| //! Support for inlining external documentation into the current AST. |
| |
| use std::iter::once; |
| use std::sync::Arc; |
| |
| use thin_vec::ThinVec; |
| |
| use rustc_ast as ast; |
| use rustc_data_structures::fx::FxHashSet; |
| use rustc_hir as hir; |
| use rustc_hir::def::{DefKind, Res}; |
| use rustc_hir::def_id::DefId; |
| use rustc_hir::Mutability; |
| use rustc_metadata::creader::{CStore, LoadedMacro}; |
| use rustc_middle::ty::{self, TyCtxt}; |
| use rustc_span::hygiene::MacroKind; |
| use rustc_span::symbol::{kw, sym, Symbol}; |
| |
| use crate::clean::{ |
| self, clean_fn_decl_from_did_and_sig, clean_generics, clean_impl_item, clean_middle_assoc_item, |
| clean_middle_field, clean_middle_ty, clean_trait_ref_with_bindings, clean_ty, |
| clean_ty_generics, clean_variant_def, clean_visibility, utils, Attributes, AttributesExt, |
| ImplKind, ItemId, Type, Visibility, |
| }; |
| use crate::core::DocContext; |
| use crate::formats::item_type::ItemType; |
| |
| /// Attempt to inline a definition into this AST. |
| /// |
| /// This function will fetch the definition specified, and if it is |
| /// from another crate it will attempt to inline the documentation |
| /// from the other crate into this crate. |
| /// |
| /// This is primarily used for `pub use` statements which are, in general, |
| /// implementation details. Inlining the documentation should help provide a |
| /// better experience when reading the documentation in this use case. |
| /// |
| /// The returned value is `None` if the definition could not be inlined, |
| /// and `Some` of a vector of items if it was successfully expanded. |
| /// |
| /// `parent_module` refers to the parent of the *re-export*, not the original item. |
| pub(crate) fn try_inline( |
| cx: &mut DocContext<'_>, |
| parent_module: DefId, |
| import_def_id: Option<DefId>, |
| res: Res, |
| name: Symbol, |
| attrs: Option<&[ast::Attribute]>, |
| visited: &mut FxHashSet<DefId>, |
| ) -> Option<Vec<clean::Item>> { |
| let did = res.opt_def_id()?; |
| if did.is_local() { |
| return None; |
| } |
| let mut ret = Vec::new(); |
| |
| debug!("attrs={:?}", attrs); |
| |
| let attrs_without_docs = attrs.map(|attrs| { |
| attrs.into_iter().filter(|a| a.doc_str().is_none()).cloned().collect::<Vec<_>>() |
| }); |
| // We need this ugly code because: |
| // |
| // ``` |
| // attrs_without_docs.map(|a| a.as_slice()) |
| // ``` |
| // |
| // will fail because it returns a temporary slice and: |
| // |
| // ``` |
| // attrs_without_docs.map(|s| { |
| // vec = s.as_slice(); |
| // vec |
| // }) |
| // ``` |
| // |
| // will fail because we're moving an uninitialized variable into a closure. |
| let vec; |
| let attrs_without_docs = match attrs_without_docs { |
| Some(s) => { |
| vec = s; |
| Some(vec.as_slice()) |
| } |
| None => None, |
| }; |
| |
| let kind = match res { |
| Res::Def(DefKind::Trait, did) => { |
| record_extern_fqn(cx, did, ItemType::Trait); |
| build_impls(cx, Some(parent_module), did, attrs_without_docs, &mut ret); |
| clean::TraitItem(Box::new(build_external_trait(cx, did))) |
| } |
| Res::Def(DefKind::Fn, did) => { |
| record_extern_fqn(cx, did, ItemType::Function); |
| clean::FunctionItem(build_external_function(cx, did)) |
| } |
| Res::Def(DefKind::Struct, did) => { |
| record_extern_fqn(cx, did, ItemType::Struct); |
| build_impls(cx, Some(parent_module), did, attrs_without_docs, &mut ret); |
| clean::StructItem(build_struct(cx, did)) |
| } |
| Res::Def(DefKind::Union, did) => { |
| record_extern_fqn(cx, did, ItemType::Union); |
| build_impls(cx, Some(parent_module), did, attrs_without_docs, &mut ret); |
| clean::UnionItem(build_union(cx, did)) |
| } |
| Res::Def(DefKind::TyAlias, did) => { |
| record_extern_fqn(cx, did, ItemType::Typedef); |
| build_impls(cx, Some(parent_module), did, attrs_without_docs, &mut ret); |
| clean::TypedefItem(build_type_alias(cx, did)) |
| } |
| Res::Def(DefKind::Enum, did) => { |
| record_extern_fqn(cx, did, ItemType::Enum); |
| build_impls(cx, Some(parent_module), did, attrs_without_docs, &mut ret); |
| clean::EnumItem(build_enum(cx, did)) |
| } |
| Res::Def(DefKind::ForeignTy, did) => { |
| record_extern_fqn(cx, did, ItemType::ForeignType); |
| build_impls(cx, Some(parent_module), did, attrs_without_docs, &mut ret); |
| clean::ForeignTypeItem |
| } |
| // Never inline enum variants but leave them shown as re-exports. |
| Res::Def(DefKind::Variant, _) => return None, |
| // Assume that enum variants and struct types are re-exported next to |
| // their constructors. |
| Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) => return Some(Vec::new()), |
| Res::Def(DefKind::Mod, did) => { |
| record_extern_fqn(cx, did, ItemType::Module); |
| clean::ModuleItem(build_module(cx, did, visited)) |
| } |
| Res::Def(DefKind::Static(_), did) => { |
| record_extern_fqn(cx, did, ItemType::Static); |
| clean::StaticItem(build_static(cx, did, cx.tcx.is_mutable_static(did))) |
| } |
| Res::Def(DefKind::Const, did) => { |
| record_extern_fqn(cx, did, ItemType::Constant); |
| clean::ConstantItem(build_const(cx, did)) |
| } |
| Res::Def(DefKind::Macro(kind), did) => { |
| let mac = build_macro(cx, did, name, import_def_id); |
| |
| let type_kind = match kind { |
| MacroKind::Bang => ItemType::Macro, |
| MacroKind::Attr => ItemType::ProcAttribute, |
| MacroKind::Derive => ItemType::ProcDerive, |
| }; |
| record_extern_fqn(cx, did, type_kind); |
| mac |
| } |
| _ => return None, |
| }; |
| |
| let (attrs, cfg) = merge_attrs(cx, Some(parent_module), load_attrs(cx, did), attrs); |
| cx.inlined.insert(did.into()); |
| let mut item = clean::Item::from_def_id_and_attrs_and_parts( |
| did, |
| Some(name), |
| kind, |
| Box::new(attrs), |
| cx, |
| cfg, |
| ); |
| if let Some(import_def_id) = import_def_id { |
| // The visibility needs to reflect the one from the reexport and not from the "source" DefId. |
| item.visibility = clean_visibility(cx.tcx.visibility(import_def_id)); |
| } |
| ret.push(item); |
| Some(ret) |
| } |
| |
| pub(crate) fn try_inline_glob( |
| cx: &mut DocContext<'_>, |
| res: Res, |
| visited: &mut FxHashSet<DefId>, |
| inlined_names: &mut FxHashSet<(ItemType, Symbol)>, |
| ) -> Option<Vec<clean::Item>> { |
| let did = res.opt_def_id()?; |
| if did.is_local() { |
| return None; |
| } |
| |
| match res { |
| Res::Def(DefKind::Mod, did) => { |
| let mut items = build_module_items(cx, did, visited, inlined_names); |
| items.drain_filter(|item| { |
| if let Some(name) = item.name { |
| // If an item with the same type and name already exists, |
| // it takes priority over the inlined stuff. |
| !inlined_names.insert((item.type_(), name)) |
| } else { |
| false |
| } |
| }); |
| Some(items) |
| } |
| // glob imports on things like enums aren't inlined even for local exports, so just bail |
| _ => None, |
| } |
| } |
| |
| pub(crate) fn load_attrs<'hir>(cx: &DocContext<'hir>, did: DefId) -> &'hir [ast::Attribute] { |
| cx.tcx.get_attrs_unchecked(did) |
| } |
| |
| /// Record an external fully qualified name in the external_paths cache. |
| /// |
| /// These names are used later on by HTML rendering to generate things like |
| /// source links back to the original item. |
| pub(crate) fn record_extern_fqn(cx: &mut DocContext<'_>, did: DefId, kind: ItemType) { |
| let crate_name = cx.tcx.crate_name(did.krate); |
| |
| let relative = |
| cx.tcx.def_path(did).data.into_iter().filter_map(|elem| elem.data.get_opt_name()); |
| let fqn = if let ItemType::Macro = kind { |
| // Check to see if it is a macro 2.0 or built-in macro |
| if matches!( |
| CStore::from_tcx(cx.tcx).load_macro_untracked(did, cx.sess()), |
| LoadedMacro::MacroDef(def, _) |
| if matches!(&def.kind, ast::ItemKind::MacroDef(ast_def) |
| if !ast_def.macro_rules) |
| ) { |
| once(crate_name).chain(relative).collect() |
| } else { |
| vec![crate_name, relative.last().expect("relative was empty")] |
| } |
| } else { |
| once(crate_name).chain(relative).collect() |
| }; |
| |
| if did.is_local() { |
| cx.cache.exact_paths.insert(did, fqn); |
| } else { |
| cx.cache.external_paths.insert(did, (fqn, kind)); |
| } |
| } |
| |
| pub(crate) fn build_external_trait(cx: &mut DocContext<'_>, did: DefId) -> clean::Trait { |
| let trait_items = cx |
| .tcx |
| .associated_items(did) |
| .in_definition_order() |
| .map(|item| { |
| // When building an external trait, the cleaned trait will have all items public, |
| // which causes methods to have a `pub` prefix, which is invalid since items in traits |
| // can not have a visibility prefix. Thus we override the visibility here manually. |
| // See https://github.com/rust-lang/rust/issues/81274 |
| clean::Item { visibility: Visibility::Inherited, ..clean_middle_assoc_item(item, cx) } |
| }) |
| .collect(); |
| |
| let predicates = cx.tcx.predicates_of(did); |
| let generics = clean_ty_generics(cx, cx.tcx.generics_of(did), predicates); |
| let generics = filter_non_trait_generics(did, generics); |
| let (generics, supertrait_bounds) = separate_supertrait_bounds(generics); |
| clean::Trait { def_id: did, generics, items: trait_items, bounds: supertrait_bounds } |
| } |
| |
| fn build_external_function<'tcx>(cx: &mut DocContext<'tcx>, did: DefId) -> Box<clean::Function> { |
| let sig = cx.tcx.fn_sig(did); |
| |
| let predicates = cx.tcx.predicates_of(did); |
| let (generics, decl) = clean::enter_impl_trait(cx, |cx| { |
| // NOTE: generics need to be cleaned before the decl! |
| let generics = clean_ty_generics(cx, cx.tcx.generics_of(did), predicates); |
| let decl = clean_fn_decl_from_did_and_sig(cx, Some(did), sig); |
| (generics, decl) |
| }); |
| Box::new(clean::Function { decl, generics }) |
| } |
| |
| fn build_enum(cx: &mut DocContext<'_>, did: DefId) -> clean::Enum { |
| let predicates = cx.tcx.explicit_predicates_of(did); |
| |
| clean::Enum { |
| generics: clean_ty_generics(cx, cx.tcx.generics_of(did), predicates), |
| variants: cx.tcx.adt_def(did).variants().iter().map(|v| clean_variant_def(v, cx)).collect(), |
| } |
| } |
| |
| fn build_struct(cx: &mut DocContext<'_>, did: DefId) -> clean::Struct { |
| let predicates = cx.tcx.explicit_predicates_of(did); |
| let variant = cx.tcx.adt_def(did).non_enum_variant(); |
| |
| clean::Struct { |
| struct_type: variant.ctor_kind, |
| generics: clean_ty_generics(cx, cx.tcx.generics_of(did), predicates), |
| fields: variant.fields.iter().map(|x| clean_middle_field(x, cx)).collect(), |
| } |
| } |
| |
| fn build_union(cx: &mut DocContext<'_>, did: DefId) -> clean::Union { |
| let predicates = cx.tcx.explicit_predicates_of(did); |
| let variant = cx.tcx.adt_def(did).non_enum_variant(); |
| |
| let generics = clean_ty_generics(cx, cx.tcx.generics_of(did), predicates); |
| let fields = variant.fields.iter().map(|x| clean_middle_field(x, cx)).collect(); |
| clean::Union { generics, fields } |
| } |
| |
| fn build_type_alias(cx: &mut DocContext<'_>, did: DefId) -> Box<clean::Typedef> { |
| let predicates = cx.tcx.explicit_predicates_of(did); |
| let type_ = clean_middle_ty(cx.tcx.type_of(did), cx, Some(did)); |
| |
| Box::new(clean::Typedef { |
| type_, |
| generics: clean_ty_generics(cx, cx.tcx.generics_of(did), predicates), |
| item_type: None, |
| }) |
| } |
| |
| /// Builds all inherent implementations of an ADT (struct/union/enum) or Trait item/path/reexport. |
| pub(crate) fn build_impls( |
| cx: &mut DocContext<'_>, |
| parent_module: Option<DefId>, |
| did: DefId, |
| attrs: Option<&[ast::Attribute]>, |
| ret: &mut Vec<clean::Item>, |
| ) { |
| let _prof_timer = cx.tcx.sess.prof.generic_activity("build_inherent_impls"); |
| let tcx = cx.tcx; |
| |
| // for each implementation of an item represented by `did`, build the clean::Item for that impl |
| for &did in tcx.inherent_impls(did).iter() { |
| build_impl(cx, parent_module, did, attrs, ret); |
| } |
| |
| // This pretty much exists expressly for `dyn Error` traits that exist in the `alloc` crate. |
| // See also: |
| // |
| // * https://github.com/rust-lang/rust/issues/103170 — where it didn't used to get documented |
| // * https://github.com/rust-lang/rust/pull/99917 — where the feature got used |
| // * https://github.com/rust-lang/rust/issues/53487 — overall tracking issue for Error |
| if tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) { |
| use rustc_middle::ty::fast_reject::SimplifiedTypeGen::*; |
| let type_ = |
| if tcx.is_trait(did) { TraitSimplifiedType(did) } else { AdtSimplifiedType(did) }; |
| for &did in tcx.incoherent_impls(type_) { |
| build_impl(cx, parent_module, did, attrs, ret); |
| } |
| } |
| } |
| |
| /// `parent_module` refers to the parent of the re-export, not the original item |
| pub(crate) fn merge_attrs( |
| cx: &mut DocContext<'_>, |
| parent_module: Option<DefId>, |
| old_attrs: &[ast::Attribute], |
| new_attrs: Option<&[ast::Attribute]>, |
| ) -> (clean::Attributes, Option<Arc<clean::cfg::Cfg>>) { |
| // NOTE: If we have additional attributes (from a re-export), |
| // always insert them first. This ensure that re-export |
| // doc comments show up before the original doc comments |
| // when we render them. |
| if let Some(inner) = new_attrs { |
| let mut both = inner.to_vec(); |
| both.extend_from_slice(old_attrs); |
| ( |
| if let Some(new_id) = parent_module { |
| Attributes::from_ast_with_additional(old_attrs, (inner, new_id)) |
| } else { |
| Attributes::from_ast(&both) |
| }, |
| both.cfg(cx.tcx, &cx.cache.hidden_cfg), |
| ) |
| } else { |
| (Attributes::from_ast(&old_attrs), old_attrs.cfg(cx.tcx, &cx.cache.hidden_cfg)) |
| } |
| } |
| |
| /// Inline an `impl`, inherent or of a trait. The `did` must be for an `impl`. |
| pub(crate) fn build_impl( |
| cx: &mut DocContext<'_>, |
| parent_module: Option<DefId>, |
| did: DefId, |
| attrs: Option<&[ast::Attribute]>, |
| ret: &mut Vec<clean::Item>, |
| ) { |
| if !cx.inlined.insert(did.into()) { |
| return; |
| } |
| |
| let _prof_timer = cx.tcx.sess.prof.generic_activity("build_impl"); |
| |
| let tcx = cx.tcx; |
| let associated_trait = tcx.impl_trait_ref(did); |
| |
| // Only inline impl if the implemented trait is |
| // reachable in rustdoc generated documentation |
| if !did.is_local() { |
| if let Some(traitref) = associated_trait { |
| let did = traitref.def_id; |
| if !cx.cache.effective_visibilities.is_directly_public(did) { |
| return; |
| } |
| |
| if let Some(stab) = tcx.lookup_stability(did) { |
| if stab.is_unstable() && stab.feature == sym::rustc_private { |
| return; |
| } |
| } |
| } |
| } |
| |
| let impl_item = match did.as_local() { |
| Some(did) => match &tcx.hir().expect_item(did).kind { |
| hir::ItemKind::Impl(impl_) => Some(impl_), |
| _ => panic!("`DefID` passed to `build_impl` is not an `impl"), |
| }, |
| None => None, |
| }; |
| |
| let for_ = match &impl_item { |
| Some(impl_) => clean_ty(impl_.self_ty, cx), |
| None => clean_middle_ty(tcx.type_of(did), cx, Some(did)), |
| }; |
| |
| // Only inline impl if the implementing type is |
| // reachable in rustdoc generated documentation |
| if !did.is_local() { |
| if let Some(did) = for_.def_id(&cx.cache) { |
| if !cx.cache.effective_visibilities.is_directly_public(did) { |
| return; |
| } |
| |
| if let Some(stab) = tcx.lookup_stability(did) { |
| if stab.is_unstable() && stab.feature == sym::rustc_private { |
| return; |
| } |
| } |
| } |
| } |
| |
| let document_hidden = cx.render_options.document_hidden; |
| let predicates = tcx.explicit_predicates_of(did); |
| let (trait_items, generics) = match impl_item { |
| Some(impl_) => ( |
| impl_ |
| .items |
| .iter() |
| .map(|item| tcx.hir().impl_item(item.id)) |
| .filter(|item| { |
| // Filter out impl items whose corresponding trait item has `doc(hidden)` |
| // not to document such impl items. |
| // For inherent impls, we don't do any filtering, because that's already done in strip_hidden.rs. |
| |
| // When `--document-hidden-items` is passed, we don't |
| // do any filtering, too. |
| if document_hidden { |
| return true; |
| } |
| if let Some(associated_trait) = associated_trait { |
| let assoc_kind = match item.kind { |
| hir::ImplItemKind::Const(..) => ty::AssocKind::Const, |
| hir::ImplItemKind::Fn(..) => ty::AssocKind::Fn, |
| hir::ImplItemKind::Type(..) => ty::AssocKind::Type, |
| }; |
| let trait_item = tcx |
| .associated_items(associated_trait.def_id) |
| .find_by_name_and_kind( |
| tcx, |
| item.ident, |
| assoc_kind, |
| associated_trait.def_id, |
| ) |
| .unwrap(); // SAFETY: For all impl items there exists trait item that has the same name. |
| !tcx.is_doc_hidden(trait_item.def_id) |
| } else { |
| true |
| } |
| }) |
| .map(|item| clean_impl_item(item, cx)) |
| .collect::<Vec<_>>(), |
| clean_generics(impl_.generics, cx), |
| ), |
| None => ( |
| tcx.associated_items(did) |
| .in_definition_order() |
| .filter(|item| { |
| // If this is a trait impl, filter out associated items whose corresponding item |
| // in the associated trait is marked `doc(hidden)`. |
| // If this is an inherent impl, filter out private associated items. |
| if let Some(associated_trait) = associated_trait { |
| let trait_item = tcx |
| .associated_items(associated_trait.def_id) |
| .find_by_name_and_kind( |
| tcx, |
| item.ident(tcx), |
| item.kind, |
| associated_trait.def_id, |
| ) |
| .unwrap(); // corresponding associated item has to exist |
| !tcx.is_doc_hidden(trait_item.def_id) |
| } else { |
| item.visibility(tcx).is_public() |
| } |
| }) |
| .map(|item| clean_middle_assoc_item(item, cx)) |
| .collect::<Vec<_>>(), |
| clean::enter_impl_trait(cx, |cx| { |
| clean_ty_generics(cx, tcx.generics_of(did), predicates) |
| }), |
| ), |
| }; |
| let polarity = tcx.impl_polarity(did); |
| let trait_ = associated_trait.map(|t| clean_trait_ref_with_bindings(cx, t, ThinVec::new())); |
| if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() { |
| super::build_deref_target_impls(cx, &trait_items, ret); |
| } |
| |
| // Return if the trait itself or any types of the generic parameters are doc(hidden). |
| let mut stack: Vec<&Type> = vec![&for_]; |
| |
| if let Some(did) = trait_.as_ref().map(|t| t.def_id()) { |
| if tcx.is_doc_hidden(did) { |
| return; |
| } |
| } |
| if let Some(generics) = trait_.as_ref().and_then(|t| t.generics()) { |
| stack.extend(generics); |
| } |
| |
| while let Some(ty) = stack.pop() { |
| if let Some(did) = ty.def_id(&cx.cache) { |
| if tcx.is_doc_hidden(did) { |
| return; |
| } |
| } |
| if let Some(generics) = ty.generics() { |
| stack.extend(generics); |
| } |
| } |
| |
| if let Some(did) = trait_.as_ref().map(|t| t.def_id()) { |
| record_extern_trait(cx, did); |
| } |
| |
| let (merged_attrs, cfg) = merge_attrs(cx, parent_module, load_attrs(cx, did), attrs); |
| trace!("merged_attrs={:?}", merged_attrs); |
| |
| trace!( |
| "build_impl: impl {:?} for {:?}", |
| trait_.as_ref().map(|t| t.def_id()), |
| for_.def_id(&cx.cache) |
| ); |
| ret.push(clean::Item::from_def_id_and_attrs_and_parts( |
| did, |
| None, |
| clean::ImplItem(Box::new(clean::Impl { |
| unsafety: hir::Unsafety::Normal, |
| generics, |
| trait_, |
| for_, |
| items: trait_items, |
| polarity, |
| kind: if utils::has_doc_flag(tcx, did, sym::fake_variadic) { |
| ImplKind::FakeVaradic |
| } else { |
| ImplKind::Normal |
| }, |
| })), |
| Box::new(merged_attrs), |
| cx, |
| cfg, |
| )); |
| } |
| |
| fn build_module( |
| cx: &mut DocContext<'_>, |
| did: DefId, |
| visited: &mut FxHashSet<DefId>, |
| ) -> clean::Module { |
| let items = build_module_items(cx, did, visited, &mut FxHashSet::default()); |
| |
| let span = clean::Span::new(cx.tcx.def_span(did)); |
| clean::Module { items, span } |
| } |
| |
| fn build_module_items( |
| cx: &mut DocContext<'_>, |
| did: DefId, |
| visited: &mut FxHashSet<DefId>, |
| inlined_names: &mut FxHashSet<(ItemType, Symbol)>, |
| ) -> Vec<clean::Item> { |
| let mut items = Vec::new(); |
| |
| // If we're re-exporting a re-export it may actually re-export something in |
| // two namespaces, so the target may be listed twice. Make sure we only |
| // visit each node at most once. |
| for &item in cx.tcx.module_children(did).iter() { |
| if item.vis.is_public() { |
| let res = item.res.expect_non_local(); |
| if let Some(def_id) = res.mod_def_id() { |
| // If we're inlining a glob import, it's possible to have |
| // two distinct modules with the same name. We don't want to |
| // inline it, or mark any of its contents as visited. |
| if did == def_id |
| || inlined_names.contains(&(ItemType::Module, item.ident.name)) |
| || !visited.insert(def_id) |
| { |
| continue; |
| } |
| } |
| if let Res::PrimTy(p) = res { |
| // Primitive types can't be inlined so generate an import instead. |
| let prim_ty = clean::PrimitiveType::from(p); |
| items.push(clean::Item { |
| name: None, |
| attrs: Box::new(clean::Attributes::default()), |
| item_id: ItemId::Primitive(prim_ty, did.krate), |
| visibility: clean::Public, |
| kind: Box::new(clean::ImportItem(clean::Import::new_simple( |
| item.ident.name, |
| clean::ImportSource { |
| path: clean::Path { |
| res, |
| segments: vec![clean::PathSegment { |
| name: prim_ty.as_sym(), |
| args: clean::GenericArgs::AngleBracketed { |
| args: Default::default(), |
| bindings: ThinVec::new(), |
| }, |
| }], |
| }, |
| did: None, |
| }, |
| true, |
| ))), |
| cfg: None, |
| }); |
| } else if let Some(i) = try_inline(cx, did, None, res, item.ident.name, None, visited) { |
| items.extend(i) |
| } |
| } |
| } |
| |
| items |
| } |
| |
| pub(crate) fn print_inlined_const(tcx: TyCtxt<'_>, did: DefId) -> String { |
| if let Some(did) = did.as_local() { |
| let hir_id = tcx.hir().local_def_id_to_hir_id(did); |
| rustc_hir_pretty::id_to_string(&tcx.hir(), hir_id) |
| } else { |
| tcx.rendered_const(did).clone() |
| } |
| } |
| |
| fn build_const(cx: &mut DocContext<'_>, def_id: DefId) -> clean::Constant { |
| clean::Constant { |
| type_: clean_middle_ty(cx.tcx.type_of(def_id), cx, Some(def_id)), |
| kind: clean::ConstantKind::Extern { def_id }, |
| } |
| } |
| |
| fn build_static(cx: &mut DocContext<'_>, did: DefId, mutable: bool) -> clean::Static { |
| clean::Static { |
| type_: clean_middle_ty(cx.tcx.type_of(did), cx, Some(did)), |
| mutability: if mutable { Mutability::Mut } else { Mutability::Not }, |
| expr: None, |
| } |
| } |
| |
| fn build_macro( |
| cx: &mut DocContext<'_>, |
| def_id: DefId, |
| name: Symbol, |
| import_def_id: Option<DefId>, |
| ) -> clean::ItemKind { |
| match CStore::from_tcx(cx.tcx).load_macro_untracked(def_id, cx.sess()) { |
| LoadedMacro::MacroDef(item_def, _) => { |
| if let ast::ItemKind::MacroDef(ref def) = item_def.kind { |
| let vis = clean_visibility(cx.tcx.visibility(import_def_id.unwrap_or(def_id))); |
| clean::MacroItem(clean::Macro { |
| source: utils::display_macro_source(cx, name, def, def_id, vis), |
| }) |
| } else { |
| unreachable!() |
| } |
| } |
| LoadedMacro::ProcMacro(ext) => clean::ProcMacroItem(clean::ProcMacro { |
| kind: ext.macro_kind(), |
| helpers: ext.helper_attrs, |
| }), |
| } |
| } |
| |
| /// A trait's generics clause actually contains all of the predicates for all of |
| /// its associated types as well. We specifically move these clauses to the |
| /// associated types instead when displaying, so when we're generating the |
| /// generics for the trait itself we need to be sure to remove them. |
| /// We also need to remove the implied "recursive" Self: Trait bound. |
| /// |
| /// The inverse of this filtering logic can be found in the `Clean` |
| /// implementation for `AssociatedType` |
| fn filter_non_trait_generics(trait_did: DefId, mut g: clean::Generics) -> clean::Generics { |
| for pred in &mut g.where_predicates { |
| match *pred { |
| clean::WherePredicate::BoundPredicate { |
| ty: clean::Generic(ref s), |
| ref mut bounds, |
| .. |
| } if *s == kw::SelfUpper => { |
| bounds.retain(|bound| match bound { |
| clean::GenericBound::TraitBound(clean::PolyTrait { trait_, .. }, _) => { |
| trait_.def_id() != trait_did |
| } |
| _ => true, |
| }); |
| } |
| _ => {} |
| } |
| } |
| |
| g.where_predicates.retain(|pred| match pred { |
| clean::WherePredicate::BoundPredicate { |
| ty: clean::QPath(box clean::QPathData { self_type: clean::Generic(ref s), trait_, .. }), |
| bounds, |
| .. |
| } => !(bounds.is_empty() || *s == kw::SelfUpper && trait_.def_id() == trait_did), |
| _ => true, |
| }); |
| g |
| } |
| |
| /// Supertrait bounds for a trait are also listed in the generics coming from |
| /// the metadata for a crate, so we want to separate those out and create a new |
| /// list of explicit supertrait bounds to render nicely. |
| fn separate_supertrait_bounds( |
| mut g: clean::Generics, |
| ) -> (clean::Generics, Vec<clean::GenericBound>) { |
| let mut ty_bounds = Vec::new(); |
| g.where_predicates.retain(|pred| match *pred { |
| clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref bounds, .. } |
| if *s == kw::SelfUpper => |
| { |
| ty_bounds.extend(bounds.iter().cloned()); |
| false |
| } |
| _ => true, |
| }); |
| (g, ty_bounds) |
| } |
| |
| pub(crate) fn record_extern_trait(cx: &mut DocContext<'_>, did: DefId) { |
| if did.is_local() { |
| return; |
| } |
| |
| { |
| if cx.external_traits.borrow().contains_key(&did) || cx.active_extern_traits.contains(&did) |
| { |
| return; |
| } |
| } |
| |
| { |
| cx.active_extern_traits.insert(did); |
| } |
| |
| debug!("record_extern_trait: {:?}", did); |
| let trait_ = build_external_trait(cx, did); |
| |
| cx.external_traits.borrow_mut().insert(did, trait_); |
| cx.active_extern_traits.remove(&did); |
| } |