blob: 84038625fb2792038f5243d02584f737d34645b2 [file] [log] [blame]
//! Checking that constant values used in types can be successfully evaluated.
//!
//! For concrete constants, this is fairly simple as we can just try and evaluate it.
//!
//! When dealing with polymorphic constants, for example `std::mem::size_of::<T>() - 1`,
//! this is not as easy.
//!
//! In this case we try to build an abstract representation of this constant using
//! `thir_abstract_const` which can then be checked for structural equality with other
//! generic constants mentioned in the `caller_bounds` of the current environment.
use rustc_errors::ErrorGuaranteed;
use rustc_infer::infer::InferCtxt;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::ty::abstract_const::{
walk_abstract_const, AbstractConst, FailureKind, Node, NotConstEvaluatable,
};
use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
use rustc_span::Span;
use std::iter;
use std::ops::ControlFlow;
pub struct ConstUnifyCtxt<'tcx> {
pub tcx: TyCtxt<'tcx>,
pub param_env: ty::ParamEnv<'tcx>,
}
impl<'tcx> ConstUnifyCtxt<'tcx> {
// Substitutes generics repeatedly to allow AbstractConsts to unify where a
// ConstKind::Unevaluated could be turned into an AbstractConst that would unify e.g.
// Param(N) should unify with Param(T), substs: [Unevaluated("T2", [Unevaluated("T3", [Param(N)])])]
#[inline]
#[instrument(skip(self), level = "debug")]
fn try_replace_substs_in_root(
&self,
mut abstr_const: AbstractConst<'tcx>,
) -> Option<AbstractConst<'tcx>> {
while let Node::Leaf(ct) = abstr_const.root(self.tcx) {
match AbstractConst::from_const(self.tcx, ct) {
Ok(Some(act)) => abstr_const = act,
Ok(None) => break,
Err(_) => return None,
}
}
Some(abstr_const)
}
/// Tries to unify two abstract constants using structural equality.
#[instrument(skip(self), level = "debug")]
pub fn try_unify(&self, a: AbstractConst<'tcx>, b: AbstractConst<'tcx>) -> bool {
let a = if let Some(a) = self.try_replace_substs_in_root(a) {
a
} else {
return true;
};
let b = if let Some(b) = self.try_replace_substs_in_root(b) {
b
} else {
return true;
};
let a_root = a.root(self.tcx);
let b_root = b.root(self.tcx);
debug!(?a_root, ?b_root);
match (a_root, b_root) {
(Node::Leaf(a_ct), Node::Leaf(b_ct)) => {
let a_ct = a_ct.eval(self.tcx, self.param_env);
debug!("a_ct evaluated: {:?}", a_ct);
let b_ct = b_ct.eval(self.tcx, self.param_env);
debug!("b_ct evaluated: {:?}", b_ct);
if a_ct.ty() != b_ct.ty() {
return false;
}
match (a_ct.kind(), b_ct.kind()) {
// We can just unify errors with everything to reduce the amount of
// emitted errors here.
(ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true,
(ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => {
a_param == b_param
}
(ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
// If we have `fn a<const N: usize>() -> [u8; N + 1]` and `fn b<const M: usize>() -> [u8; 1 + M]`
// we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This
// means that we only allow inference variables if they are equal.
(ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val,
// We expand generic anonymous constants at the start of this function, so this
// branch should only be taking when dealing with associated constants, at
// which point directly comparing them seems like the desired behavior.
//
// FIXME(generic_const_exprs): This isn't actually the case.
// We also take this branch for concrete anonymous constants and
// expand generic anonymous constants with concrete substs.
(ty::ConstKind::Unevaluated(a_uv), ty::ConstKind::Unevaluated(b_uv)) => {
a_uv == b_uv
}
// FIXME(generic_const_exprs): We may want to either actually try
// to evaluate `a_ct` and `b_ct` if they are fully concrete or something like
// this, for now we just return false here.
_ => false,
}
}
(Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => {
self.try_unify(a.subtree(al), b.subtree(bl))
&& self.try_unify(a.subtree(ar), b.subtree(br))
}
(Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => {
self.try_unify(a.subtree(av), b.subtree(bv))
}
(Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args))
if a_args.len() == b_args.len() =>
{
self.try_unify(a.subtree(a_f), b.subtree(b_f))
&& iter::zip(a_args, b_args)
.all(|(&an, &bn)| self.try_unify(a.subtree(an), b.subtree(bn)))
}
(Node::Cast(a_kind, a_operand, a_ty), Node::Cast(b_kind, b_operand, b_ty))
if (a_ty == b_ty) && (a_kind == b_kind) =>
{
self.try_unify(a.subtree(a_operand), b.subtree(b_operand))
}
// use this over `_ => false` to make adding variants to `Node` less error prone
(Node::Cast(..), _)
| (Node::FunctionCall(..), _)
| (Node::UnaryOp(..), _)
| (Node::Binop(..), _)
| (Node::Leaf(..), _) => false,
}
}
}
#[instrument(skip(tcx), level = "debug")]
pub fn try_unify_abstract_consts<'tcx>(
tcx: TyCtxt<'tcx>,
(a, b): (ty::UnevaluatedConst<'tcx>, ty::UnevaluatedConst<'tcx>),
param_env: ty::ParamEnv<'tcx>,
) -> bool {
(|| {
if let Some(a) = AbstractConst::new(tcx, a)? {
if let Some(b) = AbstractConst::new(tcx, b)? {
let const_unify_ctxt = ConstUnifyCtxt { tcx, param_env };
return Ok(const_unify_ctxt.try_unify(a, b));
}
}
Ok(false)
})()
.unwrap_or_else(|_: ErrorGuaranteed| true)
// FIXME(generic_const_exprs): We should instead have this
// method return the resulting `ty::Const` and return `ConstKind::Error`
// on `ErrorGuaranteed`.
}
/// Check if a given constant can be evaluated.
#[instrument(skip(infcx), level = "debug")]
pub fn is_const_evaluatable<'tcx>(
infcx: &InferCtxt<'tcx>,
ct: ty::Const<'tcx>,
param_env: ty::ParamEnv<'tcx>,
span: Span,
) -> Result<(), NotConstEvaluatable> {
let tcx = infcx.tcx;
let uv = match ct.kind() {
ty::ConstKind::Unevaluated(uv) => uv,
ty::ConstKind::Param(_)
| ty::ConstKind::Bound(_, _)
| ty::ConstKind::Placeholder(_)
| ty::ConstKind::Value(_)
| ty::ConstKind::Error(_) => return Ok(()),
ty::ConstKind::Infer(_) => return Err(NotConstEvaluatable::MentionsInfer),
};
if tcx.features().generic_const_exprs {
if let Some(ct) = AbstractConst::new(tcx, uv)? {
if satisfied_from_param_env(tcx, ct, param_env)? {
return Ok(());
}
match ct.unify_failure_kind(tcx) {
FailureKind::MentionsInfer => {
return Err(NotConstEvaluatable::MentionsInfer);
}
FailureKind::MentionsParam => {
return Err(NotConstEvaluatable::MentionsParam);
}
// returned below
FailureKind::Concrete => {}
}
}
let concrete = infcx.const_eval_resolve(param_env, uv, Some(span));
match concrete {
Err(ErrorHandled::TooGeneric) => {
Err(NotConstEvaluatable::Error(infcx.tcx.sess.delay_span_bug(
span,
format!("Missing value for constant, but no error reported?"),
)))
}
Err(ErrorHandled::Linted) => {
let reported = infcx
.tcx
.sess
.delay_span_bug(span, "constant in type had error reported as lint");
Err(NotConstEvaluatable::Error(reported))
}
Err(ErrorHandled::Reported(e)) => Err(NotConstEvaluatable::Error(e)),
Ok(_) => Ok(()),
}
} else {
// FIXME: We should only try to evaluate a given constant here if it is fully concrete
// as we don't want to allow things like `[u8; std::mem::size_of::<*mut T>()]`.
//
// We previously did not check this, so we only emit a future compat warning if
// const evaluation succeeds and the given constant is still polymorphic for now
// and hopefully soon change this to an error.
//
// See #74595 for more details about this.
let concrete = infcx.const_eval_resolve(param_env, uv, Some(span));
match concrete {
// If we're evaluating a foreign constant, under a nightly compiler without generic
// const exprs, AND it would've passed if that expression had been evaluated with
// generic const exprs, then suggest using generic const exprs.
Err(_) if tcx.sess.is_nightly_build()
&& let Ok(Some(ct)) = AbstractConst::new(tcx, uv)
&& satisfied_from_param_env(tcx, ct, param_env) == Ok(true) => {
tcx.sess
.struct_span_fatal(
// Slightly better span than just using `span` alone
if span == rustc_span::DUMMY_SP { tcx.def_span(uv.def.did) } else { span },
"failed to evaluate generic const expression",
)
.note("the crate this constant originates from uses `#![feature(generic_const_exprs)]`")
.span_suggestion_verbose(
rustc_span::DUMMY_SP,
"consider enabling this feature",
"#![feature(generic_const_exprs)]\n",
rustc_errors::Applicability::MaybeIncorrect,
)
.emit()
}
Err(ErrorHandled::TooGeneric) => {
let err = if uv.has_non_region_infer() {
NotConstEvaluatable::MentionsInfer
} else if uv.has_non_region_param() {
NotConstEvaluatable::MentionsParam
} else {
let guar = infcx.tcx.sess.delay_span_bug(span, format!("Missing value for constant, but no error reported?"));
NotConstEvaluatable::Error(guar)
};
Err(err)
},
Err(ErrorHandled::Linted) => {
let reported =
infcx.tcx.sess.delay_span_bug(span, "constant in type had error reported as lint");
Err(NotConstEvaluatable::Error(reported))
}
Err(ErrorHandled::Reported(e)) => Err(NotConstEvaluatable::Error(e)),
Ok(_) => Ok(()),
}
}
}
#[instrument(skip(tcx), level = "debug")]
fn satisfied_from_param_env<'tcx>(
tcx: TyCtxt<'tcx>,
ct: AbstractConst<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Result<bool, NotConstEvaluatable> {
for pred in param_env.caller_bounds() {
match pred.kind().skip_binder() {
ty::PredicateKind::ConstEvaluatable(uv) => {
if let Some(b_ct) = AbstractConst::from_const(tcx, uv)? {
let const_unify_ctxt = ConstUnifyCtxt { tcx, param_env };
// Try to unify with each subtree in the AbstractConst to allow for
// `N + 1` being const evaluatable even if theres only a `ConstEvaluatable`
// predicate for `(N + 1) * 2`
let result = walk_abstract_const(tcx, b_ct, |b_ct| {
match const_unify_ctxt.try_unify(ct, b_ct) {
true => ControlFlow::BREAK,
false => ControlFlow::CONTINUE,
}
});
if let ControlFlow::Break(()) = result {
debug!("is_const_evaluatable: abstract_const ~~> ok");
return Ok(true);
}
}
}
_ => {} // don't care
}
}
Ok(false)
}