| // The functions are complex with many branches, and explicit |
| // `return`s makes it clear where function exit points are |
| #![allow(clippy::needless_return)] |
| |
| use float::Float; |
| use int::{CastInto, DInt, HInt, Int}; |
| |
| fn div32<F: Float>(a: F, b: F) -> F |
| where |
| u32: CastInto<F::Int>, |
| F::Int: CastInto<u32>, |
| i32: CastInto<F::Int>, |
| F::Int: CastInto<i32>, |
| F::Int: HInt, |
| { |
| let one = F::Int::ONE; |
| let zero = F::Int::ZERO; |
| |
| // let bits = F::BITS; |
| let significand_bits = F::SIGNIFICAND_BITS; |
| let max_exponent = F::EXPONENT_MAX; |
| |
| let exponent_bias = F::EXPONENT_BIAS; |
| |
| let implicit_bit = F::IMPLICIT_BIT; |
| let significand_mask = F::SIGNIFICAND_MASK; |
| let sign_bit = F::SIGN_MASK as F::Int; |
| let abs_mask = sign_bit - one; |
| let exponent_mask = F::EXPONENT_MASK; |
| let inf_rep = exponent_mask; |
| let quiet_bit = implicit_bit >> 1; |
| let qnan_rep = exponent_mask | quiet_bit; |
| |
| #[inline(always)] |
| fn negate_u32(a: u32) -> u32 { |
| (<i32>::wrapping_neg(a as i32)) as u32 |
| } |
| |
| let a_rep = a.repr(); |
| let b_rep = b.repr(); |
| |
| let a_exponent = (a_rep >> significand_bits) & max_exponent.cast(); |
| let b_exponent = (b_rep >> significand_bits) & max_exponent.cast(); |
| let quotient_sign = (a_rep ^ b_rep) & sign_bit; |
| |
| let mut a_significand = a_rep & significand_mask; |
| let mut b_significand = b_rep & significand_mask; |
| let mut scale = 0; |
| |
| // Detect if a or b is zero, denormal, infinity, or NaN. |
| if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast() |
| || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast() |
| { |
| let a_abs = a_rep & abs_mask; |
| let b_abs = b_rep & abs_mask; |
| |
| // NaN / anything = qNaN |
| if a_abs > inf_rep { |
| return F::from_repr(a_rep | quiet_bit); |
| } |
| // anything / NaN = qNaN |
| if b_abs > inf_rep { |
| return F::from_repr(b_rep | quiet_bit); |
| } |
| |
| if a_abs == inf_rep { |
| if b_abs == inf_rep { |
| // infinity / infinity = NaN |
| return F::from_repr(qnan_rep); |
| } else { |
| // infinity / anything else = +/- infinity |
| return F::from_repr(a_abs | quotient_sign); |
| } |
| } |
| |
| // anything else / infinity = +/- 0 |
| if b_abs == inf_rep { |
| return F::from_repr(quotient_sign); |
| } |
| |
| if a_abs == zero { |
| if b_abs == zero { |
| // zero / zero = NaN |
| return F::from_repr(qnan_rep); |
| } else { |
| // zero / anything else = +/- zero |
| return F::from_repr(quotient_sign); |
| } |
| } |
| |
| // anything else / zero = +/- infinity |
| if b_abs == zero { |
| return F::from_repr(inf_rep | quotient_sign); |
| } |
| |
| // one or both of a or b is denormal, the other (if applicable) is a |
| // normal number. Renormalize one or both of a and b, and set scale to |
| // include the necessary exponent adjustment. |
| if a_abs < implicit_bit { |
| let (exponent, significand) = F::normalize(a_significand); |
| scale += exponent; |
| a_significand = significand; |
| } |
| |
| if b_abs < implicit_bit { |
| let (exponent, significand) = F::normalize(b_significand); |
| scale -= exponent; |
| b_significand = significand; |
| } |
| } |
| |
| // Or in the implicit significand bit. (If we fell through from the |
| // denormal path it was already set by normalize( ), but setting it twice |
| // won't hurt anything.) |
| a_significand |= implicit_bit; |
| b_significand |= implicit_bit; |
| let mut quotient_exponent: i32 = CastInto::<i32>::cast(a_exponent) |
| .wrapping_sub(CastInto::<i32>::cast(b_exponent)) |
| .wrapping_add(scale); |
| |
| // Align the significand of b as a Q31 fixed-point number in the range |
| // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax |
| // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This |
| // is accurate to about 3.5 binary digits. |
| let q31b = CastInto::<u32>::cast(b_significand << 8.cast()); |
| let mut reciprocal = (0x7504f333u32).wrapping_sub(q31b); |
| |
| // Now refine the reciprocal estimate using a Newton-Raphson iteration: |
| // |
| // x1 = x0 * (2 - x0 * b) |
| // |
| // This doubles the number of correct binary digits in the approximation |
| // with each iteration, so after three iterations, we have about 28 binary |
| // digits of accuracy. |
| |
| let mut correction: u32 = |
| negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32); |
| reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) >> 31) as u32; |
| correction = negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32); |
| reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) >> 31) as u32; |
| correction = negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32); |
| reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) >> 31) as u32; |
| |
| // Exhaustive testing shows that the error in reciprocal after three steps |
| // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our |
| // expectations. We bump the reciprocal by a tiny value to force the error |
| // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to |
| // be specific). This also causes 1/1 to give a sensible approximation |
| // instead of zero (due to overflow). |
| reciprocal = reciprocal.wrapping_sub(2); |
| |
| // The numerical reciprocal is accurate to within 2^-28, lies in the |
| // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller |
| // than the true reciprocal of b. Multiplying a by this reciprocal thus |
| // gives a numerical q = a/b in Q24 with the following properties: |
| // |
| // 1. q < a/b |
| // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0) |
| // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes |
| // from the fact that we truncate the product, and the 2^27 term |
| // is the error in the reciprocal of b scaled by the maximum |
| // possible value of a. As a consequence of this error bound, |
| // either q or nextafter(q) is the correctly rounded |
| let mut quotient = (a_significand << 1).widen_mul(reciprocal.cast()).hi(); |
| |
| // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). |
| // In either case, we are going to compute a residual of the form |
| // |
| // r = a - q*b |
| // |
| // We know from the construction of q that r satisfies: |
| // |
| // 0 <= r < ulp(q)*b |
| // |
| // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we |
| // already have the correct result. The exact halfway case cannot occur. |
| // We also take this time to right shift quotient if it falls in the [1,2) |
| // range and adjust the exponent accordingly. |
| let residual = if quotient < (implicit_bit << 1) { |
| quotient_exponent = quotient_exponent.wrapping_sub(1); |
| (a_significand << (significand_bits + 1)).wrapping_sub(quotient.wrapping_mul(b_significand)) |
| } else { |
| quotient >>= 1; |
| (a_significand << significand_bits).wrapping_sub(quotient.wrapping_mul(b_significand)) |
| }; |
| |
| let written_exponent = quotient_exponent.wrapping_add(exponent_bias as i32); |
| |
| if written_exponent >= max_exponent as i32 { |
| // If we have overflowed the exponent, return infinity. |
| return F::from_repr(inf_rep | quotient_sign); |
| } else if written_exponent < 1 { |
| // Flush denormals to zero. In the future, it would be nice to add |
| // code to round them correctly. |
| return F::from_repr(quotient_sign); |
| } else { |
| let round = ((residual << 1) > b_significand) as u32; |
| // Clear the implicit bits |
| let mut abs_result = quotient & significand_mask; |
| // Insert the exponent |
| abs_result |= written_exponent.cast() << significand_bits; |
| // Round |
| abs_result = abs_result.wrapping_add(round.cast()); |
| // Insert the sign and return |
| return F::from_repr(abs_result | quotient_sign); |
| } |
| } |
| |
| fn div64<F: Float>(a: F, b: F) -> F |
| where |
| u32: CastInto<F::Int>, |
| F::Int: CastInto<u32>, |
| i32: CastInto<F::Int>, |
| F::Int: CastInto<i32>, |
| u64: CastInto<F::Int>, |
| F::Int: CastInto<u64>, |
| i64: CastInto<F::Int>, |
| F::Int: CastInto<i64>, |
| F::Int: HInt, |
| { |
| let one = F::Int::ONE; |
| let zero = F::Int::ZERO; |
| |
| // let bits = F::BITS; |
| let significand_bits = F::SIGNIFICAND_BITS; |
| let max_exponent = F::EXPONENT_MAX; |
| |
| let exponent_bias = F::EXPONENT_BIAS; |
| |
| let implicit_bit = F::IMPLICIT_BIT; |
| let significand_mask = F::SIGNIFICAND_MASK; |
| let sign_bit = F::SIGN_MASK as F::Int; |
| let abs_mask = sign_bit - one; |
| let exponent_mask = F::EXPONENT_MASK; |
| let inf_rep = exponent_mask; |
| let quiet_bit = implicit_bit >> 1; |
| let qnan_rep = exponent_mask | quiet_bit; |
| // let exponent_bits = F::EXPONENT_BITS; |
| |
| #[inline(always)] |
| fn negate_u32(a: u32) -> u32 { |
| (<i32>::wrapping_neg(a as i32)) as u32 |
| } |
| |
| #[inline(always)] |
| fn negate_u64(a: u64) -> u64 { |
| (<i64>::wrapping_neg(a as i64)) as u64 |
| } |
| |
| let a_rep = a.repr(); |
| let b_rep = b.repr(); |
| |
| let a_exponent = (a_rep >> significand_bits) & max_exponent.cast(); |
| let b_exponent = (b_rep >> significand_bits) & max_exponent.cast(); |
| let quotient_sign = (a_rep ^ b_rep) & sign_bit; |
| |
| let mut a_significand = a_rep & significand_mask; |
| let mut b_significand = b_rep & significand_mask; |
| let mut scale = 0; |
| |
| // Detect if a or b is zero, denormal, infinity, or NaN. |
| if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast() |
| || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast() |
| { |
| let a_abs = a_rep & abs_mask; |
| let b_abs = b_rep & abs_mask; |
| |
| // NaN / anything = qNaN |
| if a_abs > inf_rep { |
| return F::from_repr(a_rep | quiet_bit); |
| } |
| // anything / NaN = qNaN |
| if b_abs > inf_rep { |
| return F::from_repr(b_rep | quiet_bit); |
| } |
| |
| if a_abs == inf_rep { |
| if b_abs == inf_rep { |
| // infinity / infinity = NaN |
| return F::from_repr(qnan_rep); |
| } else { |
| // infinity / anything else = +/- infinity |
| return F::from_repr(a_abs | quotient_sign); |
| } |
| } |
| |
| // anything else / infinity = +/- 0 |
| if b_abs == inf_rep { |
| return F::from_repr(quotient_sign); |
| } |
| |
| if a_abs == zero { |
| if b_abs == zero { |
| // zero / zero = NaN |
| return F::from_repr(qnan_rep); |
| } else { |
| // zero / anything else = +/- zero |
| return F::from_repr(quotient_sign); |
| } |
| } |
| |
| // anything else / zero = +/- infinity |
| if b_abs == zero { |
| return F::from_repr(inf_rep | quotient_sign); |
| } |
| |
| // one or both of a or b is denormal, the other (if applicable) is a |
| // normal number. Renormalize one or both of a and b, and set scale to |
| // include the necessary exponent adjustment. |
| if a_abs < implicit_bit { |
| let (exponent, significand) = F::normalize(a_significand); |
| scale += exponent; |
| a_significand = significand; |
| } |
| |
| if b_abs < implicit_bit { |
| let (exponent, significand) = F::normalize(b_significand); |
| scale -= exponent; |
| b_significand = significand; |
| } |
| } |
| |
| // Or in the implicit significand bit. (If we fell through from the |
| // denormal path it was already set by normalize( ), but setting it twice |
| // won't hurt anything.) |
| a_significand |= implicit_bit; |
| b_significand |= implicit_bit; |
| let mut quotient_exponent: i32 = CastInto::<i32>::cast(a_exponent) |
| .wrapping_sub(CastInto::<i32>::cast(b_exponent)) |
| .wrapping_add(scale); |
| |
| // Align the significand of b as a Q31 fixed-point number in the range |
| // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax |
| // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This |
| // is accurate to about 3.5 binary digits. |
| let q31b = CastInto::<u32>::cast(b_significand >> 21.cast()); |
| let mut recip32 = (0x7504f333u32).wrapping_sub(q31b); |
| |
| // Now refine the reciprocal estimate using a Newton-Raphson iteration: |
| // |
| // x1 = x0 * (2 - x0 * b) |
| // |
| // This doubles the number of correct binary digits in the approximation |
| // with each iteration, so after three iterations, we have about 28 binary |
| // digits of accuracy. |
| |
| let mut correction32: u32 = |
| negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32); |
| recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32; |
| correction32 = negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32); |
| recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32; |
| correction32 = negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32); |
| recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32; |
| |
| // recip32 might have overflowed to exactly zero in the preceeding |
| // computation if the high word of b is exactly 1.0. This would sabotage |
| // the full-width final stage of the computation that follows, so we adjust |
| // recip32 downward by one bit. |
| recip32 = recip32.wrapping_sub(1); |
| |
| // We need to perform one more iteration to get us to 56 binary digits; |
| // The last iteration needs to happen with extra precision. |
| let q63blo = CastInto::<u32>::cast(b_significand << 11.cast()); |
| |
| let correction: u64 = negate_u64( |
| (recip32 as u64) |
| .wrapping_mul(q31b as u64) |
| .wrapping_add((recip32 as u64).wrapping_mul(q63blo as u64) >> 32), |
| ); |
| let c_hi = (correction >> 32) as u32; |
| let c_lo = correction as u32; |
| let mut reciprocal: u64 = (recip32 as u64) |
| .wrapping_mul(c_hi as u64) |
| .wrapping_add((recip32 as u64).wrapping_mul(c_lo as u64) >> 32); |
| |
| // We already adjusted the 32-bit estimate, now we need to adjust the final |
| // 64-bit reciprocal estimate downward to ensure that it is strictly smaller |
| // than the infinitely precise exact reciprocal. Because the computation |
| // of the Newton-Raphson step is truncating at every step, this adjustment |
| // is small; most of the work is already done. |
| reciprocal = reciprocal.wrapping_sub(2); |
| |
| // The numerical reciprocal is accurate to within 2^-56, lies in the |
| // interval [0.5, 1.0), and is strictly smaller than the true reciprocal |
| // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b |
| // in Q53 with the following properties: |
| // |
| // 1. q < a/b |
| // 2. q is in the interval [0.5, 2.0) |
| // 3. the error in q is bounded away from 2^-53 (actually, we have a |
| // couple of bits to spare, but this is all we need). |
| |
| // We need a 64 x 64 multiply high to compute q, which isn't a basic |
| // operation in C, so we need to be a little bit fussy. |
| // let mut quotient: F::Int = ((((reciprocal as u64) |
| // .wrapping_mul(CastInto::<u32>::cast(a_significand << 1) as u64)) |
| // >> 32) as u32) |
| // .cast(); |
| |
| // We need a 64 x 64 multiply high to compute q, which isn't a basic |
| // operation in C, so we need to be a little bit fussy. |
| let mut quotient = (a_significand << 2).widen_mul(reciprocal.cast()).hi(); |
| |
| // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). |
| // In either case, we are going to compute a residual of the form |
| // |
| // r = a - q*b |
| // |
| // We know from the construction of q that r satisfies: |
| // |
| // 0 <= r < ulp(q)*b |
| // |
| // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we |
| // already have the correct result. The exact halfway case cannot occur. |
| // We also take this time to right shift quotient if it falls in the [1,2) |
| // range and adjust the exponent accordingly. |
| let residual = if quotient < (implicit_bit << 1) { |
| quotient_exponent = quotient_exponent.wrapping_sub(1); |
| (a_significand << (significand_bits + 1)).wrapping_sub(quotient.wrapping_mul(b_significand)) |
| } else { |
| quotient >>= 1; |
| (a_significand << significand_bits).wrapping_sub(quotient.wrapping_mul(b_significand)) |
| }; |
| |
| let written_exponent = quotient_exponent.wrapping_add(exponent_bias as i32); |
| |
| if written_exponent >= max_exponent as i32 { |
| // If we have overflowed the exponent, return infinity. |
| return F::from_repr(inf_rep | quotient_sign); |
| } else if written_exponent < 1 { |
| // Flush denormals to zero. In the future, it would be nice to add |
| // code to round them correctly. |
| return F::from_repr(quotient_sign); |
| } else { |
| let round = ((residual << 1) > b_significand) as u32; |
| // Clear the implicit bits |
| let mut abs_result = quotient & significand_mask; |
| // Insert the exponent |
| abs_result |= written_exponent.cast() << significand_bits; |
| // Round |
| abs_result = abs_result.wrapping_add(round.cast()); |
| // Insert the sign and return |
| return F::from_repr(abs_result | quotient_sign); |
| } |
| } |
| |
| intrinsics! { |
| #[arm_aeabi_alias = __aeabi_fdiv] |
| pub extern "C" fn __divsf3(a: f32, b: f32) -> f32 { |
| div32(a, b) |
| } |
| |
| #[arm_aeabi_alias = __aeabi_ddiv] |
| pub extern "C" fn __divdf3(a: f64, b: f64) -> f64 { |
| div64(a, b) |
| } |
| |
| #[cfg(target_arch = "arm")] |
| pub extern "C" fn __divsf3vfp(a: f32, b: f32) -> f32 { |
| a / b |
| } |
| |
| #[cfg(target_arch = "arm")] |
| pub extern "C" fn __divdf3vfp(a: f64, b: f64) -> f64 { |
| a / b |
| } |
| } |