blob: 16d195932aba61dad7cea68d68fc10398927281a [file] [log] [blame]
//! Legalization of heaps.
//!
//! This module exports the `expand_heap_addr` function which transforms a `heap_addr`
//! instruction into code that depends on the kind of heap referenced.
use crate::cursor::{Cursor, FuncCursor};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::condcodes::IntCC;
use crate::ir::immediates::Uimm32;
use crate::ir::{self, InstBuilder, RelSourceLoc};
use crate::isa::TargetIsa;
/// Expand a `heap_addr` instruction according to the definition of the heap.
pub fn expand_heap_addr(
inst: ir::Inst,
func: &mut ir::Function,
cfg: &mut ControlFlowGraph,
isa: &dyn TargetIsa,
heap: ir::Heap,
offset: ir::Value,
access_size: Uimm32,
) {
match func.heaps[heap].style {
ir::HeapStyle::Dynamic { bound_gv } => dynamic_addr(
isa,
inst,
heap,
offset,
u64::from(access_size),
bound_gv,
func,
),
ir::HeapStyle::Static { bound } => static_addr(
isa,
inst,
heap,
offset,
u64::from(access_size),
bound.into(),
func,
cfg,
),
}
}
/// Expand a `heap_addr` for a dynamic heap.
fn dynamic_addr(
isa: &dyn TargetIsa,
inst: ir::Inst,
heap: ir::Heap,
offset: ir::Value,
access_size: u64,
bound_gv: ir::GlobalValue,
func: &mut ir::Function,
) {
let offset_ty = func.dfg.value_type(offset);
let addr_ty = func.dfg.value_type(func.dfg.first_result(inst));
let min_size = func.heaps[heap].min_size.into();
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
let offset = cast_offset_to_pointer_ty(offset, offset_ty, addr_ty, &mut pos);
// Start with the bounds check. Trap if `offset + access_size > bound`.
let bound = pos.ins().global_value(addr_ty, bound_gv);
let (cc, lhs, bound) = if access_size == 1 {
// `offset > bound - 1` is the same as `offset >= bound`.
(IntCC::UnsignedGreaterThanOrEqual, offset, bound)
} else if access_size <= min_size {
// We know that bound >= min_size, so here we can compare `offset > bound - access_size`
// without wrapping.
let adj_bound = pos.ins().iadd_imm(bound, -(access_size as i64));
(IntCC::UnsignedGreaterThan, offset, adj_bound)
} else {
// We need an overflow check for the adjusted offset.
let access_size_val = pos.ins().iconst(addr_ty, access_size as i64);
let (adj_offset, overflow) = pos.ins().iadd_ifcout(offset, access_size_val);
pos.ins().trapif(
isa.unsigned_add_overflow_condition(),
overflow,
ir::TrapCode::HeapOutOfBounds,
);
(IntCC::UnsignedGreaterThan, adj_offset, bound)
};
let oob = pos.ins().icmp(cc, lhs, bound);
pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
let spectre_oob_comparison = if isa.flags().enable_heap_access_spectre_mitigation() {
Some((cc, lhs, bound))
} else {
None
};
compute_addr(
isa,
inst,
heap,
addr_ty,
offset,
pos.func,
spectre_oob_comparison,
);
}
/// Expand a `heap_addr` for a static heap.
fn static_addr(
isa: &dyn TargetIsa,
inst: ir::Inst,
heap: ir::Heap,
mut offset: ir::Value,
access_size: u64,
bound: u64,
func: &mut ir::Function,
cfg: &mut ControlFlowGraph,
) {
let offset_ty = func.dfg.value_type(offset);
let addr_ty = func.dfg.value_type(func.dfg.first_result(inst));
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
// The goal here is to trap if `offset + access_size > bound`.
//
// This first case is a trivial case where we can easily trap.
if access_size > bound {
// This will simply always trap since `offset >= 0`.
pos.ins().trap(ir::TrapCode::HeapOutOfBounds);
pos.func.dfg.replace(inst).iconst(addr_ty, 0);
// Split Block, as the trap is a terminator instruction.
let curr_block = pos.current_block().expect("Cursor is not in a block");
let new_block = pos.func.dfg.make_block();
pos.insert_block(new_block);
cfg.recompute_block(pos.func, curr_block);
cfg.recompute_block(pos.func, new_block);
return;
}
// After the trivial case is done we're now mostly interested in trapping
// if `offset > bound - access_size`. We know `bound - access_size` here is
// non-negative from the above comparison.
//
// If we can know `bound - access_size >= 4GB` then with a 32-bit offset
// we're guaranteed:
//
// bound - access_size >= 4GB > offset
//
// or, in other words, `offset < bound - access_size`, meaning we can't trap
// for any value of `offset`.
//
// With that we have an optimization here where with 32-bit offsets and
// `bound - access_size >= 4GB` we can omit a bounds check.
let limit = bound - access_size;
let mut spectre_oob_comparison = None;
offset = cast_offset_to_pointer_ty(offset, offset_ty, addr_ty, &mut pos);
if offset_ty != ir::types::I32 || limit < 0xffff_ffff {
// Here we want to test the condition `offset > limit` and if that's
// true then this is an out-of-bounds access and needs to trap. For ARM
// and other RISC architectures it's easier to test against an immediate
// that's even instead of odd, so if `limit` is odd then we instead test
// for `offset >= limit + 1`.
//
// The thinking behind this is that:
//
// A >= B + 1 => A - 1 >= B => A > B
//
// where the last step here is true because A/B are integers, which
// should mean that `A >= B + 1` is an equivalent check for `A > B`
let (cc, lhs, limit_imm) = if limit & 1 == 1 {
let limit = limit as i64 + 1;
(IntCC::UnsignedGreaterThanOrEqual, offset, limit)
} else {
let limit = limit as i64;
(IntCC::UnsignedGreaterThan, offset, limit)
};
let oob = pos.ins().icmp_imm(cc, lhs, limit_imm);
pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
if isa.flags().enable_heap_access_spectre_mitigation() {
let limit = pos.ins().iconst(addr_ty, limit_imm);
spectre_oob_comparison = Some((cc, lhs, limit));
}
}
compute_addr(
isa,
inst,
heap,
addr_ty,
offset,
pos.func,
spectre_oob_comparison,
);
}
fn cast_offset_to_pointer_ty(
offset: ir::Value,
offset_ty: ir::Type,
addr_ty: ir::Type,
pos: &mut FuncCursor,
) -> ir::Value {
if offset_ty == addr_ty {
return offset;
}
// Note that using 64-bit heaps on a 32-bit host is not currently supported,
// would require at least a bounds check here to ensure that the truncation
// from 64-to-32 bits doesn't lose any upper bits. For now though we're
// mostly interested in the 32-bit-heaps-on-64-bit-hosts cast.
assert!(offset_ty.bits() < addr_ty.bits());
// Convert `offset` to `addr_ty`.
let extended_offset = pos.ins().uextend(addr_ty, offset);
// Add debug value-label alias so that debuginfo can name the extended
// value as the address
let loc = pos.srcloc();
let loc = RelSourceLoc::from_base_offset(pos.func.params.base_srcloc(), loc);
pos.func
.stencil
.dfg
.add_value_label_alias(extended_offset, loc, offset);
extended_offset
}
/// Emit code for the base address computation of a `heap_addr` instruction.
fn compute_addr(
isa: &dyn TargetIsa,
inst: ir::Inst,
heap: ir::Heap,
addr_ty: ir::Type,
offset: ir::Value,
func: &mut ir::Function,
// If we are performing Spectre mitigation with conditional selects, the
// values to compare and the condition code that indicates an out-of bounds
// condition; on this condition, the conditional move will choose a
// speculatively safe address (a zero / null pointer) instead.
spectre_oob_comparison: Option<(IntCC, ir::Value, ir::Value)>,
) {
debug_assert_eq!(func.dfg.value_type(offset), addr_ty);
let mut pos = FuncCursor::new(func).at_inst(inst);
pos.use_srcloc(inst);
// Add the heap base address base
let base = if isa.flags().enable_pinned_reg() && isa.flags().use_pinned_reg_as_heap_base() {
pos.ins().get_pinned_reg(isa.pointer_type())
} else {
let base_gv = pos.func.heaps[heap].base;
pos.ins().global_value(addr_ty, base_gv)
};
if let Some((cc, a, b)) = spectre_oob_comparison {
let final_addr = pos.ins().iadd(base, offset);
let zero = pos.ins().iconst(addr_ty, 0);
let flags = pos.ins().ifcmp(a, b);
pos.func
.dfg
.replace(inst)
.selectif_spectre_guard(addr_ty, cc, flags, zero, final_addr);
} else {
pos.func.dfg.replace(inst).iadd(base, offset);
}
}