| // Spans are encoded using 1-bit tag and 2 different encoding formats (one for each tag value). |
| // One format is used for keeping span data inline, |
| // another contains index into an out-of-line span interner. |
| // The encoding format for inline spans were obtained by optimizing over crates in rustc/libstd. |
| // See https://internals.rust-lang.org/t/rfc-compiler-refactoring-spans/1357/28 |
| |
| use crate::def_id::LocalDefId; |
| use crate::hygiene::SyntaxContext; |
| use crate::SPAN_TRACK; |
| use crate::{BytePos, SpanData}; |
| |
| use rustc_data_structures::fx::FxIndexSet; |
| |
| /// A compressed span. |
| /// |
| /// Whereas [`SpanData`] is 12 bytes, which is a bit too big to stick everywhere, `Span` |
| /// is a form that only takes up 8 bytes, with less space for the length and |
| /// context. The vast majority (99.9%+) of `SpanData` instances will fit within |
| /// those 8 bytes; any `SpanData` whose fields don't fit into a `Span` are |
| /// stored in a separate interner table, and the `Span` will index into that |
| /// table. Interning is rare enough that the cost is low, but common enough |
| /// that the code is exercised regularly. |
| /// |
| /// An earlier version of this code used only 4 bytes for `Span`, but that was |
| /// slower because only 80--90% of spans could be stored inline (even less in |
| /// very large crates) and so the interner was used a lot more. |
| /// |
| /// Inline (compressed) format: |
| /// - `span.base_or_index == span_data.lo` |
| /// - `span.len_or_tag == len == span_data.hi - span_data.lo` (must be `<= MAX_LEN`) |
| /// - `span.ctxt_or_tag == span_data.ctxt` (must be `<= MAX_CTXT`) |
| /// |
| /// Interned format with inline `SyntaxContext`: |
| /// - `span.base_or_index == index` (indexes into the interner table) |
| /// - `span.len_or_tag == LEN_TAG` (high bit set, all other bits are zero) |
| /// - `span.ctxt_or_tag == span_data.ctxt` (must be `<= MAX_CTXT`) |
| /// |
| /// Interned format: |
| /// - `span.base_or_index == index` (indexes into the interner table) |
| /// - `span.len_or_tag == LEN_TAG` (high bit set, all other bits are zero) |
| /// - `span.ctxt_or_tag == CTXT_TAG` |
| /// |
| /// The inline form uses 0 for the tag value (rather than 1) so that we don't |
| /// need to mask out the tag bit when getting the length, and so that the |
| /// dummy span can be all zeroes. |
| /// |
| /// Notes about the choice of field sizes: |
| /// - `base` is 32 bits in both `Span` and `SpanData`, which means that `base` |
| /// values never cause interning. The number of bits needed for `base` |
| /// depends on the crate size. 32 bits allows up to 4 GiB of code in a crate. |
| /// - `len` is 15 bits in `Span` (a u16, minus 1 bit for the tag) and 32 bits |
| /// in `SpanData`, which means that large `len` values will cause interning. |
| /// The number of bits needed for `len` does not depend on the crate size. |
| /// The most common numbers of bits for `len` are from 0 to 7, with a peak usually |
| /// at 3 or 4, and then it drops off quickly from 8 onwards. 15 bits is enough |
| /// for 99.99%+ of cases, but larger values (sometimes 20+ bits) might occur |
| /// dozens of times in a typical crate. |
| /// - `ctxt_or_tag` is 16 bits in `Span` and 32 bits in `SpanData`, which means that |
| /// large `ctxt` values will cause interning. The number of bits needed for |
| /// `ctxt` values depend partly on the crate size and partly on the form of |
| /// the code. No crates in `rustc-perf` need more than 15 bits for `ctxt_or_tag`, |
| /// but larger crates might need more than 16 bits. |
| /// |
| /// In order to reliably use parented spans in incremental compilation, |
| /// the dependency to the parent definition's span. This is performed |
| /// using the callback `SPAN_TRACK` to access the query engine. |
| /// |
| #[derive(Clone, Copy, Eq, PartialEq, Hash)] |
| #[rustc_pass_by_value] |
| pub struct Span { |
| base_or_index: u32, |
| len_or_tag: u16, |
| ctxt_or_tag: u16, |
| } |
| |
| const LEN_TAG: u16 = 0b1000_0000_0000_0000; |
| const MAX_LEN: u32 = 0b0111_1111_1111_1111; |
| const CTXT_TAG: u32 = 0b1111_1111_1111_1111; |
| const MAX_CTXT: u32 = CTXT_TAG - 1; |
| |
| /// Dummy span, both position and length are zero, syntax context is zero as well. |
| pub const DUMMY_SP: Span = Span { base_or_index: 0, len_or_tag: 0, ctxt_or_tag: 0 }; |
| |
| impl Span { |
| #[inline] |
| pub fn new( |
| mut lo: BytePos, |
| mut hi: BytePos, |
| ctxt: SyntaxContext, |
| parent: Option<LocalDefId>, |
| ) -> Self { |
| if lo > hi { |
| std::mem::swap(&mut lo, &mut hi); |
| } |
| |
| let (base, len, ctxt2) = (lo.0, hi.0 - lo.0, ctxt.as_u32()); |
| |
| if len <= MAX_LEN && ctxt2 <= MAX_CTXT && parent.is_none() { |
| // Inline format. |
| Span { base_or_index: base, len_or_tag: len as u16, ctxt_or_tag: ctxt2 as u16 } |
| } else { |
| // Interned format. |
| let index = |
| with_span_interner(|interner| interner.intern(&SpanData { lo, hi, ctxt, parent })); |
| let ctxt_or_tag = if ctxt2 <= MAX_CTXT { ctxt2 } else { CTXT_TAG } as u16; |
| Span { base_or_index: index, len_or_tag: LEN_TAG, ctxt_or_tag } |
| } |
| } |
| |
| #[inline] |
| pub fn data(self) -> SpanData { |
| let data = self.data_untracked(); |
| if let Some(parent) = data.parent { |
| (*SPAN_TRACK)(parent); |
| } |
| data |
| } |
| |
| /// Internal function to translate between an encoded span and the expanded representation. |
| /// This function must not be used outside the incremental engine. |
| #[inline] |
| pub fn data_untracked(self) -> SpanData { |
| if self.len_or_tag != LEN_TAG { |
| // Inline format. |
| debug_assert!(self.len_or_tag as u32 <= MAX_LEN); |
| SpanData { |
| lo: BytePos(self.base_or_index), |
| hi: BytePos(self.base_or_index + self.len_or_tag as u32), |
| ctxt: SyntaxContext::from_u32(self.ctxt_or_tag as u32), |
| parent: None, |
| } |
| } else { |
| // Interned format. |
| let index = self.base_or_index; |
| with_span_interner(|interner| interner.spans[index as usize]) |
| } |
| } |
| |
| /// This function is used as a fast path when decoding the full `SpanData` is not necessary. |
| #[inline] |
| pub fn ctxt(self) -> SyntaxContext { |
| let ctxt_or_tag = self.ctxt_or_tag as u32; |
| if ctxt_or_tag <= MAX_CTXT { |
| // Inline format or interned format with inline ctxt. |
| SyntaxContext::from_u32(ctxt_or_tag) |
| } else { |
| // Interned format. |
| let index = self.base_or_index; |
| with_span_interner(|interner| interner.spans[index as usize].ctxt) |
| } |
| } |
| } |
| |
| #[derive(Default)] |
| pub struct SpanInterner { |
| spans: FxIndexSet<SpanData>, |
| } |
| |
| impl SpanInterner { |
| fn intern(&mut self, span_data: &SpanData) -> u32 { |
| let (index, _) = self.spans.insert_full(*span_data); |
| index as u32 |
| } |
| } |
| |
| // If an interner exists, return it. Otherwise, prepare a fresh one. |
| #[inline] |
| fn with_span_interner<T, F: FnOnce(&mut SpanInterner) -> T>(f: F) -> T { |
| crate::with_session_globals(|session_globals| f(&mut *session_globals.span_interner.lock())) |
| } |