| use rustc_data_structures::fx::FxHashSet; |
| use rustc_hir::def_id::DefId; |
| use rustc_infer::infer::canonical::{Canonical, QueryResponse}; |
| use rustc_infer::infer::TyCtxtInferExt; |
| use rustc_infer::traits::TraitEngineExt as _; |
| use rustc_middle::ty::query::Providers; |
| use rustc_middle::ty::InternalSubsts; |
| use rustc_middle::ty::{self, EarlyBinder, ParamEnvAnd, Ty, TyCtxt}; |
| use rustc_span::source_map::{Span, DUMMY_SP}; |
| use rustc_trait_selection::traits::query::dropck_outlives::trivial_dropck_outlives; |
| use rustc_trait_selection::traits::query::dropck_outlives::{ |
| DropckConstraint, DropckOutlivesResult, |
| }; |
| use rustc_trait_selection::traits::query::normalize::AtExt; |
| use rustc_trait_selection::traits::query::{CanonicalTyGoal, NoSolution}; |
| use rustc_trait_selection::traits::{ |
| Normalized, ObligationCause, TraitEngine, TraitEngineExt as _, |
| }; |
| |
| pub(crate) fn provide(p: &mut Providers) { |
| *p = Providers { dropck_outlives, adt_dtorck_constraint, ..*p }; |
| } |
| |
| fn dropck_outlives<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| canonical_goal: CanonicalTyGoal<'tcx>, |
| ) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, NoSolution> { |
| debug!("dropck_outlives(goal={:#?})", canonical_goal); |
| |
| let (ref infcx, goal, canonical_inference_vars) = |
| tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &canonical_goal); |
| let tcx = infcx.tcx; |
| let ParamEnvAnd { param_env, value: for_ty } = goal; |
| |
| let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] }; |
| |
| // A stack of types left to process. Each round, we pop |
| // something from the stack and invoke |
| // `dtorck_constraint_for_ty`. This may produce new types that |
| // have to be pushed on the stack. This continues until we have explored |
| // all the reachable types from the type `for_ty`. |
| // |
| // Example: Imagine that we have the following code: |
| // |
| // ```rust |
| // struct A { |
| // value: B, |
| // children: Vec<A>, |
| // } |
| // |
| // struct B { |
| // value: u32 |
| // } |
| // |
| // fn f() { |
| // let a: A = ...; |
| // .. |
| // } // here, `a` is dropped |
| // ``` |
| // |
| // at the point where `a` is dropped, we need to figure out |
| // which types inside of `a` contain region data that may be |
| // accessed by any destructors in `a`. We begin by pushing `A` |
| // onto the stack, as that is the type of `a`. We will then |
| // invoke `dtorck_constraint_for_ty` which will expand `A` |
| // into the types of its fields `(B, Vec<A>)`. These will get |
| // pushed onto the stack. Eventually, expanding `Vec<A>` will |
| // lead to us trying to push `A` a second time -- to prevent |
| // infinite recursion, we notice that `A` was already pushed |
| // once and stop. |
| let mut ty_stack = vec![(for_ty, 0)]; |
| |
| // Set used to detect infinite recursion. |
| let mut ty_set = FxHashSet::default(); |
| |
| let mut fulfill_cx = <dyn TraitEngine<'_>>::new(infcx.tcx); |
| |
| let cause = ObligationCause::dummy(); |
| let mut constraints = DropckConstraint::empty(); |
| while let Some((ty, depth)) = ty_stack.pop() { |
| debug!( |
| "{} kinds, {} overflows, {} ty_stack", |
| result.kinds.len(), |
| result.overflows.len(), |
| ty_stack.len() |
| ); |
| dtorck_constraint_for_ty(tcx, DUMMY_SP, for_ty, depth, ty, &mut constraints)?; |
| |
| // "outlives" represent types/regions that may be touched |
| // by a destructor. |
| result.kinds.append(&mut constraints.outlives); |
| result.overflows.append(&mut constraints.overflows); |
| |
| // If we have even one overflow, we should stop trying to evaluate further -- |
| // chances are, the subsequent overflows for this evaluation won't provide useful |
| // information and will just decrease the speed at which we can emit these errors |
| // (since we'll be printing for just that much longer for the often enormous types |
| // that result here). |
| if !result.overflows.is_empty() { |
| break; |
| } |
| |
| // dtorck types are "types that will get dropped but which |
| // do not themselves define a destructor", more or less. We have |
| // to push them onto the stack to be expanded. |
| for ty in constraints.dtorck_types.drain(..) { |
| match infcx.at(&cause, param_env).normalize(ty) { |
| Ok(Normalized { value: ty, obligations }) => { |
| fulfill_cx.register_predicate_obligations(infcx, obligations); |
| |
| debug!("dropck_outlives: ty from dtorck_types = {:?}", ty); |
| |
| match ty.kind() { |
| // All parameters live for the duration of the |
| // function. |
| ty::Param(..) => {} |
| |
| // A projection that we couldn't resolve - it |
| // might have a destructor. |
| ty::Projection(..) | ty::Opaque(..) => { |
| result.kinds.push(ty.into()); |
| } |
| |
| _ => { |
| if ty_set.insert(ty) { |
| ty_stack.push((ty, depth + 1)); |
| } |
| } |
| } |
| } |
| |
| // We don't actually expect to fail to normalize. |
| // That implies a WF error somewhere else. |
| Err(NoSolution) => { |
| return Err(NoSolution); |
| } |
| } |
| } |
| } |
| |
| debug!("dropck_outlives: result = {:#?}", result); |
| |
| infcx.make_canonicalized_query_response(canonical_inference_vars, result, &mut *fulfill_cx) |
| } |
| |
| /// Returns a set of constraints that needs to be satisfied in |
| /// order for `ty` to be valid for destruction. |
| fn dtorck_constraint_for_ty<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| span: Span, |
| for_ty: Ty<'tcx>, |
| depth: usize, |
| ty: Ty<'tcx>, |
| constraints: &mut DropckConstraint<'tcx>, |
| ) -> Result<(), NoSolution> { |
| debug!("dtorck_constraint_for_ty({:?}, {:?}, {:?}, {:?})", span, for_ty, depth, ty); |
| |
| if !tcx.recursion_limit().value_within_limit(depth) { |
| constraints.overflows.push(ty); |
| return Ok(()); |
| } |
| |
| if trivial_dropck_outlives(tcx, ty) { |
| return Ok(()); |
| } |
| |
| match ty.kind() { |
| ty::Bool |
| | ty::Char |
| | ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::Str |
| | ty::Never |
| | ty::Foreign(..) |
| | ty::RawPtr(..) |
| | ty::Ref(..) |
| | ty::FnDef(..) |
| | ty::FnPtr(_) |
| | ty::GeneratorWitness(..) => { |
| // these types never have a destructor |
| } |
| |
| ty::Array(ety, _) | ty::Slice(ety) => { |
| // single-element containers, behave like their element |
| rustc_data_structures::stack::ensure_sufficient_stack(|| { |
| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, *ety, constraints) |
| })?; |
| } |
| |
| ty::Tuple(tys) => rustc_data_structures::stack::ensure_sufficient_stack(|| { |
| for ty in tys.iter() { |
| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty, constraints)?; |
| } |
| Ok::<_, NoSolution>(()) |
| })?, |
| |
| ty::Closure(_, substs) => { |
| if !substs.as_closure().is_valid() { |
| // By the time this code runs, all type variables ought to |
| // be fully resolved. |
| |
| tcx.sess.delay_span_bug( |
| span, |
| &format!("upvar_tys for closure not found. Expected capture information for closure {}", ty,), |
| ); |
| return Err(NoSolution); |
| } |
| |
| rustc_data_structures::stack::ensure_sufficient_stack(|| { |
| for ty in substs.as_closure().upvar_tys() { |
| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty, constraints)?; |
| } |
| Ok::<_, NoSolution>(()) |
| })? |
| } |
| |
| ty::Generator(_, substs, _movability) => { |
| // rust-lang/rust#49918: types can be constructed, stored |
| // in the interior, and sit idle when generator yields |
| // (and is subsequently dropped). |
| // |
| // It would be nice to descend into interior of a |
| // generator to determine what effects dropping it might |
| // have (by looking at any drop effects associated with |
| // its interior). |
| // |
| // However, the interior's representation uses things like |
| // GeneratorWitness that explicitly assume they are not |
| // traversed in such a manner. So instead, we will |
| // simplify things for now by treating all generators as |
| // if they were like trait objects, where its upvars must |
| // all be alive for the generator's (potential) |
| // destructor. |
| // |
| // In particular, skipping over `_interior` is safe |
| // because any side-effects from dropping `_interior` can |
| // only take place through references with lifetimes |
| // derived from lifetimes attached to the upvars and resume |
| // argument, and we *do* incorporate those here. |
| |
| if !substs.as_generator().is_valid() { |
| // By the time this code runs, all type variables ought to |
| // be fully resolved. |
| tcx.sess.delay_span_bug( |
| span, |
| &format!("upvar_tys for generator not found. Expected capture information for generator {}", ty,), |
| ); |
| return Err(NoSolution); |
| } |
| |
| constraints.outlives.extend( |
| substs |
| .as_generator() |
| .upvar_tys() |
| .map(|t| -> ty::subst::GenericArg<'tcx> { t.into() }), |
| ); |
| constraints.outlives.push(substs.as_generator().resume_ty().into()); |
| } |
| |
| ty::Adt(def, substs) => { |
| let DropckConstraint { dtorck_types, outlives, overflows } = |
| tcx.at(span).adt_dtorck_constraint(def.did())?; |
| // FIXME: we can try to recursively `dtorck_constraint_on_ty` |
| // there, but that needs some way to handle cycles. |
| constraints |
| .dtorck_types |
| .extend(dtorck_types.iter().map(|t| EarlyBinder(*t).subst(tcx, substs))); |
| constraints |
| .outlives |
| .extend(outlives.iter().map(|t| EarlyBinder(*t).subst(tcx, substs))); |
| constraints |
| .overflows |
| .extend(overflows.iter().map(|t| EarlyBinder(*t).subst(tcx, substs))); |
| } |
| |
| // Objects must be alive in order for their destructor |
| // to be called. |
| ty::Dynamic(..) => { |
| constraints.outlives.push(ty.into()); |
| } |
| |
| // Types that can't be resolved. Pass them forward. |
| ty::Projection(..) | ty::Opaque(..) | ty::Param(..) => { |
| constraints.dtorck_types.push(ty); |
| } |
| |
| ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => { |
| // By the time this code runs, all type variables ought to |
| // be fully resolved. |
| return Err(NoSolution); |
| } |
| } |
| |
| Ok(()) |
| } |
| |
| /// Calculates the dtorck constraint for a type. |
| pub(crate) fn adt_dtorck_constraint( |
| tcx: TyCtxt<'_>, |
| def_id: DefId, |
| ) -> Result<&DropckConstraint<'_>, NoSolution> { |
| let def = tcx.adt_def(def_id); |
| let span = tcx.def_span(def_id); |
| debug!("dtorck_constraint: {:?}", def); |
| |
| if def.is_phantom_data() { |
| // The first generic parameter here is guaranteed to be a type because it's |
| // `PhantomData`. |
| let substs = InternalSubsts::identity_for_item(tcx, def_id); |
| assert_eq!(substs.len(), 1); |
| let result = DropckConstraint { |
| outlives: vec![], |
| dtorck_types: vec![substs.type_at(0)], |
| overflows: vec![], |
| }; |
| debug!("dtorck_constraint: {:?} => {:?}", def, result); |
| return Ok(tcx.arena.alloc(result)); |
| } |
| |
| let mut result = DropckConstraint::empty(); |
| for field in def.all_fields() { |
| let fty = tcx.type_of(field.did); |
| dtorck_constraint_for_ty(tcx, span, fty, 0, fty, &mut result)?; |
| } |
| result.outlives.extend(tcx.destructor_constraints(def)); |
| dedup_dtorck_constraint(&mut result); |
| |
| debug!("dtorck_constraint: {:?} => {:?}", def, result); |
| |
| Ok(tcx.arena.alloc(result)) |
| } |
| |
| fn dedup_dtorck_constraint(c: &mut DropckConstraint<'_>) { |
| let mut outlives = FxHashSet::default(); |
| let mut dtorck_types = FxHashSet::default(); |
| |
| c.outlives.retain(|&val| outlives.replace(val).is_none()); |
| c.dtorck_types.retain(|&val| dtorck_types.replace(val).is_none()); |
| } |