| use crate::HashStableContext; |
| use rustc_data_structures::fingerprint::Fingerprint; |
| use rustc_data_structures::stable_hasher::{HashStable, StableHasher, ToStableHashKey}; |
| use rustc_data_structures::AtomicRef; |
| use rustc_index::vec::Idx; |
| use rustc_macros::HashStable_Generic; |
| use rustc_serialize::{Decodable, Decoder, Encodable, Encoder}; |
| use std::borrow::Borrow; |
| use std::fmt; |
| use std::hash::{Hash, Hasher}; |
| |
| rustc_index::newtype_index! { |
| pub struct CrateNum { |
| ENCODABLE = custom |
| DEBUG_FORMAT = "crate{}" |
| } |
| } |
| |
| /// Item definitions in the currently-compiled crate would have the `CrateNum` |
| /// `LOCAL_CRATE` in their `DefId`. |
| pub const LOCAL_CRATE: CrateNum = CrateNum::from_u32(0); |
| |
| impl CrateNum { |
| #[inline] |
| pub fn new(x: usize) -> CrateNum { |
| CrateNum::from_usize(x) |
| } |
| |
| #[inline] |
| pub fn as_def_id(self) -> DefId { |
| DefId { krate: self, index: CRATE_DEF_INDEX } |
| } |
| } |
| |
| impl fmt::Display for CrateNum { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(&self.private, f) |
| } |
| } |
| |
| /// As a local identifier, a `CrateNum` is only meaningful within its context, e.g. within a tcx. |
| /// Therefore, make sure to include the context when encode a `CrateNum`. |
| impl<E: Encoder> Encodable<E> for CrateNum { |
| default fn encode(&self, s: &mut E) { |
| s.emit_u32(self.as_u32()); |
| } |
| } |
| |
| impl<D: Decoder> Decodable<D> for CrateNum { |
| default fn decode(d: &mut D) -> CrateNum { |
| CrateNum::from_u32(d.read_u32()) |
| } |
| } |
| |
| /// A `DefPathHash` is a fixed-size representation of a `DefPath` that is |
| /// stable across crate and compilation session boundaries. It consists of two |
| /// separate 64-bit hashes. The first uniquely identifies the crate this |
| /// `DefPathHash` originates from (see [StableCrateId]), and the second |
| /// uniquely identifies the corresponding `DefPath` within that crate. Together |
| /// they form a unique identifier within an entire crate graph. |
| /// |
| /// There is a very small chance of hash collisions, which would mean that two |
| /// different `DefPath`s map to the same `DefPathHash`. Proceeding compilation |
| /// with such a hash collision would very probably lead to an ICE, and in the |
| /// worst case lead to a silent mis-compilation. The compiler therefore actively |
| /// and exhaustively checks for such hash collisions and aborts compilation if |
| /// it finds one. |
| /// |
| /// `DefPathHash` uses 64-bit hashes for both the crate-id part and the |
| /// crate-internal part, even though it is likely that there are many more |
| /// `LocalDefId`s in a single crate than there are individual crates in a crate |
| /// graph. Since we use the same number of bits in both cases, the collision |
| /// probability for the crate-local part will be quite a bit higher (though |
| /// still very small). |
| /// |
| /// This imbalance is not by accident: A hash collision in the |
| /// crate-local part of a `DefPathHash` will be detected and reported while |
| /// compiling the crate in question. Such a collision does not depend on |
| /// outside factors and can be easily fixed by the crate maintainer (e.g. by |
| /// renaming the item in question or by bumping the crate version in a harmless |
| /// way). |
| /// |
| /// A collision between crate-id hashes on the other hand is harder to fix |
| /// because it depends on the set of crates in the entire crate graph of a |
| /// compilation session. Again, using the same crate with a different version |
| /// number would fix the issue with a high probability -- but that might be |
| /// easier said then done if the crates in questions are dependencies of |
| /// third-party crates. |
| /// |
| /// That being said, given a high quality hash function, the collision |
| /// probabilities in question are very small. For example, for a big crate like |
| /// `rustc_middle` (with ~50000 `LocalDefId`s as of the time of writing) there |
| /// is a probability of roughly 1 in 14,750,000,000 of a crate-internal |
| /// collision occurring. For a big crate graph with 1000 crates in it, there is |
| /// a probability of 1 in 36,890,000,000,000 of a `StableCrateId` collision. |
| #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug)] |
| #[derive(HashStable_Generic, Encodable, Decodable)] |
| pub struct DefPathHash(pub Fingerprint); |
| |
| impl DefPathHash { |
| /// Returns the [StableCrateId] identifying the crate this [DefPathHash] |
| /// originates from. |
| #[inline] |
| pub fn stable_crate_id(&self) -> StableCrateId { |
| StableCrateId(self.0.as_value().0) |
| } |
| |
| /// Returns the crate-local part of the [DefPathHash]. |
| /// |
| /// Used for tests. |
| #[inline] |
| pub fn local_hash(&self) -> u64 { |
| self.0.as_value().1 |
| } |
| |
| /// Builds a new [DefPathHash] with the given [StableCrateId] and |
| /// `local_hash`, where `local_hash` must be unique within its crate. |
| pub fn new(stable_crate_id: StableCrateId, local_hash: u64) -> DefPathHash { |
| DefPathHash(Fingerprint::new(stable_crate_id.0, local_hash)) |
| } |
| } |
| |
| impl Borrow<Fingerprint> for DefPathHash { |
| #[inline] |
| fn borrow(&self) -> &Fingerprint { |
| &self.0 |
| } |
| } |
| |
| /// A [`StableCrateId`] is a 64-bit hash of a crate name, together with all |
| /// `-Cmetadata` arguments, and some other data. It is to [`CrateNum`] what [`DefPathHash`] is to |
| /// [`DefId`]. It is stable across compilation sessions. |
| /// |
| /// Since the ID is a hash value, there is a small chance that two crates |
| /// end up with the same [`StableCrateId`]. The compiler will check for such |
| /// collisions when loading crates and abort compilation in order to avoid |
| /// further trouble. |
| /// |
| /// For more information on the possibility of hash collisions in rustc, |
| /// see the discussion in [`DefId`]. |
| #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug)] |
| #[derive(HashStable_Generic, Encodable, Decodable)] |
| pub struct StableCrateId(pub(crate) u64); |
| |
| impl StableCrateId { |
| pub fn to_u64(self) -> u64 { |
| self.0 |
| } |
| |
| /// Computes the stable ID for a crate with the given name and |
| /// `-Cmetadata` arguments. |
| pub fn new(crate_name: &str, is_exe: bool, mut metadata: Vec<String>) -> StableCrateId { |
| let mut hasher = StableHasher::new(); |
| crate_name.hash(&mut hasher); |
| |
| // We don't want the stable crate ID to depend on the order of |
| // -C metadata arguments, so sort them: |
| metadata.sort(); |
| // Every distinct -C metadata value is only incorporated once: |
| metadata.dedup(); |
| |
| hasher.write(b"metadata"); |
| for s in &metadata { |
| // Also incorporate the length of a metadata string, so that we generate |
| // different values for `-Cmetadata=ab -Cmetadata=c` and |
| // `-Cmetadata=a -Cmetadata=bc` |
| hasher.write_usize(s.len()); |
| hasher.write(s.as_bytes()); |
| } |
| |
| // Also incorporate crate type, so that we don't get symbol conflicts when |
| // linking against a library of the same name, if this is an executable. |
| hasher.write(if is_exe { b"exe" } else { b"lib" }); |
| |
| // Also incorporate the rustc version. Otherwise, with -Zsymbol-mangling-version=v0 |
| // and no -Cmetadata, symbols from the same crate compiled with different versions of |
| // rustc are named the same. |
| // |
| // RUSTC_FORCE_RUSTC_VERSION is used to inject rustc version information |
| // during testing. |
| if let Some(val) = std::env::var_os("RUSTC_FORCE_RUSTC_VERSION") { |
| hasher.write(val.to_string_lossy().into_owned().as_bytes()) |
| } else { |
| hasher.write(option_env!("CFG_VERSION").unwrap_or("unknown version").as_bytes()); |
| } |
| |
| StableCrateId(hasher.finish()) |
| } |
| } |
| |
| rustc_index::newtype_index! { |
| /// A DefIndex is an index into the hir-map for a crate, identifying a |
| /// particular definition. It should really be considered an interned |
| /// shorthand for a particular DefPath. |
| pub struct DefIndex { |
| ENCODABLE = custom // (only encodable in metadata) |
| |
| DEBUG_FORMAT = "DefIndex({})", |
| /// The crate root is always assigned index 0 by the AST Map code, |
| /// thanks to `NodeCollector::new`. |
| const CRATE_DEF_INDEX = 0, |
| } |
| } |
| |
| impl<E: Encoder> Encodable<E> for DefIndex { |
| default fn encode(&self, _: &mut E) { |
| panic!("cannot encode `DefIndex` with `{}`", std::any::type_name::<E>()); |
| } |
| } |
| |
| impl<D: Decoder> Decodable<D> for DefIndex { |
| default fn decode(_: &mut D) -> DefIndex { |
| panic!("cannot decode `DefIndex` with `{}`", std::any::type_name::<D>()); |
| } |
| } |
| |
| /// A `DefId` identifies a particular *definition*, by combining a crate |
| /// index and a def index. |
| /// |
| /// You can create a `DefId` from a `LocalDefId` using `local_def_id.to_def_id()`. |
| #[derive(Clone, PartialEq, Eq, Copy)] |
| // Don't derive order on 64-bit big-endian, so we can be consistent regardless of field order. |
| #[cfg_attr(not(all(target_pointer_width = "64", target_endian = "big")), derive(PartialOrd, Ord))] |
| // On below-64 bit systems we can simply use the derived `Hash` impl |
| #[cfg_attr(not(target_pointer_width = "64"), derive(Hash))] |
| #[repr(C)] |
| #[rustc_pass_by_value] |
| // We guarantee field order. Note that the order is essential here, see below why. |
| pub struct DefId { |
| // cfg-ing the order of fields so that the `DefIndex` which is high entropy always ends up in |
| // the lower bits no matter the endianness. This allows the compiler to turn that `Hash` impl |
| // into a direct call to 'u64::hash(_)`. |
| #[cfg(not(all(target_pointer_width = "64", target_endian = "big")))] |
| pub index: DefIndex, |
| pub krate: CrateNum, |
| #[cfg(all(target_pointer_width = "64", target_endian = "big"))] |
| pub index: DefIndex, |
| } |
| |
| // On 64-bit systems, we can hash the whole `DefId` as one `u64` instead of two `u32`s. This |
| // improves performance without impairing `FxHash` quality. So the below code gets compiled to a |
| // noop on little endian systems because the memory layout of `DefId` is as follows: |
| // |
| // ``` |
| // +-1--------------31-+-32-------------63-+ |
| // ! index ! krate ! |
| // +-------------------+-------------------+ |
| // ``` |
| // |
| // The order here has direct impact on `FxHash` quality because we have far more `DefIndex` per |
| // crate than we have `Crate`s within one compilation. Or in other words, this arrangement puts |
| // more entropy in the low bits than the high bits. The reason this matters is that `FxHash`, which |
| // is used throughout rustc, has problems distributing the entropy from the high bits, so reversing |
| // the order would lead to a large number of collisions and thus far worse performance. |
| // |
| // On 64-bit big-endian systems, this compiles to a 64-bit rotation by 32 bits, which is still |
| // faster than another `FxHash` round. |
| #[cfg(target_pointer_width = "64")] |
| impl Hash for DefId { |
| fn hash<H: Hasher>(&self, h: &mut H) { |
| (((self.krate.as_u32() as u64) << 32) | (self.index.as_u32() as u64)).hash(h) |
| } |
| } |
| |
| // Implement the same comparison as derived with the other field order. |
| #[cfg(all(target_pointer_width = "64", target_endian = "big"))] |
| impl Ord for DefId { |
| #[inline] |
| fn cmp(&self, other: &DefId) -> std::cmp::Ordering { |
| Ord::cmp(&(self.index, self.krate), &(other.index, other.krate)) |
| } |
| } |
| #[cfg(all(target_pointer_width = "64", target_endian = "big"))] |
| impl PartialOrd for DefId { |
| #[inline] |
| fn partial_cmp(&self, other: &DefId) -> Option<std::cmp::Ordering> { |
| Some(Ord::cmp(self, other)) |
| } |
| } |
| |
| impl DefId { |
| /// Makes a local `DefId` from the given `DefIndex`. |
| #[inline] |
| pub fn local(index: DefIndex) -> DefId { |
| DefId { krate: LOCAL_CRATE, index } |
| } |
| |
| /// Returns whether the item is defined in the crate currently being compiled. |
| #[inline] |
| pub fn is_local(self) -> bool { |
| self.krate == LOCAL_CRATE |
| } |
| |
| #[inline] |
| pub fn as_local(self) -> Option<LocalDefId> { |
| if self.is_local() { Some(LocalDefId { local_def_index: self.index }) } else { None } |
| } |
| |
| #[inline] |
| #[track_caller] |
| pub fn expect_local(self) -> LocalDefId { |
| // NOTE: `match` below is required to apply `#[track_caller]`, |
| // i.e. don't use closures. |
| match self.as_local() { |
| Some(local_def_id) => local_def_id, |
| None => panic!("DefId::expect_local: `{:?}` isn't local", self), |
| } |
| } |
| |
| #[inline] |
| pub fn is_crate_root(self) -> bool { |
| self.index == CRATE_DEF_INDEX |
| } |
| |
| #[inline] |
| pub fn as_crate_root(self) -> Option<CrateNum> { |
| if self.is_crate_root() { Some(self.krate) } else { None } |
| } |
| |
| #[inline] |
| pub fn is_top_level_module(self) -> bool { |
| self.is_local() && self.is_crate_root() |
| } |
| } |
| |
| impl From<LocalDefId> for DefId { |
| fn from(local: LocalDefId) -> DefId { |
| local.to_def_id() |
| } |
| } |
| |
| impl<E: Encoder> Encodable<E> for DefId { |
| default fn encode(&self, s: &mut E) { |
| self.krate.encode(s); |
| self.index.encode(s); |
| } |
| } |
| |
| impl<D: Decoder> Decodable<D> for DefId { |
| default fn decode(d: &mut D) -> DefId { |
| DefId { krate: Decodable::decode(d), index: Decodable::decode(d) } |
| } |
| } |
| |
| pub fn default_def_id_debug(def_id: DefId, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_struct("DefId").field("krate", &def_id.krate).field("index", &def_id.index).finish() |
| } |
| |
| pub static DEF_ID_DEBUG: AtomicRef<fn(DefId, &mut fmt::Formatter<'_>) -> fmt::Result> = |
| AtomicRef::new(&(default_def_id_debug as fn(_, &mut fmt::Formatter<'_>) -> _)); |
| |
| impl fmt::Debug for DefId { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| (*DEF_ID_DEBUG)(*self, f) |
| } |
| } |
| |
| rustc_data_structures::define_id_collections!(DefIdMap, DefIdSet, DefIdMapEntry, DefId); |
| |
| /// A `LocalDefId` is equivalent to a `DefId` with `krate == LOCAL_CRATE`. Since |
| /// we encode this information in the type, we can ensure at compile time that |
| /// no `DefId`s from upstream crates get thrown into the mix. There are quite a |
| /// few cases where we know that only `DefId`s from the local crate are expected; |
| /// a `DefId` from a different crate would signify a bug somewhere. This |
| /// is when `LocalDefId` comes in handy. |
| #[derive(Clone, Copy, PartialEq, Eq, Hash)] |
| pub struct LocalDefId { |
| pub local_def_index: DefIndex, |
| } |
| |
| // To ensure correctness of incremental compilation, |
| // `LocalDefId` must not implement `Ord` or `PartialOrd`. |
| // See https://github.com/rust-lang/rust/issues/90317. |
| impl !Ord for LocalDefId {} |
| impl !PartialOrd for LocalDefId {} |
| |
| pub const CRATE_DEF_ID: LocalDefId = LocalDefId { local_def_index: CRATE_DEF_INDEX }; |
| |
| impl Idx for LocalDefId { |
| #[inline] |
| fn new(idx: usize) -> Self { |
| LocalDefId { local_def_index: Idx::new(idx) } |
| } |
| #[inline] |
| fn index(self) -> usize { |
| self.local_def_index.index() |
| } |
| } |
| |
| impl LocalDefId { |
| #[inline] |
| pub fn to_def_id(self) -> DefId { |
| DefId { krate: LOCAL_CRATE, index: self.local_def_index } |
| } |
| |
| #[inline] |
| pub fn is_top_level_module(self) -> bool { |
| self == CRATE_DEF_ID |
| } |
| } |
| |
| impl fmt::Debug for LocalDefId { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| self.to_def_id().fmt(f) |
| } |
| } |
| |
| impl<E: Encoder> Encodable<E> for LocalDefId { |
| fn encode(&self, s: &mut E) { |
| self.to_def_id().encode(s); |
| } |
| } |
| |
| impl<D: Decoder> Decodable<D> for LocalDefId { |
| fn decode(d: &mut D) -> LocalDefId { |
| DefId::decode(d).expect_local() |
| } |
| } |
| |
| rustc_data_structures::define_id_collections!( |
| LocalDefIdMap, |
| LocalDefIdSet, |
| LocalDefIdMapEntry, |
| LocalDefId |
| ); |
| |
| impl<CTX: HashStableContext> HashStable<CTX> for DefId { |
| #[inline] |
| fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) { |
| self.to_stable_hash_key(hcx).hash_stable(hcx, hasher); |
| } |
| } |
| |
| impl<CTX: HashStableContext> HashStable<CTX> for LocalDefId { |
| #[inline] |
| fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) { |
| self.to_stable_hash_key(hcx).hash_stable(hcx, hasher); |
| } |
| } |
| |
| impl<CTX: HashStableContext> HashStable<CTX> for CrateNum { |
| #[inline] |
| fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) { |
| self.to_stable_hash_key(hcx).hash_stable(hcx, hasher); |
| } |
| } |
| |
| impl<CTX: HashStableContext> ToStableHashKey<CTX> for DefId { |
| type KeyType = DefPathHash; |
| |
| #[inline] |
| fn to_stable_hash_key(&self, hcx: &CTX) -> DefPathHash { |
| hcx.def_path_hash(*self) |
| } |
| } |
| |
| impl<CTX: HashStableContext> ToStableHashKey<CTX> for LocalDefId { |
| type KeyType = DefPathHash; |
| |
| #[inline] |
| fn to_stable_hash_key(&self, hcx: &CTX) -> DefPathHash { |
| hcx.def_path_hash(self.to_def_id()) |
| } |
| } |
| |
| impl<CTX: HashStableContext> ToStableHashKey<CTX> for CrateNum { |
| type KeyType = DefPathHash; |
| |
| #[inline] |
| fn to_stable_hash_key(&self, hcx: &CTX) -> DefPathHash { |
| self.as_def_id().to_stable_hash_key(hcx) |
| } |
| } |