&mut self, pat: &'tcx hir::Pat<'tcx>) { |
| if let PatKind::Struct(ref qpath, fields, _) = pat.kind { |
| let res = self.typeck_results().qpath_res(qpath, pat.hir_id); |
| let adt = self.typeck_results().pat_ty(pat).ty_adt_def().unwrap(); |
| let variant = adt.variant_of_res(res); |
| for field in fields { |
| let use_ctxt = field.ident.span; |
| let index = self.tcx.field_index(field.hir_id, self.typeck_results()); |
| self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false); |
| } |
| } |
| |
| intravisit::walk_pat(self, pat); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////// |
| /// Type privacy visitor, checks types for privacy and reports violations. |
| /// Both explicitly written types and inferred types of expressions and patterns are checked. |
| /// Checks are performed on "semantic" types regardless of names and their hygiene. |
| //////////////////////////////////////////////////////////////////////////////////////////// |
| |
| struct TypePrivacyVisitor<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>, |
| current_item: LocalDefId, |
| span: Span, |
| } |
| |
| impl<'tcx> TypePrivacyVisitor<'tcx> { |
| /// Gets the type-checking results for the current body. |
| /// As this will ICE if called outside bodies, only call when working with |
| /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies). |
| #[track_caller] |
| fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> { |
| self.maybe_typeck_results |
| .expect("`TypePrivacyVisitor::typeck_results` called outside of body") |
| } |
| |
| fn item_is_accessible(&self, did: DefId) -> bool { |
| self.tcx.visibility(did).is_accessible_from(self.current_item, self.tcx) |
| } |
| |
| // Take node-id of an expression or pattern and check its type for privacy. |
| fn check_expr_pat_type(&mut self, id: hir::HirId, span: Span) -> bool { |
| self.span = span; |
| let typeck_results = self.typeck_results(); |
| let result: ControlFlow<()> = try { |
| self.visit(typeck_results.node_type(id))?; |
| self.visit(typeck_results.node_substs(id))?; |
| if let Some(adjustments) = typeck_results.adjustments().get(id) { |
| adjustments.iter().try_for_each(|adjustment| self.visit(adjustment.target))?; |
| } |
| }; |
| result.is_break() |
| } |
| |
| fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool { |
| let is_error = !self.item_is_accessible(def_id); |
| if is_error { |
| self.tcx.sess.emit_err(ItemIsPrivate { span: self.span, kind, descr: descr.into() }); |
| } |
| is_error |
| } |
| } |
| |
| impl<'tcx> Visitor<'tcx> for TypePrivacyVisitor<'tcx> { |
| type NestedFilter = nested_filter::All; |
| |
| /// We want to visit items in the context of their containing |
| /// module and so forth, so supply a crate for doing a deep walk. |
| fn nested_visit_map(&mut self) -> Self::Map { |
| self.tcx.hir() |
| } |
| |
| fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) { |
| // Don't visit nested modules, since we run a separate visitor walk |
| // for each module in `effective_visibilities` |
| } |
| |
| fn visit_nested_body(&mut self, body: hir::BodyId) { |
| let old_maybe_typeck_results = |
| self.maybe_typeck_results.replace(self.tcx.typeck_body(body)); |
| let body = self.tcx.hir().body(body); |
| self.visit_body(body); |
| self.maybe_typeck_results = old_maybe_typeck_results; |
| } |
| |
| fn visit_generic_arg(&mut self, generic_arg: &'tcx hir::GenericArg<'tcx>) { |
| match generic_arg { |
| hir::GenericArg::Type(t) => self.visit_ty(t), |
| hir::GenericArg::Infer(inf) => self.visit_infer(inf), |
| hir::GenericArg::Lifetime(_) | hir::GenericArg::Const(_) => {} |
| } |
| } |
| |
| fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>) { |
| self.span = hir_ty.span; |
| if let Some(typeck_results) = self.maybe_typeck_results { |
| // Types in bodies. |
| if self.visit(typeck_results.node_type(hir_ty.hir_id)).is_break() { |
| return; |
| } |
| } else { |
| // Types in signatures. |
| // FIXME: This is very ineffective. Ideally each HIR type should be converted |
| // into a semantic type only once and the result should be cached somehow. |
| if self.visit(rustc_hir_analysis::hir_ty_to_ty(self.tcx, hir_ty)).is_break() { |
| return; |
| } |
| } |
| |
| intravisit::walk_ty(self, hir_ty); |
| } |
| |
| fn visit_infer(&mut self, inf: &'tcx hir::InferArg) { |
| self.span = inf.span; |
| if let Some(typeck_results) = self.maybe_typeck_results { |
| if let Some(ty) = typeck_results.node_type_opt(inf.hir_id) { |
| if self.visit(ty).is_break() { |
| return; |
| } |
| } else { |
| // We don't do anything for const infers here. |
| } |
| } else { |
| bug!("visit_infer without typeck_results"); |
| } |
| intravisit::walk_inf(self, inf); |
| } |
| |
| fn visit_trait_ref(&mut self, trait_ref: &'tcx hir::TraitRef<'tcx>) { |
| self.span = trait_ref.path.span; |
| if self.maybe_typeck_results.is_none() { |
| // Avoid calling `hir_trait_to_predicates` in bodies, it will ICE. |
| // The traits' privacy in bodies is already checked as a part of trait object types. |
| let bounds = rustc_hir_analysis::hir_trait_to_predicates( |
| self.tcx, |
| trait_ref, |
| // NOTE: This isn't really right, but the actual type doesn't matter here. It's |
| // just required by `ty::TraitRef`. |
| self.tcx.types.never, |
| ); |
| |
| for (trait_predicate, _, _) in bounds.trait_bounds { |
| if self.visit_trait(trait_predicate.skip_binder()).is_break() { |
| return; |
| } |
| } |
| |
| for (poly_predicate, _) in bounds.projection_bounds { |
| let pred = poly_predicate.skip_binder(); |
| let poly_pred_term = self.visit(pred.term); |
| if poly_pred_term.is_break() |
| || self.visit_projection_ty(pred.projection_ty).is_break() |
| { |
| return; |
| } |
| } |
| } |
| |
| intravisit::walk_trait_ref(self, trait_ref); |
| } |
| |
| // Check types of expressions |
| fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) { |
| if self.check_expr_pat_type(expr.hir_id, expr.span) { |
| // Do not check nested expressions if the error already happened. |
| return; |
| } |
| match expr.kind { |
| hir::ExprKind::Assign(_, rhs, _) | hir::ExprKind::Match(rhs, ..) => { |
| // Do not report duplicate errors for `x = y` and `match x { ... }`. |
| if self.check_expr_pat_type(rhs.hir_id, rhs.span) { |
| return; |
| } |
| } |
| hir::ExprKind::MethodCall(segment, ..) => { |
| // Method calls have to be checked specially. |
| self.span = segment.ident.span; |
| if let Some(def_id) = self.typeck_results().type_dependent_def_id(expr.hir_id) { |
| if self.visit(self.tcx.type_of(def_id)).is_break() { |
| return; |
| } |
| } else { |
| self.tcx |
| .sess |
| .delay_span_bug(expr.span, "no type-dependent def for method call"); |
| } |
| } |
| _ => {} |
| } |
| |
| intravisit::walk_expr(self, expr); |
| } |
| |
| // Prohibit access to associated items with insufficient nominal visibility. |
| // |
| // Additionally, until better reachability analysis for macros 2.0 is available, |
| // we prohibit access to private statics from other crates, this allows to give |
| // more code internal visibility at link time. (Access to private functions |
| // is already prohibited by type privacy for function types.) |
| fn visit_qpath(&mut self, qpath: &'tcx hir::QPath<'tcx>, id: hir::HirId, span: Span) { |
| let def = match qpath { |
| hir::QPath::Resolved(_, path) => match path.res { |
| Res::Def(kind, def_id) => Some((kind, def_id)), |
| _ => None, |
| }, |
| hir::QPath::TypeRelative(..) | hir::QPath::LangItem(..) => self |
| .maybe_typeck_results |
| .and_then(|typeck_results| typeck_results.type_dependent_def(id)), |
| }; |
| let def = def.filter(|(kind, _)| { |
| matches!( |
| kind, |
| DefKind::AssocFn | DefKind::AssocConst | DefKind::AssocTy | DefKind::Static(_) |
| ) |
| }); |
| if let Some((kind, def_id)) = def { |
| let is_local_static = |
| if let DefKind::Static(_) = kind { def_id.is_local() } else { false }; |
| if !self.item_is_accessible(def_id) && !is_local_static { |
| let sess = self.tcx.sess; |
| let sm = sess.source_map(); |
| let name = match qpath { |
| hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => { |
| sm.span_to_snippet(qpath.span()).ok() |
| } |
| hir::QPath::TypeRelative(_, segment) => Some(segment.ident.to_string()), |
| }; |
| let kind = kind.descr(def_id); |
| let _ = match name { |
| Some(name) => { |
| sess.emit_err(ItemIsPrivate { span, kind, descr: (&name).into() }) |
| } |
| None => sess.emit_err(UnnamedItemIsPrivate { span, kind }), |
| }; |
| return; |
| } |
| } |
| |
| intravisit::walk_qpath(self, qpath, id); |
| } |
| |
| // Check types of patterns. |
| fn visit_pat(&mut self, pattern: &'tcx hir::Pat<'tcx>) { |
| if self.check_expr_pat_type(pattern.hir_id, pattern.span) { |
| // Do not check nested patterns if the error already happened. |
| return; |
| } |
| |
| intravisit::walk_pat(self, pattern); |
| } |
| |
| fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) { |
| if let Some(init) = local.init { |
| if self.check_expr_pat_type(init.hir_id, init.span) { |
| // Do not report duplicate errors for `let x = y`. |
| return; |
| } |
| } |
| |
| intravisit::walk_local(self, local); |
| } |
| |
| // Check types in item interfaces. |
| fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { |
| let orig_current_item = mem::replace(&mut self.current_item, item.owner_id.def_id); |
| let old_maybe_typeck_results = self.maybe_typeck_results.take(); |
| intravisit::walk_item(self, item); |
| self.maybe_typeck_results = old_maybe_typeck_results; |
| self.current_item = orig_current_item; |
| } |
| } |
| |
| impl<'tcx> DefIdVisitor<'tcx> for TypePrivacyVisitor<'tcx> { |
| fn tcx(&self) -> TyCtxt<'tcx> { |
| self.tcx |
| } |
| fn visit_def_id( |
| &mut self, |
| def_id: DefId, |
| kind: &str, |
| descr: &dyn fmt::Display, |
| ) -> ControlFlow<Self::BreakTy> { |
| if self.check_def_id(def_id, kind, descr) { |
| ControlFlow::BREAK |
| } else { |
| ControlFlow::CONTINUE |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| /// Obsolete visitors for checking for private items in public interfaces. |
| /// These visitors are supposed to be kept in frozen state and produce an |
| /// "old error node set". For backward compatibility the new visitor reports |
| /// warnings instead of hard errors when the erroneous node is not in this old set. |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> { |
| tcx: TyCtxt<'tcx>, |
| effective_visibilities: &'a EffectiveVisibilities, |
| in_variant: bool, |
| // Set of errors produced by this obsolete visitor. |
| old_error_set: HirIdSet, |
| } |
| |
| struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> { |
| inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>, |
| /// Whether the type refers to private types. |
| contains_private: bool, |
| /// Whether we've recurred at all (i.e., if we're pointing at the |
| /// first type on which `visit_ty` was called). |
| at_outer_type: bool, |
| /// Whether that first type is a public path. |
| outer_type_is_public_path: bool, |
| } |
| |
| impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> { |
| fn path_is_private_type(&self, path: &hir::Path<'_>) -> bool { |
| let did = match path.res { |
| Res::PrimTy(..) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } | Res::Err => { |
| return false; |
| } |
| res => res.def_id(), |
| }; |
| |
| // A path can only be private if: |
| // it's in this crate... |
| if let Some(did) = did.as_local() { |
| // .. and it corresponds to a private type in the AST (this returns |
| // `None` for type parameters). |
| match self.tcx.hir().find(self.tcx.hir().local_def_id_to_hir_id(did)) { |
| Some(Node::Item(_)) => !self.tcx.visibility(did).is_public(), |
| Some(_) | None => false, |
| } |
| } else { |
| false |
| } |
| } |
| |
| fn trait_is_public(&self, trait_id: LocalDefId) -> bool { |
| // FIXME: this would preferably be using `exported_items`, but all |
| // traits are exported currently (see `EmbargoVisitor.exported_trait`). |
| self.effective_visibilities.is_directly_public(trait_id) |
| } |
| |
| fn check_generic_bound(&mut self, bound: &hir::GenericBound<'_>) { |
| if let hir::GenericBound::Trait(ref trait_ref, _) = *bound { |
| if self.path_is_private_type(trait_ref.trait_ref.path) { |
| self.old_error_set.insert(trait_ref.trait_ref.hir_ref_id); |
| } |
| } |
| } |
| |
| fn item_is_public(&self, def_id: LocalDefId) -> bool { |
| self.effective_visibilities.is_reachable(def_id) || self.tcx.visibility(def_id).is_public() |
| } |
| } |
| |
| impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> { |
| fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) { |
| match generic_arg { |
| hir::GenericArg::Type(t) => self.visit_ty(t), |
| hir::GenericArg::Infer(inf) => self.visit_ty(&inf.to_ty()), |
| hir::GenericArg::Lifetime(_) | hir::GenericArg::Const(_) => {} |
| } |
| } |
| |
| fn visit_ty(&mut self, ty: &hir::Ty<'_>) { |
| if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = ty.kind { |
| if self.inner.path_is_private_type(path) { |
| self.contains_private = true; |
| // Found what we're looking for, so let's stop working. |
| return; |
| } |
| } |
| if let hir::TyKind::Path(_) = ty.kind { |
| if self.at_outer_type { |
| self.outer_type_is_public_path = true; |
| } |
| } |
| self.at_outer_type = false; |
| intravisit::walk_ty(self, ty) |
| } |
| |
| // Don't want to recurse into `[, .. expr]`. |
| fn visit_expr(&mut self, _: &hir::Expr<'_>) {} |
| } |
| |
| impl<'a, 'tcx> Visitor<'tcx> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> { |
| type NestedFilter = nested_filter::All; |
| |
| /// We want to visit items in the context of their containing |
| /// module and so forth, so supply a crate for doing a deep walk. |
| fn nested_visit_map(&mut self) -> Self::Map { |
| self.tcx.hir() |
| } |
| |
| fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { |
| match item.kind { |
| // Contents of a private mod can be re-exported, so we need |
| // to check internals. |
| hir::ItemKind::Mod(_) => {} |
| |
| // An `extern {}` doesn't introduce a new privacy |
| // namespace (the contents have their own privacies). |
| hir::ItemKind::ForeignMod { .. } => {} |
| |
| hir::ItemKind::Trait(.., bounds, _) => { |
| if !self.trait_is_public(item.owner_id.def_id) { |
| return; |
| } |
| |
| for bound in bounds.iter() { |
| self.check_generic_bound(bound) |
| } |
| } |
| |
| // Impls need some special handling to try to offer useful |
| // error messages without (too many) false positives |
| // (i.e., we could just return here to not check them at |
| // all, or some worse estimation of whether an impl is |
| // publicly visible). |
| hir::ItemKind::Impl(ref impl_) => { |
| // `impl [... for] Private` is never visible. |
| let self_contains_private; |
| // `impl [... for] Public<...>`, but not `impl [... for] |
| // Vec<Public>` or `(Public,)`, etc. |
| let self_is_public_path; |
| |
| // Check the properties of the `Self` type: |
| { |
| let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor { |
| inner: self, |
| contains_private: false, |
| at_outer_type: true, |
| outer_type_is_public_path: false, |
| }; |
| visitor.visit_ty(impl_.self_ty); |
| self_contains_private = visitor.contains_private; |
| self_is_public_path = visitor.outer_type_is_public_path; |
| } |
| |
| // Miscellaneous info about the impl: |
| |
| // `true` iff this is `impl Private for ...`. |
| let not_private_trait = impl_.of_trait.as_ref().map_or( |
| true, // no trait counts as public trait |
| |tr| { |
| if let Some(def_id) = tr.path.res.def_id().as_local() { |
| self.trait_is_public(def_id) |
| } else { |
| true // external traits must be public |
| } |
| }, |
| ); |
| |
| // `true` iff this is a trait impl or at least one method is public. |
| // |
| // `impl Public { $( fn ...() {} )* }` is not visible. |
| // |
| // This is required over just using the methods' privacy |
| // directly because we might have `impl<T: Foo<Private>> ...`, |
| // and we shouldn't warn about the generics if all the methods |
| // are private (because `T` won't be visible externally). |
| let trait_or_some_public_method = impl_.of_trait.is_some() |
| || impl_.items.iter().any(|impl_item_ref| { |
| let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); |
| match impl_item.kind { |
| hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..) => self |
| .effective_visibilities |
| .is_reachable(impl_item_ref.id.owner_id.def_id), |
| hir::ImplItemKind::Type(_) => false, |
| } |
| }); |
| |
| if !self_contains_private && not_private_trait && trait_or_some_public_method { |
| intravisit::walk_generics(self, &impl_.generics); |
| |
| match impl_.of_trait { |
| None => { |
| for impl_item_ref in impl_.items { |
| // This is where we choose whether to walk down |
| // further into the impl to check its items. We |
| // should only walk into public items so that we |
| // don't erroneously report errors for private |
| // types in private items. |
| let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); |
| match impl_item.kind { |
| hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..) |
| if self.item_is_public(impl_item.owner_id.def_id) => |
| { |
| intravisit::walk_impl_item(self, impl_item) |
| } |
| hir::ImplItemKind::Type(..) => { |
| intravisit::walk_impl_item(self, impl_item) |
| } |
| _ => {} |
| } |
| } |
| } |
| Some(ref tr) => { |
| // Any private types in a trait impl fall into three |
| // categories. |
| // 1. mentioned in the trait definition |
| // 2. mentioned in the type params/generics |
| // 3. mentioned in the associated types of the impl |
| // |
| // Those in 1. can only occur if the trait is in |
| // this crate and will have been warned about on the |
| // trait definition (there's no need to warn twice |
| // so we don't check the methods). |
| // |
| // Those in 2. are warned via walk_generics and this |
| // call here. |
| intravisit::walk_path(self, tr.path); |
| |
| // Those in 3. are warned with this call. |
| for impl_item_ref in impl_.items { |
| let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); |
| if let hir::ImplItemKind::Type(ty) = impl_item.kind { |
| self.visit_ty(ty); |
| } |
| } |
| } |
| } |
| } else if impl_.of_trait.is_none() && self_is_public_path { |
| // `impl Public<Private> { ... }`. Any public static |
| // methods will be visible as `Public::foo`. |
| let mut found_pub_static = false; |
| for impl_item_ref in impl_.items { |
| if self |
| .effective_visibilities |
| .is_reachable(impl_item_ref.id.owner_id.def_id) |
| || self.tcx.visibility(impl_item_ref.id.owner_id).is_public() |
| { |
| let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); |
| match impl_item_ref.kind { |
| AssocItemKind::Const => { |
| found_pub_static = true; |
| intravisit::walk_impl_item(self, impl_item); |
| } |
| AssocItemKind::Fn { has_self: false } => { |
| found_pub_static = true; |
| intravisit::walk_impl_item(self, impl_item); |
| } |
| _ => {} |
| } |
| } |
| } |
| if found_pub_static { |
| intravisit::walk_generics(self, &impl_.generics) |
| } |
| } |
| return; |
| } |
| |
| // `type ... = ...;` can contain private types, because |
| // we're introducing a new name. |
| hir::ItemKind::TyAlias(..) => return, |
| |
| // Not at all public, so we don't care. |
| _ if !self.item_is_public(item.owner_id.def_id) => { |
| return; |
| } |
| |
| _ => {} |
| } |
| |
| // We've carefully constructed it so that if we're here, then |
| // any `visit_ty`'s will be called on things that are in |
| // public signatures, i.e., things that we're interested in for |
| // this visitor. |
| intravisit::walk_item(self, item); |
| } |
| |
| fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) { |
| for predicate in generics.predicates { |
| match predicate { |
| hir::WherePredicate::BoundPredicate(bound_pred) => { |
| for bound in bound_pred.bounds.iter() { |
| self.check_generic_bound(bound) |
| } |
| } |
| hir::WherePredicate::RegionPredicate(_) => {} |
| hir::WherePredicate::EqPredicate(eq_pred) => { |
| self.visit_ty(eq_pred.rhs_ty); |
| } |
| } |
| } |
| } |
| |
| fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) { |
| if self.effective_visibilities.is_reachable(item.owner_id.def_id) { |
| intravisit::walk_foreign_item(self, item) |
| } |
| } |
| |
| fn visit_ty(&mut self, t: &'tcx hir::Ty<'tcx>) { |
| if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = t.kind { |
| if self.path_is_private_type(path) { |
| self.old_error_set.insert(t.hir_id); |
| } |
| } |
| intravisit::walk_ty(self, t) |
| } |
| |
| fn visit_variant(&mut self, v: &'tcx hir::Variant<'tcx>) { |
| if self.effective_visibilities.is_reachable(self.tcx.hir().local_def_id(v.id)) { |
| self.in_variant = true; |
| intravisit::walk_variant(self, v); |
| self.in_variant = false; |
| } |
| } |
| |
| fn visit_field_def(&mut self, s: &'tcx hir::FieldDef<'tcx>) { |
| let def_id = self.tcx.hir().local_def_id(s.hir_id); |
| let vis = self.tcx.visibility(def_id); |
| if vis.is_public() || self.in_variant { |
| intravisit::walk_field_def(self, s); |
| } |
| } |
| |
| // We don't need to introspect into these at all: an |
| // expression/block context can't possibly contain exported things. |
| // (Making them no-ops stops us from traversing the whole AST without |
| // having to be super careful about our `walk_...` calls above.) |
| fn visit_block(&mut self, _: &'tcx hir::Block<'tcx>) {} |
| fn visit_expr(&mut self, _: &'tcx hir::Expr<'tcx>) {} |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| /// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and |
| /// finds any private components in it. |
| /// PrivateItemsInPublicInterfacesVisitor ensures there are no private types |
| /// and traits in public interfaces. |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| struct SearchInterfaceForPrivateItemsVisitor<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| item_def_id: LocalDefId, |
| /// The visitor checks that each component type is at least this visible. |
| required_visibility: ty::Visibility, |
| has_old_errors: bool, |
| in_assoc_ty: bool, |
| } |
| |
| impl SearchInterfaceForPrivateItemsVisitor<'_> { |
| fn generics(&mut self) -> &mut Self { |
| for param in &self.tcx.generics_of(self.item_def_id).params { |
| match param.kind { |
| GenericParamDefKind::Lifetime => {} |
| GenericParamDefKind::Type { has_default, .. } => { |
| if has_default { |
| self.visit(self.tcx.type_of(param.def_id)); |
| } |
| } |
| // FIXME(generic_const_exprs): May want to look inside const here |
| GenericParamDefKind::Const { .. } => { |
| self.visit(self.tcx.type_of(param.def_id)); |
| } |
| } |
| } |
| self |
| } |
| |
| fn predicates(&mut self) -> &mut Self { |
| // N.B., we use `explicit_predicates_of` and not `predicates_of` |
| // because we don't want to report privacy errors due to where |
| // clauses that the compiler inferred. We only want to |
| // consider the ones that the user wrote. This is important |
| // for the inferred outlives rules; see |
| // `src/test/ui/rfc-2093-infer-outlives/privacy.rs`. |
| self.visit_predicates(self.tcx.explicit_predicates_of(self.item_def_id)); |
| self |
| } |
| |
| fn bounds(&mut self) -> &mut Self { |
| self.visit_predicates(ty::GenericPredicates { |
| parent: None, |
| predicates: self.tcx.explicit_item_bounds(self.item_def_id), |
| }); |
| self |
| } |
| |
| fn ty(&mut self) -> &mut Self { |
| self.visit(self.tcx.type_of(self.item_def_id)); |
| self |
| } |
| |
| fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool { |
| if self.leaks_private_dep(def_id) { |
| self.tcx.emit_spanned_lint( |
| lint::builtin::EXPORTED_PRIVATE_DEPENDENCIES, |
| self.tcx.hir().local_def_id_to_hir_id(self.item_def_id), |
| self.tcx.def_span(self.item_def_id.to_def_id()), |
| FromPrivateDependencyInPublicInterface { |
| kind, |
| descr: descr.into(), |
| krate: self.tcx.crate_name(def_id.krate), |
| }, |
| ); |
| } |
| |
| let Some(local_def_id) = def_id.as_local() else { |
| return false; |
| }; |
| |
| let vis = self.tcx.local_visibility(local_def_id); |
| if !vis.is_at_least(self.required_visibility, self.tcx) { |
| let hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id); |
| let vis_descr = match vis { |
| ty::Visibility::Public => "public", |
| ty::Visibility::Restricted(vis_def_id) => { |
| if vis_def_id == self.tcx.parent_module(hir_id) { |
| "private" |
| } else if vis_def_id.is_top_level_module() { |
| "crate-private" |
| } else { |
| "restricted" |
| } |
| } |
| }; |
| let span = self.tcx.def_span(self.item_def_id.to_def_id()); |
| if self.has_old_errors |
| || self.in_assoc_ty |
| || self.tcx.resolutions(()).has_pub_restricted |
| { |
| let vis_span = self.tcx.def_span(def_id); |
| if kind == "trait" { |
| self.tcx.sess.emit_err(InPublicInterfaceTraits { |
| span, |
| vis_descr, |
| kind, |
| descr: descr.into(), |
| vis_span, |
| }); |
| } else { |
| self.tcx.sess.emit_err(InPublicInterface { |
| span, |
| vis_descr, |
| kind, |
| descr: descr.into(), |
| vis_span, |
| }); |
| } |
| } else { |
| self.tcx.emit_spanned_lint( |
| lint::builtin::PRIVATE_IN_PUBLIC, |
| hir_id, |
| span, |
| PrivateInPublicLint { vis_descr, kind, descr: descr.into() }, |
| ); |
| } |
| } |
| |
| false |
| } |
| |
| /// An item is 'leaked' from a private dependency if all |
| /// of the following are true: |
| /// 1. It's contained within a public type |
| /// 2. It comes from a private crate |
| fn leaks_private_dep(&self, item_id: DefId) -> bool { |
| let ret = self.required_visibility.is_public() && self.tcx.is_private_dep(item_id.krate); |
| |
| debug!("leaks_private_dep(item_id={:?})={}", item_id, ret); |
| ret |
| } |
| } |
| |
| impl<'tcx> DefIdVisitor<'tcx> for SearchInterfaceForPrivateItemsVisitor<'tcx> { |
| fn tcx(&self) -> TyCtxt<'tcx> { |
| self.tcx |
| } |
| fn visit_def_id( |
| &mut self, |
| def_id: DefId, |
| kind: &str, |
| descr: &dyn fmt::Display, |
| ) -> ControlFlow<Self::BreakTy> { |
| if self.check_def_id(def_id, kind, descr) { |
| ControlFlow::BREAK |
| } else { |
| ControlFlow::CONTINUE |
| } |
| } |
| } |
| |
| struct PrivateItemsInPublicInterfacesChecker<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| old_error_set_ancestry: LocalDefIdSet, |
| } |
| |
| impl<'tcx> PrivateItemsInPublicInterfacesChecker<'tcx> { |
| fn check( |
| &self, |
| def_id: LocalDefId, |
| required_visibility: ty::Visibility, |
| ) -> SearchInterfaceForPrivateItemsVisitor<'tcx> { |
| SearchInterfaceForPrivateItemsVisitor { |
| tcx: self.tcx, |
| item_def_id: def_id, |
| required_visibility, |
| has_old_errors: self.old_error_set_ancestry.contains(&def_id), |
| in_assoc_ty: false, |
| } |
| } |
| |
| fn check_assoc_item( |
| &self, |
| def_id: LocalDefId, |
| assoc_item_kind: AssocItemKind, |
| vis: ty::Visibility, |
| ) { |
| let mut check = self.check(def_id, vis); |
| |
| let (check_ty, is_assoc_ty) = match assoc_item_kind { |
| AssocItemKind::Const | AssocItemKind::Fn { .. } => (true, false), |
| AssocItemKind::Type => (self.tcx.impl_defaultness(def_id).has_value(), true), |
| }; |
| check.in_assoc_ty = is_assoc_ty; |
| check.generics().predicates(); |
| if check_ty { |
| check.ty(); |
| } |
| } |
| |
| pub fn check_item(&mut self, id: ItemId) { |
| let tcx = self.tcx; |
| let def_id = id.owner_id.def_id; |
| let item_visibility = tcx.local_visibility(def_id); |
| let def_kind = tcx.def_kind(def_id); |
| |
| match def_kind { |
| DefKind::Const | DefKind::Static(_) | DefKind::Fn | DefKind::TyAlias => { |
| self.check(def_id, item_visibility).generics().predicates().ty(); |
| } |
| DefKind::OpaqueTy => { |
| // `ty()` for opaque types is the underlying type, |
| // it's not a part of interface, so we skip it. |
| self.check(def_id, item_visibility).generics().bounds(); |
| } |
| DefKind::Trait => { |
| let item = tcx.hir().item(id); |
| if let hir::ItemKind::Trait(.., trait_item_refs) = item.kind { |
| self.check(item.owner_id.def_id, item_visibility).generics().predicates(); |
| |
| for trait_item_ref in trait_item_refs { |
| self.check_assoc_item( |
| trait_item_ref.id.owner_id.def_id, |
| trait_item_ref.kind, |
| item_visibility, |
| ); |
| |
| if let AssocItemKind::Type = trait_item_ref.kind { |
| self.check(trait_item_ref.id.owner_id.def_id, item_visibility).bounds(); |
| } |
| } |
| } |
| } |
| DefKind::TraitAlias => { |
| self.check(def_id, item_visibility).generics().predicates(); |
| } |
| DefKind::Enum => { |
| let item = tcx.hir().item(id); |
| if let hir::ItemKind::Enum(ref def, _) = item.kind { |
| self.check(item.owner_id.def_id, item_visibility).generics().predicates(); |
| |
| for variant in def.variants { |
| for field in variant.data.fields() { |
| self.check(self.tcx.hir().local_def_id(field.hir_id), item_visibility) |
| .ty(); |
| } |
| } |
| } |
| } |
| // Subitems of foreign modules have their own publicity. |
| DefKind::ForeignMod => { |
| let item = tcx.hir().item(id); |
| if let hir::ItemKind::ForeignMod { items, .. } = item.kind { |
| for foreign_item in items { |
| let vis = tcx.local_visibility(foreign_item.id.owner_id.def_id); |
| self.check(foreign_item.id.owner_id.def_id, vis) |
| .generics() |
| .predicates() |
| .ty(); |
| } |
| } |
| } |
| // Subitems of structs and unions have their own publicity. |
| DefKind::Struct | DefKind::Union => { |
| let item = tcx.hir().item(id); |
| if let hir::ItemKind::Struct(ref struct_def, _) |
| | hir::ItemKind::Union(ref struct_def, _) = item.kind |
| { |
| self.check(item.owner_id.def_id, item_visibility).generics().predicates(); |
| |
| for field in struct_def.fields() { |
| let def_id = tcx.hir().local_def_id(field.hir_id); |
| let field_visibility = tcx.local_visibility(def_id); |
| self.check(def_id, min(item_visibility, field_visibility, tcx)).ty(); |
| } |
| } |
| } |
| // An inherent impl is public when its type is public |
| // Subitems of inherent impls have their own publicity. |
| // A trait impl is public when both its type and its trait are public |
| // Subitems of trait impls have inherited publicity. |
| DefKind::Impl => { |
| let item = tcx.hir().item(id); |
| if let hir::ItemKind::Impl(ref impl_) = item.kind { |
| let impl_vis = |
| ty::Visibility::of_impl(item.owner_id.def_id, tcx, &Default::default()); |
| // check that private components do not appear in the generics or predicates of inherent impls |
| // this check is intentionally NOT performed for impls of traits, per #90586 |
| if impl_.of_trait.is_none() { |
| self.check(item.owner_id.def_id, impl_vis).generics().predicates(); |
| } |
| for impl_item_ref in impl_.items { |
| let impl_item_vis = if impl_.of_trait.is_none() { |
| min( |
| tcx.local_visibility(impl_item_ref.id.owner_id.def_id), |
| impl_vis, |
| tcx, |
| ) |
| } else { |
| impl_vis |
| }; |
| self.check_assoc_item( |
| impl_item_ref.id.owner_id.def_id, |
| impl_item_ref.kind, |
| impl_item_vis, |
| ); |
| } |
| } |
| } |
| _ => {} |
| } |
| } |
| } |
| |
| pub fn provide(providers: &mut Providers) { |
| *providers = Providers { |
| visibility, |
| effective_visibilities, |
| check_private_in_public, |
| check_mod_privacy, |
| ..*providers |
| }; |
| } |
| |
| fn visibility(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Visibility<DefId> { |
| local_visibility(tcx, def_id.expect_local()).to_def_id() |
| } |
| |
| fn local_visibility(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Visibility { |
| match tcx.resolutions(()).visibilities.get(&def_id) { |
| Some(vis) => *vis, |
| None => { |
| let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); |
| match tcx.hir().get(hir_id) { |
| // Unique types created for closures participate in type privacy checking. |
| // They have visibilities inherited from the module they are defined in. |
| Node::Expr(hir::Expr { kind: hir::ExprKind::Closure{..}, .. }) |
| // - AST lowering creates dummy `use` items which don't |
| // get their entries in the resolver's visibility table. |
| // - AST lowering also creates opaque type items with inherited visibilities. |
| // Visibility on them should have no effect, but to avoid the visibility |
| // query failing on some items, we provide it for opaque types as well. |
| | Node::Item(hir::Item { |
| kind: hir::ItemKind::Use(_, hir::UseKind::ListStem) |
| | hir::ItemKind::OpaqueTy(..), |
| .. |
| }) => ty::Visibility::Restricted(tcx.parent_module(hir_id)), |
| // Visibilities of trait impl items are inherited from their traits |
| // and are not filled in resolve. |
| Node::ImplItem(impl_item) => { |
| match tcx.hir().get_by_def_id(tcx.hir().get_parent_item(hir_id).def_id) { |
| Node::Item(hir::Item { |
| kind: hir::ItemKind::Impl(hir::Impl { of_trait: Some(tr), .. }), |
| .. |
| }) => tr.path.res.opt_def_id().map_or_else( |
| || { |
| tcx.sess.delay_span_bug(tr.path.span, "trait without a def-id"); |
| ty::Visibility::Public |
| }, |
| |def_id| tcx.visibility(def_id).expect_local(), |
| ), |
| _ => span_bug!(impl_item.span, "the parent is not a trait impl"), |
| } |
| } |
| _ => span_bug!( |
| tcx.def_span(def_id), |
| "visibility table unexpectedly missing a def-id: {:?}", |
| def_id, |
| ), |
| } |
| } |
| } |
| } |
| |
| fn check_mod_privacy(tcx: TyCtxt<'_>, module_def_id: LocalDefId) { |
| // Check privacy of names not checked in previous compilation stages. |
| let mut visitor = |
| NamePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: module_def_id }; |
| let (module, span, hir_id) = tcx.hir().get_module(module_def_id); |
| |
| intravisit::walk_mod(&mut visitor, module, hir_id); |
| |
| // Check privacy of explicitly written types and traits as well as |
| // inferred types of expressions and patterns. |
| let mut visitor = |
| TypePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: module_def_id, span }; |
| intravisit::walk_mod(&mut visitor, module, hir_id); |
| } |
| |
| fn effective_visibilities(tcx: TyCtxt<'_>, (): ()) -> &EffectiveVisibilities { |
| // Build up a set of all exported items in the AST. This is a set of all |
| // items which are reachable from external crates based on visibility. |
| let mut visitor = EmbargoVisitor { |
| tcx, |
| effective_visibilities: tcx.resolutions(()).effective_visibilities.clone(), |
| macro_reachable: Default::default(), |
| prev_level: Some(Level::Direct), |
| changed: false, |
| }; |
| |
| loop { |
| tcx.hir().walk_toplevel_module(&mut visitor); |
| if visitor.changed { |
| visitor.changed = false; |
| } else { |
| break; |
| } |
| } |
| |
| let mut check_visitor = |
| TestReachabilityVisitor { tcx, effective_visibilities: &visitor.effective_visibilities }; |
| tcx.hir().visit_all_item_likes_in_crate(&mut check_visitor); |
| |
| tcx.arena.alloc(visitor.effective_visibilities) |
| } |
| |
| fn check_private_in_public(tcx: TyCtxt<'_>, (): ()) { |
| let effective_visibilities = tcx.effective_visibilities(()); |
| |
| let mut visitor = ObsoleteVisiblePrivateTypesVisitor { |
| tcx, |
| effective_visibilities, |
| in_variant: false, |
| old_error_set: Default::default(), |
| }; |
| tcx.hir().walk_toplevel_module(&mut visitor); |
| |
| let mut old_error_set_ancestry = HirIdSet::default(); |
| for mut id in visitor.old_error_set.iter().copied() { |
| loop { |
| if !old_error_set_ancestry.insert(id) { |
| break; |
| } |
| let parent = tcx.hir().get_parent_node(id); |
| if parent == id { |
| break; |
| } |
| id = parent; |
| } |
| } |
| |
| // Check for private types and traits in public interfaces. |
| let mut checker = PrivateItemsInPublicInterfacesChecker { |
| tcx, |
| // Only definition IDs are ever searched in `old_error_set_ancestry`, |
| // so we can filter away all non-definition IDs at this point. |
| old_error_set_ancestry: old_error_set_ancestry |
| .into_iter() |
| .filter_map(|hir_id| tcx.hir().opt_local_def_id(hir_id)) |
| .collect(), |
| }; |
| |
| for id in tcx.hir().items() { |
| checker.check_item(id); |
| } |
| } |