blob: 15b89daa6db11162770a48d0e9ed0565f45d4c98 [file] [log] [blame]
//! The implementation of the query system itself. This defines the macros that
//! generate the actual methods on tcx which find and execute the provider,
//! manage the caches, and so forth.
use crate::dep_graph::{DepContext, DepNode, DepNodeIndex, DepNodeParams};
use crate::query::caches::QueryCache;
use crate::query::config::{QueryDescription, QueryVTable};
use crate::query::job::{report_cycle, QueryInfo, QueryJob, QueryJobId, QueryJobInfo};
use crate::query::{QueryContext, QueryMap, QuerySideEffects, QueryStackFrame};
use crate::values::Value;
use crate::HandleCycleError;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
#[cfg(parallel_compiler)]
use rustc_data_structures::profiling::TimingGuard;
#[cfg(parallel_compiler)]
use rustc_data_structures::sharded::Sharded;
use rustc_data_structures::sync::Lock;
use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed, FatalError};
use rustc_session::Session;
use rustc_span::{Span, DUMMY_SP};
use std::cell::Cell;
use std::collections::hash_map::Entry;
use std::fmt::Debug;
use std::hash::Hash;
use std::mem;
use std::ptr;
use thin_vec::ThinVec;
pub struct QueryState<K> {
#[cfg(parallel_compiler)]
active: Sharded<FxHashMap<K, QueryResult>>,
#[cfg(not(parallel_compiler))]
active: Lock<FxHashMap<K, QueryResult>>,
}
/// Indicates the state of a query for a given key in a query map.
enum QueryResult {
/// An already executing query. The query job can be used to await for its completion.
Started(QueryJob),
/// The query panicked. Queries trying to wait on this will raise a fatal error which will
/// silently panic.
Poisoned,
}
impl<K> QueryState<K>
where
K: Eq + Hash + Clone + Debug,
{
pub fn all_inactive(&self) -> bool {
#[cfg(parallel_compiler)]
{
let shards = self.active.lock_shards();
shards.iter().all(|shard| shard.is_empty())
}
#[cfg(not(parallel_compiler))]
{
self.active.lock().is_empty()
}
}
pub fn try_collect_active_jobs<CTX: Copy>(
&self,
tcx: CTX,
make_query: fn(CTX, K) -> QueryStackFrame,
jobs: &mut QueryMap,
) -> Option<()> {
#[cfg(parallel_compiler)]
{
// We use try_lock_shards here since we are called from the
// deadlock handler, and this shouldn't be locked.
let shards = self.active.try_lock_shards()?;
for shard in shards.iter() {
for (k, v) in shard.iter() {
if let QueryResult::Started(ref job) = *v {
let query = make_query(tcx, k.clone());
jobs.insert(job.id, QueryJobInfo { query, job: job.clone() });
}
}
}
}
#[cfg(not(parallel_compiler))]
{
// We use try_lock here since we are called from the
// deadlock handler, and this shouldn't be locked.
// (FIXME: Is this relevant for non-parallel compilers? It doesn't
// really hurt much.)
for (k, v) in self.active.try_lock()?.iter() {
if let QueryResult::Started(ref job) = *v {
let query = make_query(tcx, k.clone());
jobs.insert(job.id, QueryJobInfo { query, job: job.clone() });
}
}
}
Some(())
}
}
impl<K> Default for QueryState<K> {
fn default() -> QueryState<K> {
QueryState { active: Default::default() }
}
}
/// A type representing the responsibility to execute the job in the `job` field.
/// This will poison the relevant query if dropped.
struct JobOwner<'tcx, K>
where
K: Eq + Hash + Clone,
{
state: &'tcx QueryState<K>,
key: K,
id: QueryJobId,
}
#[cold]
#[inline(never)]
fn mk_cycle<CTX, V, R>(
tcx: CTX,
cycle_error: CycleError,
handler: HandleCycleError,
cache: &dyn crate::query::QueryStorage<Value = V, Stored = R>,
) -> R
where
CTX: QueryContext,
V: std::fmt::Debug + Value<CTX::DepContext>,
R: Clone,
{
let error = report_cycle(tcx.dep_context().sess(), &cycle_error);
let value = handle_cycle_error(*tcx.dep_context(), &cycle_error, error, handler);
cache.store_nocache(value)
}
fn handle_cycle_error<CTX, V>(
tcx: CTX,
cycle_error: &CycleError,
mut error: DiagnosticBuilder<'_, ErrorGuaranteed>,
handler: HandleCycleError,
) -> V
where
CTX: DepContext,
V: Value<CTX>,
{
use HandleCycleError::*;
match handler {
Error => {
error.emit();
Value::from_cycle_error(tcx, &cycle_error.cycle)
}
Fatal => {
error.emit();
tcx.sess().abort_if_errors();
unreachable!()
}
DelayBug => {
error.delay_as_bug();
Value::from_cycle_error(tcx, &cycle_error.cycle)
}
}
}
impl<'tcx, K> JobOwner<'tcx, K>
where
K: Eq + Hash + Clone,
{
/// Either gets a `JobOwner` corresponding the query, allowing us to
/// start executing the query, or returns with the result of the query.
/// This function assumes that `try_get_cached` is already called and returned `lookup`.
/// If the query is executing elsewhere, this will wait for it and return the result.
/// If the query panicked, this will silently panic.
///
/// This function is inlined because that results in a noticeable speed-up
/// for some compile-time benchmarks.
#[inline(always)]
fn try_start<'b, CTX>(
tcx: &'b CTX,
state: &'b QueryState<K>,
span: Span,
key: K,
) -> TryGetJob<'b, K>
where
CTX: QueryContext,
{
#[cfg(parallel_compiler)]
let mut state_lock = state.active.get_shard_by_value(&key).lock();
#[cfg(not(parallel_compiler))]
let mut state_lock = state.active.lock();
let lock = &mut *state_lock;
match lock.entry(key) {
Entry::Vacant(entry) => {
let id = tcx.next_job_id();
let job = tcx.current_query_job();
let job = QueryJob::new(id, span, job);
let key = entry.key().clone();
entry.insert(QueryResult::Started(job));
let owner = JobOwner { state, id, key };
return TryGetJob::NotYetStarted(owner);
}
Entry::Occupied(mut entry) => {
match entry.get_mut() {
#[cfg(not(parallel_compiler))]
QueryResult::Started(job) => {
let id = job.id;
drop(state_lock);
// If we are single-threaded we know that we have cycle error,
// so we just return the error.
return TryGetJob::Cycle(id.find_cycle_in_stack(
tcx.try_collect_active_jobs().unwrap(),
&tcx.current_query_job(),
span,
));
}
#[cfg(parallel_compiler)]
QueryResult::Started(job) => {
// For parallel queries, we'll block and wait until the query running
// in another thread has completed. Record how long we wait in the
// self-profiler.
let query_blocked_prof_timer = tcx.dep_context().profiler().query_blocked();
// Get the latch out
let latch = job.latch();
drop(state_lock);
// With parallel queries we might just have to wait on some other
// thread.
let result = latch.wait_on(tcx.current_query_job(), span);
match result {
Ok(()) => TryGetJob::JobCompleted(query_blocked_prof_timer),
Err(cycle) => TryGetJob::Cycle(cycle),
}
}
QueryResult::Poisoned => FatalError.raise(),
}
}
}
}
/// Completes the query by updating the query cache with the `result`,
/// signals the waiter and forgets the JobOwner, so it won't poison the query
fn complete<C>(self, cache: &C, result: C::Value, dep_node_index: DepNodeIndex) -> C::Stored
where
C: QueryCache<Key = K>,
{
// We can move out of `self` here because we `mem::forget` it below
let key = unsafe { ptr::read(&self.key) };
let state = self.state;
// Forget ourself so our destructor won't poison the query
mem::forget(self);
let (job, result) = {
let job = {
#[cfg(parallel_compiler)]
let mut lock = state.active.get_shard_by_value(&key).lock();
#[cfg(not(parallel_compiler))]
let mut lock = state.active.lock();
match lock.remove(&key).unwrap() {
QueryResult::Started(job) => job,
QueryResult::Poisoned => panic!(),
}
};
let result = cache.complete(key, result, dep_node_index);
(job, result)
};
job.signal_complete();
result
}
}
impl<'tcx, K> Drop for JobOwner<'tcx, K>
where
K: Eq + Hash + Clone,
{
#[inline(never)]
#[cold]
fn drop(&mut self) {
// Poison the query so jobs waiting on it panic.
let state = self.state;
let job = {
#[cfg(parallel_compiler)]
let mut shard = state.active.get_shard_by_value(&self.key).lock();
#[cfg(not(parallel_compiler))]
let mut shard = state.active.lock();
let job = match shard.remove(&self.key).unwrap() {
QueryResult::Started(job) => job,
QueryResult::Poisoned => panic!(),
};
shard.insert(self.key.clone(), QueryResult::Poisoned);
job
};
// Also signal the completion of the job, so waiters
// will continue execution.
job.signal_complete();
}
}
#[derive(Clone)]
pub(crate) struct CycleError {
/// The query and related span that uses the cycle.
pub usage: Option<(Span, QueryStackFrame)>,
pub cycle: Vec<QueryInfo>,
}
/// The result of `try_start`.
enum TryGetJob<'tcx, K>
where
K: Eq + Hash + Clone,
{
/// The query is not yet started. Contains a guard to the cache eventually used to start it.
NotYetStarted(JobOwner<'tcx, K>),
/// The query was already completed.
/// Returns the result of the query and its dep-node index
/// if it succeeded or a cycle error if it failed.
#[cfg(parallel_compiler)]
JobCompleted(TimingGuard<'tcx>),
/// Trying to execute the query resulted in a cycle.
Cycle(CycleError),
}
/// Checks if the query is already computed and in the cache.
/// It returns the shard index and a lock guard to the shard,
/// which will be used if the query is not in the cache and we need
/// to compute it.
#[inline]
pub fn try_get_cached<'a, CTX, C, R, OnHit>(
tcx: CTX,
cache: &'a C,
key: &C::Key,
// `on_hit` can be called while holding a lock to the query cache
on_hit: OnHit,
) -> Result<R, ()>
where
C: QueryCache,
CTX: DepContext,
OnHit: FnOnce(&C::Stored) -> R,
{
cache.lookup(&key, |value, index| {
if std::intrinsics::unlikely(tcx.profiler().enabled()) {
tcx.profiler().query_cache_hit(index.into());
}
tcx.dep_graph().read_index(index);
on_hit(value)
})
}
fn try_execute_query<CTX, C>(
tcx: CTX,
state: &QueryState<C::Key>,
cache: &C,
span: Span,
key: C::Key,
dep_node: Option<DepNode<CTX::DepKind>>,
query: &QueryVTable<CTX, C::Key, C::Value>,
) -> (C::Stored, Option<DepNodeIndex>)
where
C: QueryCache,
C::Key: Clone + DepNodeParams<CTX::DepContext>,
C::Value: Value<CTX::DepContext>,
CTX: QueryContext,
{
match JobOwner::<'_, C::Key>::try_start(&tcx, state, span, key.clone()) {
TryGetJob::NotYetStarted(job) => {
let (result, dep_node_index) = execute_job(tcx, key, dep_node, query, job.id);
let result = job.complete(cache, result, dep_node_index);
(result, Some(dep_node_index))
}
TryGetJob::Cycle(error) => {
let result = mk_cycle(tcx, error, query.handle_cycle_error, cache);
(result, None)
}
#[cfg(parallel_compiler)]
TryGetJob::JobCompleted(query_blocked_prof_timer) => {
let (v, index) = cache
.lookup(&key, |value, index| (value.clone(), index))
.unwrap_or_else(|_| panic!("value must be in cache after waiting"));
if std::intrinsics::unlikely(tcx.dep_context().profiler().enabled()) {
tcx.dep_context().profiler().query_cache_hit(index.into());
}
query_blocked_prof_timer.finish_with_query_invocation_id(index.into());
(v, Some(index))
}
}
}
fn execute_job<CTX, K, V>(
tcx: CTX,
key: K,
mut dep_node_opt: Option<DepNode<CTX::DepKind>>,
query: &QueryVTable<CTX, K, V>,
job_id: QueryJobId,
) -> (V, DepNodeIndex)
where
K: Clone + DepNodeParams<CTX::DepContext>,
V: Debug,
CTX: QueryContext,
{
let dep_graph = tcx.dep_context().dep_graph();
// Fast path for when incr. comp. is off.
if !dep_graph.is_fully_enabled() {
let prof_timer = tcx.dep_context().profiler().query_provider();
let result = tcx.start_query(job_id, query.depth_limit, None, || {
query.compute(*tcx.dep_context(), key)
});
let dep_node_index = dep_graph.next_virtual_depnode_index();
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
return (result, dep_node_index);
}
if !query.anon && !query.eval_always {
// `to_dep_node` is expensive for some `DepKind`s.
let dep_node =
dep_node_opt.get_or_insert_with(|| query.to_dep_node(*tcx.dep_context(), &key));
// The diagnostics for this query will be promoted to the current session during
// `try_mark_green()`, so we can ignore them here.
if let Some(ret) = tcx.start_query(job_id, false, None, || {
try_load_from_disk_and_cache_in_memory(tcx, &key, &dep_node, query)
}) {
return ret;
}
}
let prof_timer = tcx.dep_context().profiler().query_provider();
let diagnostics = Lock::new(ThinVec::new());
let (result, dep_node_index) =
tcx.start_query(job_id, query.depth_limit, Some(&diagnostics), || {
if query.anon {
return dep_graph.with_anon_task(*tcx.dep_context(), query.dep_kind, || {
query.compute(*tcx.dep_context(), key)
});
}
// `to_dep_node` is expensive for some `DepKind`s.
let dep_node =
dep_node_opt.unwrap_or_else(|| query.to_dep_node(*tcx.dep_context(), &key));
dep_graph.with_task(dep_node, *tcx.dep_context(), key, query.compute, query.hash_result)
});
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
let diagnostics = diagnostics.into_inner();
let side_effects = QuerySideEffects { diagnostics };
if std::intrinsics::unlikely(!side_effects.is_empty()) {
if query.anon {
tcx.store_side_effects_for_anon_node(dep_node_index, side_effects);
} else {
tcx.store_side_effects(dep_node_index, side_effects);
}
}
(result, dep_node_index)
}
fn try_load_from_disk_and_cache_in_memory<CTX, K, V>(
tcx: CTX,
key: &K,
dep_node: &DepNode<CTX::DepKind>,
query: &QueryVTable<CTX, K, V>,
) -> Option<(V, DepNodeIndex)>
where
K: Clone,
CTX: QueryContext,
V: Debug,
{
// Note this function can be called concurrently from the same query
// We must ensure that this is handled correctly.
let dep_graph = tcx.dep_context().dep_graph();
let (prev_dep_node_index, dep_node_index) = dep_graph.try_mark_green(tcx, &dep_node)?;
debug_assert!(dep_graph.is_green(dep_node));
// First we try to load the result from the on-disk cache.
// Some things are never cached on disk.
if let Some(try_load_from_disk) = query.try_load_from_disk {
let prof_timer = tcx.dep_context().profiler().incr_cache_loading();
// The call to `with_query_deserialization` enforces that no new `DepNodes`
// are created during deserialization. See the docs of that method for more
// details.
let result =
dep_graph.with_query_deserialization(|| try_load_from_disk(tcx, prev_dep_node_index));
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
if let Some(result) = result {
if std::intrinsics::unlikely(
tcx.dep_context().sess().opts.unstable_opts.query_dep_graph,
) {
dep_graph.mark_debug_loaded_from_disk(*dep_node)
}
let prev_fingerprint = tcx
.dep_context()
.dep_graph()
.prev_fingerprint_of(dep_node)
.unwrap_or(Fingerprint::ZERO);
// If `-Zincremental-verify-ich` is specified, re-hash results from
// the cache and make sure that they have the expected fingerprint.
//
// If not, we still seek to verify a subset of fingerprints loaded
// from disk. Re-hashing results is fairly expensive, so we can't
// currently afford to verify every hash. This subset should still
// give us some coverage of potential bugs though.
let try_verify = prev_fingerprint.as_value().1 % 32 == 0;
if std::intrinsics::unlikely(
try_verify || tcx.dep_context().sess().opts.unstable_opts.incremental_verify_ich,
) {
incremental_verify_ich(*tcx.dep_context(), &result, dep_node, query);
}
return Some((result, dep_node_index));
}
// We always expect to find a cached result for things that
// can be forced from `DepNode`.
debug_assert!(
!tcx.dep_context().fingerprint_style(dep_node.kind).reconstructible(),
"missing on-disk cache entry for {:?}",
dep_node
);
}
// We could not load a result from the on-disk cache, so
// recompute.
let prof_timer = tcx.dep_context().profiler().query_provider();
// The dep-graph for this computation is already in-place.
let result = dep_graph.with_ignore(|| query.compute(*tcx.dep_context(), key.clone()));
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
// Verify that re-running the query produced a result with the expected hash
// This catches bugs in query implementations, turning them into ICEs.
// For example, a query might sort its result by `DefId` - since `DefId`s are
// not stable across compilation sessions, the result could get up getting sorted
// in a different order when the query is re-run, even though all of the inputs
// (e.g. `DefPathHash` values) were green.
//
// See issue #82920 for an example of a miscompilation that would get turned into
// an ICE by this check
incremental_verify_ich(*tcx.dep_context(), &result, dep_node, query);
Some((result, dep_node_index))
}
fn incremental_verify_ich<CTX, K, V: Debug>(
tcx: CTX::DepContext,
result: &V,
dep_node: &DepNode<CTX::DepKind>,
query: &QueryVTable<CTX, K, V>,
) where
CTX: QueryContext,
{
assert!(
tcx.dep_graph().is_green(dep_node),
"fingerprint for green query instance not loaded from cache: {:?}",
dep_node,
);
debug!("BEGIN verify_ich({:?})", dep_node);
let new_hash = query.hash_result.map_or(Fingerprint::ZERO, |f| {
tcx.with_stable_hashing_context(|mut hcx| f(&mut hcx, result))
});
let old_hash = tcx.dep_graph().prev_fingerprint_of(dep_node);
debug!("END verify_ich({:?})", dep_node);
if Some(new_hash) != old_hash {
incremental_verify_ich_cold(tcx.sess(), DebugArg::from(&dep_node), DebugArg::from(&result));
}
}
// This DebugArg business is largely a mirror of std::fmt::ArgumentV1, which is
// currently not exposed publicly.
//
// The PR which added this attempted to use `&dyn Debug` instead, but that
// showed statistically significant worse compiler performance. It's not
// actually clear what the cause there was -- the code should be cold. If this
// can be replaced with `&dyn Debug` with on perf impact, then it probably
// should be.
extern "C" {
type Opaque;
}
struct DebugArg<'a> {
value: &'a Opaque,
fmt: fn(&Opaque, &mut std::fmt::Formatter<'_>) -> std::fmt::Result,
}
impl<'a, T> From<&'a T> for DebugArg<'a>
where
T: std::fmt::Debug,
{
fn from(value: &'a T) -> DebugArg<'a> {
DebugArg {
value: unsafe { std::mem::transmute(value) },
fmt: unsafe {
std::mem::transmute(<T as std::fmt::Debug>::fmt as fn(_, _) -> std::fmt::Result)
},
}
}
}
impl std::fmt::Debug for DebugArg<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
(self.fmt)(self.value, f)
}
}
// Note that this is marked #[cold] and intentionally takes the equivalent of
// `dyn Debug` for its arguments, as we want to avoid generating a bunch of
// different implementations for LLVM to chew on (and filling up the final
// binary, too).
#[cold]
fn incremental_verify_ich_cold(sess: &Session, dep_node: DebugArg<'_>, result: DebugArg<'_>) {
let run_cmd = if let Some(crate_name) = &sess.opts.crate_name {
format!("`cargo clean -p {}` or `cargo clean`", crate_name)
} else {
"`cargo clean`".to_string()
};
// When we emit an error message and panic, we try to debug-print the `DepNode`
// and query result. Unfortunately, this can cause us to run additional queries,
// which may result in another fingerprint mismatch while we're in the middle
// of processing this one. To avoid a double-panic (which kills the process
// before we can print out the query static), we print out a terse
// but 'safe' message if we detect a re-entrant call to this method.
thread_local! {
static INSIDE_VERIFY_PANIC: Cell<bool> = const { Cell::new(false) };
};
let old_in_panic = INSIDE_VERIFY_PANIC.with(|in_panic| in_panic.replace(true));
if old_in_panic {
sess.emit_err(crate::error::Reentrant);
} else {
sess.emit_err(crate::error::IncrementCompilation {
run_cmd,
dep_node: format!("{:?}", dep_node),
});
panic!("Found unstable fingerprints for {:?}: {:?}", dep_node, result);
}
INSIDE_VERIFY_PANIC.with(|in_panic| in_panic.set(old_in_panic));
}
/// Ensure that either this query has all green inputs or been executed.
/// Executing `query::ensure(D)` is considered a read of the dep-node `D`.
/// Returns true if the query should still run.
///
/// This function is particularly useful when executing passes for their
/// side-effects -- e.g., in order to report errors for erroneous programs.
///
/// Note: The optimization is only available during incr. comp.
#[inline(never)]
fn ensure_must_run<CTX, K, V>(
tcx: CTX,
key: &K,
query: &QueryVTable<CTX, K, V>,
) -> (bool, Option<DepNode<CTX::DepKind>>)
where
K: crate::dep_graph::DepNodeParams<CTX::DepContext>,
CTX: QueryContext,
{
if query.eval_always {
return (true, None);
}
// Ensuring an anonymous query makes no sense
assert!(!query.anon);
let dep_node = query.to_dep_node(*tcx.dep_context(), key);
let dep_graph = tcx.dep_context().dep_graph();
match dep_graph.try_mark_green(tcx, &dep_node) {
None => {
// A None return from `try_mark_green` means that this is either
// a new dep node or that the dep node has already been marked red.
// Either way, we can't call `dep_graph.read()` as we don't have the
// DepNodeIndex. We must invoke the query itself. The performance cost
// this introduces should be negligible as we'll immediately hit the
// in-memory cache, or another query down the line will.
(true, Some(dep_node))
}
Some((_, dep_node_index)) => {
dep_graph.read_index(dep_node_index);
tcx.dep_context().profiler().query_cache_hit(dep_node_index.into());
(false, None)
}
}
}
#[derive(Debug)]
pub enum QueryMode {
Get,
Ensure,
}
pub fn get_query<Q, CTX>(tcx: CTX, span: Span, key: Q::Key, mode: QueryMode) -> Option<Q::Stored>
where
Q: QueryDescription<CTX>,
Q::Key: DepNodeParams<CTX::DepContext>,
Q::Value: Value<CTX::DepContext>,
CTX: QueryContext,
{
let query = Q::make_vtable(tcx, &key);
let dep_node = if let QueryMode::Ensure = mode {
let (must_run, dep_node) = ensure_must_run(tcx, &key, &query);
if !must_run {
return None;
}
dep_node
} else {
None
};
let (result, dep_node_index) = try_execute_query(
tcx,
Q::query_state(tcx),
Q::query_cache(tcx),
span,
key,
dep_node,
&query,
);
if let Some(dep_node_index) = dep_node_index {
tcx.dep_context().dep_graph().read_index(dep_node_index)
}
Some(result)
}
pub fn force_query<Q, CTX>(tcx: CTX, key: Q::Key, dep_node: DepNode<CTX::DepKind>)
where
Q: QueryDescription<CTX>,
Q::Key: DepNodeParams<CTX::DepContext>,
Q::Value: Value<CTX::DepContext>,
CTX: QueryContext,
{
// We may be concurrently trying both execute and force a query.
// Ensure that only one of them runs the query.
let cache = Q::query_cache(tcx);
let cached = cache.lookup(&key, |_, index| {
if std::intrinsics::unlikely(tcx.dep_context().profiler().enabled()) {
tcx.dep_context().profiler().query_cache_hit(index.into());
}
});
match cached {
Ok(()) => return,
Err(()) => {}
}
let query = Q::make_vtable(tcx, &key);
let state = Q::query_state(tcx);
debug_assert!(!query.anon);
try_execute_query(tcx, state, cache, DUMMY_SP, key, Some(dep_node), &query);
}