| //! Trait Resolution. See the [rustc dev guide] for more information on how this works. |
| //! |
| //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html |
| |
| pub mod auto_trait; |
| mod chalk_fulfill; |
| pub mod codegen; |
| mod coherence; |
| pub mod const_evaluatable; |
| mod engine; |
| pub mod error_reporting; |
| mod fulfill; |
| pub mod misc; |
| mod object_safety; |
| mod on_unimplemented; |
| pub mod outlives_bounds; |
| mod project; |
| pub mod query; |
| pub(crate) mod relationships; |
| mod select; |
| mod specialize; |
| mod structural_match; |
| mod util; |
| pub mod wf; |
| |
| use crate::errors::DumpVTableEntries; |
| use crate::infer::outlives::env::OutlivesEnvironment; |
| use crate::infer::{InferCtxt, TyCtxtInferExt}; |
| use crate::traits::error_reporting::TypeErrCtxtExt as _; |
| use crate::traits::query::evaluate_obligation::InferCtxtExt as _; |
| use rustc_errors::ErrorGuaranteed; |
| use rustc_hir as hir; |
| use rustc_hir::def_id::DefId; |
| use rustc_hir::lang_items::LangItem; |
| use rustc_infer::traits::TraitEngineExt as _; |
| use rustc_middle::ty::fold::TypeFoldable; |
| use rustc_middle::ty::visit::TypeVisitable; |
| use rustc_middle::ty::{ |
| self, DefIdTree, GenericParamDefKind, ToPredicate, Ty, TyCtxt, TypeSuperVisitable, VtblEntry, |
| }; |
| use rustc_middle::ty::{InternalSubsts, SubstsRef}; |
| use rustc_span::{sym, Span}; |
| use smallvec::SmallVec; |
| |
| use std::fmt::Debug; |
| use std::ops::ControlFlow; |
| |
| pub use self::FulfillmentErrorCode::*; |
| pub use self::ImplSource::*; |
| pub use self::ObligationCauseCode::*; |
| pub use self::SelectionError::*; |
| |
| pub use self::coherence::{add_placeholder_note, orphan_check, overlapping_impls}; |
| pub use self::coherence::{OrphanCheckErr, OverlapResult}; |
| pub use self::engine::{ObligationCtxt, TraitEngineExt}; |
| pub use self::fulfill::{FulfillmentContext, PendingPredicateObligation}; |
| pub use self::object_safety::astconv_object_safety_violations; |
| pub use self::object_safety::is_vtable_safe_method; |
| pub use self::object_safety::MethodViolationCode; |
| pub use self::object_safety::ObjectSafetyViolation; |
| pub use self::on_unimplemented::{OnUnimplementedDirective, OnUnimplementedNote}; |
| pub use self::project::{normalize, normalize_projection_type, normalize_to}; |
| pub use self::select::{EvaluationCache, SelectionCache, SelectionContext}; |
| pub use self::select::{EvaluationResult, IntercrateAmbiguityCause, OverflowError}; |
| pub use self::specialize::specialization_graph::FutureCompatOverlapError; |
| pub use self::specialize::specialization_graph::FutureCompatOverlapErrorKind; |
| pub use self::specialize::{specialization_graph, translate_substs, OverlapError}; |
| pub use self::structural_match::{ |
| search_for_adt_const_param_violation, search_for_structural_match_violation, |
| }; |
| pub use self::util::{ |
| elaborate_obligations, elaborate_predicates, elaborate_predicates_with_span, |
| elaborate_trait_ref, elaborate_trait_refs, |
| }; |
| pub use self::util::{expand_trait_aliases, TraitAliasExpander}; |
| pub use self::util::{ |
| get_vtable_index_of_object_method, impl_item_is_final, predicate_for_trait_def, upcast_choices, |
| }; |
| pub use self::util::{ |
| supertrait_def_ids, supertraits, transitive_bounds, transitive_bounds_that_define_assoc_type, |
| SupertraitDefIds, Supertraits, |
| }; |
| |
| pub use self::chalk_fulfill::FulfillmentContext as ChalkFulfillmentContext; |
| |
| pub use rustc_infer::traits::*; |
| |
| /// Whether to skip the leak check, as part of a future compatibility warning step. |
| /// |
| /// The "default" for skip-leak-check corresponds to the current |
| /// behavior (do not skip the leak check) -- not the behavior we are |
| /// transitioning into. |
| #[derive(Copy, Clone, PartialEq, Eq, Debug, Default)] |
| pub enum SkipLeakCheck { |
| Yes, |
| #[default] |
| No, |
| } |
| |
| impl SkipLeakCheck { |
| fn is_yes(self) -> bool { |
| self == SkipLeakCheck::Yes |
| } |
| } |
| |
| /// The mode that trait queries run in. |
| #[derive(Copy, Clone, PartialEq, Eq, Debug)] |
| pub enum TraitQueryMode { |
| /// Standard/un-canonicalized queries get accurate |
| /// spans etc. passed in and hence can do reasonable |
| /// error reporting on their own. |
| Standard, |
| /// Canonicalized queries get dummy spans and hence |
| /// must generally propagate errors to |
| /// pre-canonicalization callsites. |
| Canonical, |
| } |
| |
| /// Creates predicate obligations from the generic bounds. |
| pub fn predicates_for_generics<'tcx>( |
| cause: impl Fn(usize, Span) -> ObligationCause<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| generic_bounds: ty::InstantiatedPredicates<'tcx>, |
| ) -> impl Iterator<Item = PredicateObligation<'tcx>> { |
| let generic_bounds = generic_bounds; |
| debug!("predicates_for_generics(generic_bounds={:?})", generic_bounds); |
| |
| std::iter::zip(generic_bounds.predicates, generic_bounds.spans).enumerate().map( |
| move |(idx, (predicate, span))| Obligation { |
| cause: cause(idx, span), |
| recursion_depth: 0, |
| param_env, |
| predicate, |
| }, |
| ) |
| } |
| |
| /// Determines whether the type `ty` is known to meet `bound` and |
| /// returns true if so. Returns false if `ty` either does not meet |
| /// `bound` or is not known to meet bound (note that this is |
| /// conservative towards *no impl*, which is the opposite of the |
| /// `evaluate` methods). |
| pub fn type_known_to_meet_bound_modulo_regions<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ty: Ty<'tcx>, |
| def_id: DefId, |
| span: Span, |
| ) -> bool { |
| debug!( |
| "type_known_to_meet_bound_modulo_regions(ty={:?}, bound={:?})", |
| ty, |
| infcx.tcx.def_path_str(def_id) |
| ); |
| |
| let trait_ref = |
| ty::Binder::dummy(ty::TraitRef { def_id, substs: infcx.tcx.mk_substs_trait(ty, &[]) }); |
| let obligation = Obligation { |
| param_env, |
| cause: ObligationCause::misc(span, hir::CRATE_HIR_ID), |
| recursion_depth: 0, |
| predicate: trait_ref.without_const().to_predicate(infcx.tcx), |
| }; |
| |
| let result = infcx.predicate_must_hold_modulo_regions(&obligation); |
| debug!( |
| "type_known_to_meet_ty={:?} bound={} => {:?}", |
| ty, |
| infcx.tcx.def_path_str(def_id), |
| result |
| ); |
| |
| if result && ty.has_non_region_infer() { |
| // Because of inference "guessing", selection can sometimes claim |
| // to succeed while the success requires a guess. To ensure |
| // this function's result remains infallible, we must confirm |
| // that guess. While imperfect, I believe this is sound. |
| |
| // We can use a dummy node-id here because we won't pay any mind |
| // to region obligations that arise (there shouldn't really be any |
| // anyhow). |
| let cause = ObligationCause::misc(span, hir::CRATE_HIR_ID); |
| |
| // The handling of regions in this area of the code is terrible, |
| // see issue #29149. We should be able to improve on this with |
| // NLL. |
| let errors = fully_solve_bound(infcx, cause, param_env, ty, def_id); |
| |
| // Note: we only assume something is `Copy` if we can |
| // *definitively* show that it implements `Copy`. Otherwise, |
| // assume it is move; linear is always ok. |
| match &errors[..] { |
| [] => { |
| debug!( |
| "type_known_to_meet_bound_modulo_regions: ty={:?} bound={} success", |
| ty, |
| infcx.tcx.def_path_str(def_id) |
| ); |
| true |
| } |
| errors => { |
| debug!( |
| ?ty, |
| bound = %infcx.tcx.def_path_str(def_id), |
| ?errors, |
| "type_known_to_meet_bound_modulo_regions" |
| ); |
| false |
| } |
| } |
| } else { |
| result |
| } |
| } |
| |
| #[instrument(level = "debug", skip(tcx, elaborated_env))] |
| fn do_normalize_predicates<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| cause: ObligationCause<'tcx>, |
| elaborated_env: ty::ParamEnv<'tcx>, |
| predicates: Vec<ty::Predicate<'tcx>>, |
| ) -> Result<Vec<ty::Predicate<'tcx>>, ErrorGuaranteed> { |
| let span = cause.span; |
| // FIXME. We should really... do something with these region |
| // obligations. But this call just continues the older |
| // behavior (i.e., doesn't cause any new bugs), and it would |
| // take some further refactoring to actually solve them. In |
| // particular, we would have to handle implied bounds |
| // properly, and that code is currently largely confined to |
| // regionck (though I made some efforts to extract it |
| // out). -nmatsakis |
| // |
| // @arielby: In any case, these obligations are checked |
| // by wfcheck anyway, so I'm not sure we have to check |
| // them here too, and we will remove this function when |
| // we move over to lazy normalization *anyway*. |
| let infcx = tcx.infer_ctxt().ignoring_regions().build(); |
| let predicates = match fully_normalize(&infcx, cause, elaborated_env, predicates) { |
| Ok(predicates) => predicates, |
| Err(errors) => { |
| let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None, false); |
| return Err(reported); |
| } |
| }; |
| |
| debug!("do_normalize_predictes: normalized predicates = {:?}", predicates); |
| |
| // We can use the `elaborated_env` here; the region code only |
| // cares about declarations like `'a: 'b`. |
| let outlives_env = OutlivesEnvironment::new(elaborated_env); |
| |
| // FIXME: It's very weird that we ignore region obligations but apparently |
| // still need to use `resolve_regions` as we need the resolved regions in |
| // the normalized predicates. |
| let errors = infcx.resolve_regions(&outlives_env); |
| if !errors.is_empty() { |
| tcx.sess.delay_span_bug( |
| span, |
| format!("failed region resolution while normalizing {elaborated_env:?}: {errors:?}"), |
| ); |
| } |
| |
| match infcx.fully_resolve(predicates) { |
| Ok(predicates) => Ok(predicates), |
| Err(fixup_err) => { |
| // If we encounter a fixup error, it means that some type |
| // variable wound up unconstrained. I actually don't know |
| // if this can happen, and I certainly don't expect it to |
| // happen often, but if it did happen it probably |
| // represents a legitimate failure due to some kind of |
| // unconstrained variable. |
| // |
| // @lcnr: Let's still ICE here for now. I want a test case |
| // for that. |
| span_bug!( |
| span, |
| "inference variables in normalized parameter environment: {}", |
| fixup_err |
| ); |
| } |
| } |
| } |
| |
| // FIXME: this is gonna need to be removed ... |
| /// Normalizes the parameter environment, reporting errors if they occur. |
| #[instrument(level = "debug", skip(tcx))] |
| pub fn normalize_param_env_or_error<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| unnormalized_env: ty::ParamEnv<'tcx>, |
| cause: ObligationCause<'tcx>, |
| ) -> ty::ParamEnv<'tcx> { |
| // I'm not wild about reporting errors here; I'd prefer to |
| // have the errors get reported at a defined place (e.g., |
| // during typeck). Instead I have all parameter |
| // environments, in effect, going through this function |
| // and hence potentially reporting errors. This ensures of |
| // course that we never forget to normalize (the |
| // alternative seemed like it would involve a lot of |
| // manual invocations of this fn -- and then we'd have to |
| // deal with the errors at each of those sites). |
| // |
| // In any case, in practice, typeck constructs all the |
| // parameter environments once for every fn as it goes, |
| // and errors will get reported then; so outside of type inference we |
| // can be sure that no errors should occur. |
| let mut predicates: Vec<_> = |
| util::elaborate_predicates(tcx, unnormalized_env.caller_bounds().into_iter()) |
| .map(|obligation| obligation.predicate) |
| .collect(); |
| |
| debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates); |
| |
| let elaborated_env = ty::ParamEnv::new( |
| tcx.intern_predicates(&predicates), |
| unnormalized_env.reveal(), |
| unnormalized_env.constness(), |
| ); |
| |
| // HACK: we are trying to normalize the param-env inside *itself*. The problem is that |
| // normalization expects its param-env to be already normalized, which means we have |
| // a circularity. |
| // |
| // The way we handle this is by normalizing the param-env inside an unnormalized version |
| // of the param-env, which means that if the param-env contains unnormalized projections, |
| // we'll have some normalization failures. This is unfortunate. |
| // |
| // Lazy normalization would basically handle this by treating just the |
| // normalizing-a-trait-ref-requires-itself cycles as evaluation failures. |
| // |
| // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated |
| // types, so to make the situation less bad, we normalize all the predicates *but* |
| // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and |
| // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment. |
| // |
| // This works fairly well because trait matching does not actually care about param-env |
| // TypeOutlives predicates - these are normally used by regionck. |
| let outlives_predicates: Vec<_> = predicates |
| .drain_filter(|predicate| { |
| matches!(predicate.kind().skip_binder(), ty::PredicateKind::TypeOutlives(..)) |
| }) |
| .collect(); |
| |
| debug!( |
| "normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})", |
| predicates, outlives_predicates |
| ); |
| let Ok(non_outlives_predicates) = do_normalize_predicates( |
| tcx, |
| cause.clone(), |
| elaborated_env, |
| predicates, |
| ) else { |
| // An unnormalized env is better than nothing. |
| debug!("normalize_param_env_or_error: errored resolving non-outlives predicates"); |
| return elaborated_env; |
| }; |
| |
| debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates); |
| |
| // Not sure whether it is better to include the unnormalized TypeOutlives predicates |
| // here. I believe they should not matter, because we are ignoring TypeOutlives param-env |
| // predicates here anyway. Keeping them here anyway because it seems safer. |
| let outlives_env: Vec<_> = |
| non_outlives_predicates.iter().chain(&outlives_predicates).cloned().collect(); |
| let outlives_env = ty::ParamEnv::new( |
| tcx.intern_predicates(&outlives_env), |
| unnormalized_env.reveal(), |
| unnormalized_env.constness(), |
| ); |
| let Ok(outlives_predicates) = do_normalize_predicates( |
| tcx, |
| cause, |
| outlives_env, |
| outlives_predicates, |
| ) else { |
| // An unnormalized env is better than nothing. |
| debug!("normalize_param_env_or_error: errored resolving outlives predicates"); |
| return elaborated_env; |
| }; |
| debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates); |
| |
| let mut predicates = non_outlives_predicates; |
| predicates.extend(outlives_predicates); |
| debug!("normalize_param_env_or_error: final predicates={:?}", predicates); |
| ty::ParamEnv::new( |
| tcx.intern_predicates(&predicates), |
| unnormalized_env.reveal(), |
| unnormalized_env.constness(), |
| ) |
| } |
| |
| /// Normalize a type and process all resulting obligations, returning any errors |
| pub fn fully_normalize<'tcx, T>( |
| infcx: &InferCtxt<'tcx>, |
| cause: ObligationCause<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| value: T, |
| ) -> Result<T, Vec<FulfillmentError<'tcx>>> |
| where |
| T: TypeFoldable<'tcx>, |
| { |
| debug!("fully_normalize_with_fulfillcx(value={:?})", value); |
| let selcx = &mut SelectionContext::new(infcx); |
| let Normalized { value: normalized_value, obligations } = |
| project::normalize(selcx, param_env, cause, value); |
| debug!( |
| "fully_normalize: normalized_value={:?} obligations={:?}", |
| normalized_value, obligations |
| ); |
| |
| let mut fulfill_cx = FulfillmentContext::new(); |
| for obligation in obligations { |
| fulfill_cx.register_predicate_obligation(infcx, obligation); |
| } |
| |
| debug!("fully_normalize: select_all_or_error start"); |
| let errors = fulfill_cx.select_all_or_error(infcx); |
| if !errors.is_empty() { |
| return Err(errors); |
| } |
| debug!("fully_normalize: select_all_or_error complete"); |
| let resolved_value = infcx.resolve_vars_if_possible(normalized_value); |
| debug!("fully_normalize: resolved_value={:?}", resolved_value); |
| Ok(resolved_value) |
| } |
| |
| /// Process an obligation (and any nested obligations that come from it) to |
| /// completion, returning any errors |
| pub fn fully_solve_obligation<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| obligation: PredicateObligation<'tcx>, |
| ) -> Vec<FulfillmentError<'tcx>> { |
| let mut engine = <dyn TraitEngine<'tcx>>::new(infcx.tcx); |
| engine.register_predicate_obligation(infcx, obligation); |
| engine.select_all_or_error(infcx) |
| } |
| |
| /// Process a set of obligations (and any nested obligations that come from them) |
| /// to completion |
| pub fn fully_solve_obligations<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| obligations: impl IntoIterator<Item = PredicateObligation<'tcx>>, |
| ) -> Vec<FulfillmentError<'tcx>> { |
| let mut engine = <dyn TraitEngine<'tcx>>::new(infcx.tcx); |
| engine.register_predicate_obligations(infcx, obligations); |
| engine.select_all_or_error(infcx) |
| } |
| |
| /// Process a bound (and any nested obligations that come from it) to completion. |
| /// This is a convenience function for traits that have no generic arguments, such |
| /// as auto traits, and builtin traits like Copy or Sized. |
| pub fn fully_solve_bound<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| cause: ObligationCause<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ty: Ty<'tcx>, |
| bound: DefId, |
| ) -> Vec<FulfillmentError<'tcx>> { |
| let mut engine = <dyn TraitEngine<'tcx>>::new(infcx.tcx); |
| engine.register_bound(infcx, param_env, ty, bound, cause); |
| engine.select_all_or_error(infcx) |
| } |
| |
| /// Normalizes the predicates and checks whether they hold in an empty environment. If this |
| /// returns true, then either normalize encountered an error or one of the predicates did not |
| /// hold. Used when creating vtables to check for unsatisfiable methods. |
| pub fn impossible_predicates<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| predicates: Vec<ty::Predicate<'tcx>>, |
| ) -> bool { |
| debug!("impossible_predicates(predicates={:?})", predicates); |
| |
| let infcx = tcx.infer_ctxt().build(); |
| let param_env = ty::ParamEnv::reveal_all(); |
| let ocx = ObligationCtxt::new(&infcx); |
| let predicates = ocx.normalize(ObligationCause::dummy(), param_env, predicates); |
| for predicate in predicates { |
| let obligation = Obligation::new(ObligationCause::dummy(), param_env, predicate); |
| ocx.register_obligation(obligation); |
| } |
| let errors = ocx.select_all_or_error(); |
| |
| // Clean up after ourselves |
| let _ = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types(); |
| |
| let result = !errors.is_empty(); |
| debug!("impossible_predicates = {:?}", result); |
| result |
| } |
| |
| fn subst_and_check_impossible_predicates<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| key: (DefId, SubstsRef<'tcx>), |
| ) -> bool { |
| debug!("subst_and_check_impossible_predicates(key={:?})", key); |
| |
| let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates; |
| |
| // Specifically check trait fulfillment to avoid an error when trying to resolve |
| // associated items. |
| if let Some(trait_def_id) = tcx.trait_of_item(key.0) { |
| let trait_ref = ty::TraitRef::from_method(tcx, trait_def_id, key.1); |
| predicates.push(ty::Binder::dummy(trait_ref).to_poly_trait_predicate().to_predicate(tcx)); |
| } |
| |
| predicates.retain(|predicate| !predicate.needs_subst()); |
| let result = impossible_predicates(tcx, predicates); |
| |
| debug!("subst_and_check_impossible_predicates(key={:?}) = {:?}", key, result); |
| result |
| } |
| |
| /// Checks whether a trait's method is impossible to call on a given impl. |
| /// |
| /// This only considers predicates that reference the impl's generics, and not |
| /// those that reference the method's generics. |
| fn is_impossible_method<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| (impl_def_id, trait_item_def_id): (DefId, DefId), |
| ) -> bool { |
| struct ReferencesOnlyParentGenerics<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| generics: &'tcx ty::Generics, |
| trait_item_def_id: DefId, |
| } |
| impl<'tcx> ty::TypeVisitor<'tcx> for ReferencesOnlyParentGenerics<'tcx> { |
| type BreakTy = (); |
| fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> { |
| // If this is a parameter from the trait item's own generics, then bail |
| if let ty::Param(param) = t.kind() |
| && let param_def_id = self.generics.type_param(param, self.tcx).def_id |
| && self.tcx.parent(param_def_id) == self.trait_item_def_id |
| { |
| return ControlFlow::BREAK; |
| } |
| t.super_visit_with(self) |
| } |
| fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> { |
| if let ty::ReEarlyBound(param) = r.kind() |
| && let param_def_id = self.generics.region_param(¶m, self.tcx).def_id |
| && self.tcx.parent(param_def_id) == self.trait_item_def_id |
| { |
| return ControlFlow::BREAK; |
| } |
| r.super_visit_with(self) |
| } |
| fn visit_const(&mut self, ct: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> { |
| if let ty::ConstKind::Param(param) = ct.kind() |
| && let param_def_id = self.generics.const_param(¶m, self.tcx).def_id |
| && self.tcx.parent(param_def_id) == self.trait_item_def_id |
| { |
| return ControlFlow::BREAK; |
| } |
| ct.super_visit_with(self) |
| } |
| } |
| |
| let generics = tcx.generics_of(trait_item_def_id); |
| let predicates = tcx.predicates_of(trait_item_def_id); |
| let impl_trait_ref = |
| tcx.impl_trait_ref(impl_def_id).expect("expected impl to correspond to trait"); |
| let param_env = tcx.param_env(impl_def_id); |
| |
| let mut visitor = ReferencesOnlyParentGenerics { tcx, generics, trait_item_def_id }; |
| let predicates_for_trait = predicates.predicates.iter().filter_map(|(pred, span)| { |
| if pred.visit_with(&mut visitor).is_continue() { |
| Some(Obligation::new( |
| ObligationCause::dummy_with_span(*span), |
| param_env, |
| ty::EarlyBinder(*pred).subst(tcx, impl_trait_ref.substs), |
| )) |
| } else { |
| None |
| } |
| }); |
| |
| let infcx = tcx.infer_ctxt().ignoring_regions().build(); |
| for obligation in predicates_for_trait { |
| // Ignore overflow error, to be conservative. |
| if let Ok(result) = infcx.evaluate_obligation(&obligation) |
| && !result.may_apply() |
| { |
| return true; |
| } |
| } |
| false |
| } |
| |
| #[derive(Clone, Debug)] |
| enum VtblSegment<'tcx> { |
| MetadataDSA, |
| TraitOwnEntries { trait_ref: ty::PolyTraitRef<'tcx>, emit_vptr: bool }, |
| } |
| |
| /// Prepare the segments for a vtable |
| fn prepare_vtable_segments<'tcx, T>( |
| tcx: TyCtxt<'tcx>, |
| trait_ref: ty::PolyTraitRef<'tcx>, |
| mut segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>, |
| ) -> Option<T> { |
| // The following constraints holds for the final arrangement. |
| // 1. The whole virtual table of the first direct super trait is included as the |
| // the prefix. If this trait doesn't have any super traits, then this step |
| // consists of the dsa metadata. |
| // 2. Then comes the proper pointer metadata(vptr) and all own methods for all |
| // other super traits except those already included as part of the first |
| // direct super trait virtual table. |
| // 3. finally, the own methods of this trait. |
| |
| // This has the advantage that trait upcasting to the first direct super trait on each level |
| // is zero cost, and to another trait includes only replacing the pointer with one level indirection, |
| // while not using too much extra memory. |
| |
| // For a single inheritance relationship like this, |
| // D --> C --> B --> A |
| // The resulting vtable will consists of these segments: |
| // DSA, A, B, C, D |
| |
| // For a multiple inheritance relationship like this, |
| // D --> C --> A |
| // \-> B |
| // The resulting vtable will consists of these segments: |
| // DSA, A, B, B-vptr, C, D |
| |
| // For a diamond inheritance relationship like this, |
| // D --> B --> A |
| // \-> C -/ |
| // The resulting vtable will consists of these segments: |
| // DSA, A, B, C, C-vptr, D |
| |
| // For a more complex inheritance relationship like this: |
| // O --> G --> C --> A |
| // \ \ \-> B |
| // | |-> F --> D |
| // | \-> E |
| // |-> N --> J --> H |
| // \ \-> I |
| // |-> M --> K |
| // \-> L |
| // The resulting vtable will consists of these segments: |
| // DSA, A, B, B-vptr, C, D, D-vptr, E, E-vptr, F, F-vptr, G, |
| // H, H-vptr, I, I-vptr, J, J-vptr, K, K-vptr, L, L-vptr, M, M-vptr, |
| // N, N-vptr, O |
| |
| // emit dsa segment first. |
| if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::MetadataDSA) { |
| return Some(v); |
| } |
| |
| let mut emit_vptr_on_new_entry = false; |
| let mut visited = util::PredicateSet::new(tcx); |
| let predicate = trait_ref.without_const().to_predicate(tcx); |
| let mut stack: SmallVec<[(ty::PolyTraitRef<'tcx>, _, _); 5]> = |
| smallvec![(trait_ref, emit_vptr_on_new_entry, None)]; |
| visited.insert(predicate); |
| |
| // the main traversal loop: |
| // basically we want to cut the inheritance directed graph into a few non-overlapping slices of nodes |
| // that each node is emitted after all its descendents have been emitted. |
| // so we convert the directed graph into a tree by skipping all previously visited nodes using a visited set. |
| // this is done on the fly. |
| // Each loop run emits a slice - it starts by find a "childless" unvisited node, backtracking upwards, and it |
| // stops after it finds a node that has a next-sibling node. |
| // This next-sibling node will used as the starting point of next slice. |
| |
| // Example: |
| // For a diamond inheritance relationship like this, |
| // D#1 --> B#0 --> A#0 |
| // \-> C#1 -/ |
| |
| // Starting point 0 stack [D] |
| // Loop run #0: Stack after diving in is [D B A], A is "childless" |
| // after this point, all newly visited nodes won't have a vtable that equals to a prefix of this one. |
| // Loop run #0: Emitting the slice [B A] (in reverse order), B has a next-sibling node, so this slice stops here. |
| // Loop run #0: Stack after exiting out is [D C], C is the next starting point. |
| // Loop run #1: Stack after diving in is [D C], C is "childless", since its child A is skipped(already emitted). |
| // Loop run #1: Emitting the slice [D C] (in reverse order). No one has a next-sibling node. |
| // Loop run #1: Stack after exiting out is []. Now the function exits. |
| |
| loop { |
| // dive deeper into the stack, recording the path |
| 'diving_in: loop { |
| if let Some((inner_most_trait_ref, _, _)) = stack.last() { |
| let inner_most_trait_ref = *inner_most_trait_ref; |
| let mut direct_super_traits_iter = tcx |
| .super_predicates_of(inner_most_trait_ref.def_id()) |
| .predicates |
| .into_iter() |
| .filter_map(move |(pred, _)| { |
| pred.subst_supertrait(tcx, &inner_most_trait_ref).to_opt_poly_trait_pred() |
| }); |
| |
| 'diving_in_skip_visited_traits: loop { |
| if let Some(next_super_trait) = direct_super_traits_iter.next() { |
| if visited.insert(next_super_trait.to_predicate(tcx)) { |
| // We're throwing away potential constness of super traits here. |
| // FIXME: handle ~const super traits |
| let next_super_trait = next_super_trait.map_bound(|t| t.trait_ref); |
| stack.push(( |
| next_super_trait, |
| emit_vptr_on_new_entry, |
| Some(direct_super_traits_iter), |
| )); |
| break 'diving_in_skip_visited_traits; |
| } else { |
| continue 'diving_in_skip_visited_traits; |
| } |
| } else { |
| break 'diving_in; |
| } |
| } |
| } |
| } |
| |
| // Other than the left-most path, vptr should be emitted for each trait. |
| emit_vptr_on_new_entry = true; |
| |
| // emit innermost item, move to next sibling and stop there if possible, otherwise jump to outer level. |
| 'exiting_out: loop { |
| if let Some((inner_most_trait_ref, emit_vptr, siblings_opt)) = stack.last_mut() { |
| if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::TraitOwnEntries { |
| trait_ref: *inner_most_trait_ref, |
| emit_vptr: *emit_vptr, |
| }) { |
| return Some(v); |
| } |
| |
| 'exiting_out_skip_visited_traits: loop { |
| if let Some(siblings) = siblings_opt { |
| if let Some(next_inner_most_trait_ref) = siblings.next() { |
| if visited.insert(next_inner_most_trait_ref.to_predicate(tcx)) { |
| // We're throwing away potential constness of super traits here. |
| // FIXME: handle ~const super traits |
| let next_inner_most_trait_ref = |
| next_inner_most_trait_ref.map_bound(|t| t.trait_ref); |
| *inner_most_trait_ref = next_inner_most_trait_ref; |
| *emit_vptr = emit_vptr_on_new_entry; |
| break 'exiting_out; |
| } else { |
| continue 'exiting_out_skip_visited_traits; |
| } |
| } |
| } |
| stack.pop(); |
| continue 'exiting_out; |
| } |
| } |
| // all done |
| return None; |
| } |
| } |
| } |
| |
| fn dump_vtable_entries<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| sp: Span, |
| trait_ref: ty::PolyTraitRef<'tcx>, |
| entries: &[VtblEntry<'tcx>], |
| ) { |
| tcx.sess.emit_err(DumpVTableEntries { |
| span: sp, |
| trait_ref, |
| entries: format!("{:#?}", entries), |
| }); |
| } |
| |
| fn own_existential_vtable_entries<'tcx>(tcx: TyCtxt<'tcx>, trait_def_id: DefId) -> &'tcx [DefId] { |
| let trait_methods = tcx |
| .associated_items(trait_def_id) |
| .in_definition_order() |
| .filter(|item| item.kind == ty::AssocKind::Fn); |
| // Now list each method's DefId (for within its trait). |
| let own_entries = trait_methods.filter_map(move |trait_method| { |
| debug!("own_existential_vtable_entry: trait_method={:?}", trait_method); |
| let def_id = trait_method.def_id; |
| |
| // Some methods cannot be called on an object; skip those. |
| if !is_vtable_safe_method(tcx, trait_def_id, &trait_method) { |
| debug!("own_existential_vtable_entry: not vtable safe"); |
| return None; |
| } |
| |
| Some(def_id) |
| }); |
| |
| tcx.arena.alloc_from_iter(own_entries.into_iter()) |
| } |
| |
| /// Given a trait `trait_ref`, iterates the vtable entries |
| /// that come from `trait_ref`, including its supertraits. |
| fn vtable_entries<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| trait_ref: ty::PolyTraitRef<'tcx>, |
| ) -> &'tcx [VtblEntry<'tcx>] { |
| debug!("vtable_entries({:?})", trait_ref); |
| |
| let mut entries = vec![]; |
| |
| let vtable_segment_callback = |segment| -> ControlFlow<()> { |
| match segment { |
| VtblSegment::MetadataDSA => { |
| entries.extend(TyCtxt::COMMON_VTABLE_ENTRIES); |
| } |
| VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => { |
| let existential_trait_ref = trait_ref |
| .map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)); |
| |
| // Lookup the shape of vtable for the trait. |
| let own_existential_entries = |
| tcx.own_existential_vtable_entries(existential_trait_ref.def_id()); |
| |
| let own_entries = own_existential_entries.iter().copied().map(|def_id| { |
| debug!("vtable_entries: trait_method={:?}", def_id); |
| |
| // The method may have some early-bound lifetimes; add regions for those. |
| let substs = trait_ref.map_bound(|trait_ref| { |
| InternalSubsts::for_item(tcx, def_id, |param, _| match param.kind { |
| GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(), |
| GenericParamDefKind::Type { .. } |
| | GenericParamDefKind::Const { .. } => { |
| trait_ref.substs[param.index as usize] |
| } |
| }) |
| }); |
| |
| // The trait type may have higher-ranked lifetimes in it; |
| // erase them if they appear, so that we get the type |
| // at some particular call site. |
| let substs = tcx |
| .normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), substs); |
| |
| // It's possible that the method relies on where-clauses that |
| // do not hold for this particular set of type parameters. |
| // Note that this method could then never be called, so we |
| // do not want to try and codegen it, in that case (see #23435). |
| let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, substs); |
| if impossible_predicates(tcx, predicates.predicates) { |
| debug!("vtable_entries: predicates do not hold"); |
| return VtblEntry::Vacant; |
| } |
| |
| let instance = ty::Instance::resolve_for_vtable( |
| tcx, |
| ty::ParamEnv::reveal_all(), |
| def_id, |
| substs, |
| ) |
| .expect("resolution failed during building vtable representation"); |
| VtblEntry::Method(instance) |
| }); |
| |
| entries.extend(own_entries); |
| |
| if emit_vptr { |
| entries.push(VtblEntry::TraitVPtr(trait_ref)); |
| } |
| } |
| } |
| |
| ControlFlow::Continue(()) |
| }; |
| |
| let _ = prepare_vtable_segments(tcx, trait_ref, vtable_segment_callback); |
| |
| if tcx.has_attr(trait_ref.def_id(), sym::rustc_dump_vtable) { |
| let sp = tcx.def_span(trait_ref.def_id()); |
| dump_vtable_entries(tcx, sp, trait_ref, &entries); |
| } |
| |
| tcx.arena.alloc_from_iter(entries.into_iter()) |
| } |
| |
| /// Find slot base for trait methods within vtable entries of another trait |
| fn vtable_trait_first_method_offset<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| key: ( |
| ty::PolyTraitRef<'tcx>, // trait_to_be_found |
| ty::PolyTraitRef<'tcx>, // trait_owning_vtable |
| ), |
| ) -> usize { |
| let (trait_to_be_found, trait_owning_vtable) = key; |
| |
| // #90177 |
| let trait_to_be_found_erased = tcx.erase_regions(trait_to_be_found); |
| |
| let vtable_segment_callback = { |
| let mut vtable_base = 0; |
| |
| move |segment| { |
| match segment { |
| VtblSegment::MetadataDSA => { |
| vtable_base += TyCtxt::COMMON_VTABLE_ENTRIES.len(); |
| } |
| VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => { |
| if tcx.erase_regions(trait_ref) == trait_to_be_found_erased { |
| return ControlFlow::Break(vtable_base); |
| } |
| vtable_base += util::count_own_vtable_entries(tcx, trait_ref); |
| if emit_vptr { |
| vtable_base += 1; |
| } |
| } |
| } |
| ControlFlow::Continue(()) |
| } |
| }; |
| |
| if let Some(vtable_base) = |
| prepare_vtable_segments(tcx, trait_owning_vtable, vtable_segment_callback) |
| { |
| vtable_base |
| } else { |
| bug!("Failed to find info for expected trait in vtable"); |
| } |
| } |
| |
| /// Find slot offset for trait vptr within vtable entries of another trait |
| pub fn vtable_trait_upcasting_coercion_new_vptr_slot<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| key: ( |
| Ty<'tcx>, // trait object type whose trait owning vtable |
| Ty<'tcx>, // trait object for supertrait |
| ), |
| ) -> Option<usize> { |
| let (source, target) = key; |
| assert!(matches!(&source.kind(), &ty::Dynamic(..)) && !source.needs_infer()); |
| assert!(matches!(&target.kind(), &ty::Dynamic(..)) && !target.needs_infer()); |
| |
| // this has been typecked-before, so diagnostics is not really needed. |
| let unsize_trait_did = tcx.require_lang_item(LangItem::Unsize, None); |
| |
| let trait_ref = ty::TraitRef { |
| def_id: unsize_trait_did, |
| substs: tcx.mk_substs_trait(source, &[target.into()]), |
| }; |
| let obligation = Obligation::new( |
| ObligationCause::dummy(), |
| ty::ParamEnv::reveal_all(), |
| ty::Binder::dummy(ty::TraitPredicate { |
| trait_ref, |
| constness: ty::BoundConstness::NotConst, |
| polarity: ty::ImplPolarity::Positive, |
| }), |
| ); |
| |
| let infcx = tcx.infer_ctxt().build(); |
| let mut selcx = SelectionContext::new(&infcx); |
| let implsrc = selcx.select(&obligation).unwrap(); |
| |
| let Some(ImplSource::TraitUpcasting(implsrc_traitcasting)) = implsrc else { |
| bug!(); |
| }; |
| |
| implsrc_traitcasting.vtable_vptr_slot |
| } |
| |
| pub fn provide(providers: &mut ty::query::Providers) { |
| object_safety::provide(providers); |
| structural_match::provide(providers); |
| *providers = ty::query::Providers { |
| specialization_graph_of: specialize::specialization_graph_provider, |
| specializes: specialize::specializes, |
| codegen_select_candidate: codegen::codegen_select_candidate, |
| own_existential_vtable_entries, |
| vtable_entries, |
| vtable_trait_upcasting_coercion_new_vptr_slot, |
| subst_and_check_impossible_predicates, |
| is_impossible_method, |
| try_unify_abstract_consts: |tcx, param_env_and| { |
| let (param_env, (a, b)) = param_env_and.into_parts(); |
| const_evaluatable::try_unify_abstract_consts(tcx, (a, b), param_env) |
| }, |
| ..*providers |
| }; |
| } |