| //! Miscellaneous type-system utilities that are too small to deserve their own modules. |
| |
| use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags; |
| use crate::query::Providers; |
| use crate::ty::layout::IntegerExt; |
| use crate::ty::{ |
| self, FallibleTypeFolder, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, |
| TypeVisitableExt, |
| }; |
| use crate::ty::{GenericArgKind, GenericArgsRef}; |
| use rustc_apfloat::Float as _; |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet}; |
| use rustc_data_structures::stable_hasher::{Hash128, HashStable, StableHasher}; |
| use rustc_errors::ErrorGuaranteed; |
| use rustc_hir as hir; |
| use rustc_hir::def::{CtorOf, DefKind, Res}; |
| use rustc_hir::def_id::{CrateNum, DefId, LocalDefId}; |
| use rustc_index::bit_set::GrowableBitSet; |
| use rustc_macros::HashStable; |
| use rustc_session::Limit; |
| use rustc_span::sym; |
| use rustc_target::abi::{Integer, IntegerType, Size}; |
| use rustc_target::spec::abi::Abi; |
| use smallvec::SmallVec; |
| use std::{fmt, iter}; |
| |
| #[derive(Copy, Clone, Debug)] |
| pub struct Discr<'tcx> { |
| /// Bit representation of the discriminant (e.g., `-128i8` is `0xFF_u128`). |
| pub val: u128, |
| pub ty: Ty<'tcx>, |
| } |
| |
| /// Used as an input to [`TyCtxt::uses_unique_generic_params`]. |
| #[derive(Copy, Clone, Debug, PartialEq, Eq)] |
| pub enum CheckRegions { |
| No, |
| /// Only permit early bound regions. This is useful for Adts which |
| /// can never have late bound regions. |
| OnlyEarlyBound, |
| /// Permit both late bound and early bound regions. Use this for functions, |
| /// which frequently have late bound regions. |
| Bound, |
| } |
| |
| #[derive(Copy, Clone, Debug)] |
| pub enum NotUniqueParam<'tcx> { |
| DuplicateParam(ty::GenericArg<'tcx>), |
| NotParam(ty::GenericArg<'tcx>), |
| } |
| |
| impl<'tcx> fmt::Display for Discr<'tcx> { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match *self.ty.kind() { |
| ty::Int(ity) => { |
| let size = ty::tls::with(|tcx| Integer::from_int_ty(&tcx, ity).size()); |
| let x = self.val; |
| // sign extend the raw representation to be an i128 |
| let x = size.sign_extend(x) as i128; |
| write!(fmt, "{x}") |
| } |
| _ => write!(fmt, "{}", self.val), |
| } |
| } |
| } |
| |
| impl<'tcx> Discr<'tcx> { |
| /// Adds `1` to the value and wraps around if the maximum for the type is reached. |
| pub fn wrap_incr(self, tcx: TyCtxt<'tcx>) -> Self { |
| self.checked_add(tcx, 1).0 |
| } |
| pub fn checked_add(self, tcx: TyCtxt<'tcx>, n: u128) -> (Self, bool) { |
| let (size, signed) = self.ty.int_size_and_signed(tcx); |
| let (val, oflo) = if signed { |
| let min = size.signed_int_min(); |
| let max = size.signed_int_max(); |
| let val = size.sign_extend(self.val) as i128; |
| assert!(n < (i128::MAX as u128)); |
| let n = n as i128; |
| let oflo = val > max - n; |
| let val = if oflo { min + (n - (max - val) - 1) } else { val + n }; |
| // zero the upper bits |
| let val = val as u128; |
| let val = size.truncate(val); |
| (val, oflo) |
| } else { |
| let max = size.unsigned_int_max(); |
| let val = self.val; |
| let oflo = val > max - n; |
| let val = if oflo { n - (max - val) - 1 } else { val + n }; |
| (val, oflo) |
| }; |
| (Self { val, ty: self.ty }, oflo) |
| } |
| } |
| |
| pub trait IntTypeExt { |
| fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>; |
| fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>>; |
| fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx>; |
| } |
| |
| impl IntTypeExt for IntegerType { |
| fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| match self { |
| IntegerType::Pointer(true) => tcx.types.isize, |
| IntegerType::Pointer(false) => tcx.types.usize, |
| IntegerType::Fixed(i, s) => i.to_ty(tcx, *s), |
| } |
| } |
| |
| fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx> { |
| Discr { val: 0, ty: self.to_ty(tcx) } |
| } |
| |
| fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>> { |
| if let Some(val) = val { |
| assert_eq!(self.to_ty(tcx), val.ty); |
| let (new, oflo) = val.checked_add(tcx, 1); |
| if oflo { None } else { Some(new) } |
| } else { |
| Some(self.initial_discriminant(tcx)) |
| } |
| } |
| } |
| |
| impl<'tcx> TyCtxt<'tcx> { |
| /// Creates a hash of the type `Ty` which will be the same no matter what crate |
| /// context it's calculated within. This is used by the `type_id` intrinsic. |
| pub fn type_id_hash(self, ty: Ty<'tcx>) -> Hash128 { |
| // We want the type_id be independent of the types free regions, so we |
| // erase them. The erase_regions() call will also anonymize bound |
| // regions, which is desirable too. |
| let ty = self.erase_regions(ty); |
| |
| self.with_stable_hashing_context(|mut hcx| { |
| let mut hasher = StableHasher::new(); |
| hcx.while_hashing_spans(false, |hcx| ty.hash_stable(hcx, &mut hasher)); |
| hasher.finish() |
| }) |
| } |
| |
| pub fn res_generics_def_id(self, res: Res) -> Option<DefId> { |
| match res { |
| Res::Def(DefKind::Ctor(CtorOf::Variant, _), def_id) => { |
| Some(self.parent(self.parent(def_id))) |
| } |
| Res::Def(DefKind::Variant | DefKind::Ctor(CtorOf::Struct, _), def_id) => { |
| Some(self.parent(def_id)) |
| } |
| // Other `DefKind`s don't have generics and would ICE when calling |
| // `generics_of`. |
| Res::Def( |
| DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Trait |
| | DefKind::OpaqueTy |
| | DefKind::TyAlias |
| | DefKind::ForeignTy |
| | DefKind::TraitAlias |
| | DefKind::AssocTy |
| | DefKind::Fn |
| | DefKind::AssocFn |
| | DefKind::AssocConst |
| | DefKind::Impl { .. }, |
| def_id, |
| ) => Some(def_id), |
| Res::Err => None, |
| _ => None, |
| } |
| } |
| |
| /// Attempts to returns the deeply last field of nested structures, but |
| /// does not apply any normalization in its search. Returns the same type |
| /// if input `ty` is not a structure at all. |
| pub fn struct_tail_without_normalization(self, ty: Ty<'tcx>) -> Ty<'tcx> { |
| let tcx = self; |
| tcx.struct_tail_with_normalize(ty, |ty| ty, || {}) |
| } |
| |
| /// Returns the deeply last field of nested structures, or the same type if |
| /// not a structure at all. Corresponds to the only possible unsized field, |
| /// and its type can be used to determine unsizing strategy. |
| /// |
| /// Should only be called if `ty` has no inference variables and does not |
| /// need its lifetimes preserved (e.g. as part of codegen); otherwise |
| /// normalization attempt may cause compiler bugs. |
| pub fn struct_tail_erasing_lifetimes( |
| self, |
| ty: Ty<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ) -> Ty<'tcx> { |
| let tcx = self; |
| tcx.struct_tail_with_normalize(ty, |ty| tcx.normalize_erasing_regions(param_env, ty), || {}) |
| } |
| |
| /// Returns the deeply last field of nested structures, or the same type if |
| /// not a structure at all. Corresponds to the only possible unsized field, |
| /// and its type can be used to determine unsizing strategy. |
| /// |
| /// This is parameterized over the normalization strategy (i.e. how to |
| /// handle `<T as Trait>::Assoc` and `impl Trait`); pass the identity |
| /// function to indicate no normalization should take place. |
| /// |
| /// See also `struct_tail_erasing_lifetimes`, which is suitable for use |
| /// during codegen. |
| pub fn struct_tail_with_normalize( |
| self, |
| mut ty: Ty<'tcx>, |
| mut normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>, |
| // This is currently used to allow us to walk a ValTree |
| // in lockstep with the type in order to get the ValTree branch that |
| // corresponds to an unsized field. |
| mut f: impl FnMut() -> (), |
| ) -> Ty<'tcx> { |
| let recursion_limit = self.recursion_limit(); |
| for iteration in 0.. { |
| if !recursion_limit.value_within_limit(iteration) { |
| let suggested_limit = match recursion_limit { |
| Limit(0) => Limit(2), |
| limit => limit * 2, |
| }; |
| let reported = |
| self.sess.emit_err(crate::error::RecursionLimitReached { ty, suggested_limit }); |
| return Ty::new_error(self, reported); |
| } |
| match *ty.kind() { |
| ty::Adt(def, args) => { |
| if !def.is_struct() { |
| break; |
| } |
| match def.non_enum_variant().tail_opt() { |
| Some(field) => { |
| f(); |
| ty = field.ty(self, args); |
| } |
| None => break, |
| } |
| } |
| |
| ty::Tuple(tys) if let Some((&last_ty, _)) = tys.split_last() => { |
| f(); |
| ty = last_ty; |
| } |
| |
| ty::Tuple(_) => break, |
| |
| ty::Alias(..) => { |
| let normalized = normalize(ty); |
| if ty == normalized { |
| return ty; |
| } else { |
| ty = normalized; |
| } |
| } |
| |
| _ => { |
| break; |
| } |
| } |
| } |
| ty |
| } |
| |
| /// Same as applying `struct_tail` on `source` and `target`, but only |
| /// keeps going as long as the two types are instances of the same |
| /// structure definitions. |
| /// For `(Foo<Foo<T>>, Foo<dyn Trait>)`, the result will be `(Foo<T>, Trait)`, |
| /// whereas struct_tail produces `T`, and `Trait`, respectively. |
| /// |
| /// Should only be called if the types have no inference variables and do |
| /// not need their lifetimes preserved (e.g., as part of codegen); otherwise, |
| /// normalization attempt may cause compiler bugs. |
| pub fn struct_lockstep_tails_erasing_lifetimes( |
| self, |
| source: Ty<'tcx>, |
| target: Ty<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ) -> (Ty<'tcx>, Ty<'tcx>) { |
| let tcx = self; |
| tcx.struct_lockstep_tails_with_normalize(source, target, |ty| { |
| tcx.normalize_erasing_regions(param_env, ty) |
| }) |
| } |
| |
| /// Same as applying `struct_tail` on `source` and `target`, but only |
| /// keeps going as long as the two types are instances of the same |
| /// structure definitions. |
| /// For `(Foo<Foo<T>>, Foo<dyn Trait>)`, the result will be `(Foo<T>, Trait)`, |
| /// whereas struct_tail produces `T`, and `Trait`, respectively. |
| /// |
| /// See also `struct_lockstep_tails_erasing_lifetimes`, which is suitable for use |
| /// during codegen. |
| pub fn struct_lockstep_tails_with_normalize( |
| self, |
| source: Ty<'tcx>, |
| target: Ty<'tcx>, |
| normalize: impl Fn(Ty<'tcx>) -> Ty<'tcx>, |
| ) -> (Ty<'tcx>, Ty<'tcx>) { |
| let (mut a, mut b) = (source, target); |
| loop { |
| match (&a.kind(), &b.kind()) { |
| (&ty::Adt(a_def, a_args), &ty::Adt(b_def, b_args)) |
| if a_def == b_def && a_def.is_struct() => |
| { |
| if let Some(f) = a_def.non_enum_variant().tail_opt() { |
| a = f.ty(self, a_args); |
| b = f.ty(self, b_args); |
| } else { |
| break; |
| } |
| } |
| (&ty::Tuple(a_tys), &ty::Tuple(b_tys)) if a_tys.len() == b_tys.len() => { |
| if let Some(&a_last) = a_tys.last() { |
| a = a_last; |
| b = *b_tys.last().unwrap(); |
| } else { |
| break; |
| } |
| } |
| (ty::Alias(..), _) | (_, ty::Alias(..)) => { |
| // If either side is a projection, attempt to |
| // progress via normalization. (Should be safe to |
| // apply to both sides as normalization is |
| // idempotent.) |
| let a_norm = normalize(a); |
| let b_norm = normalize(b); |
| if a == a_norm && b == b_norm { |
| break; |
| } else { |
| a = a_norm; |
| b = b_norm; |
| } |
| } |
| |
| _ => break, |
| } |
| } |
| (a, b) |
| } |
| |
| /// Calculate the destructor of a given type. |
| pub fn calculate_dtor( |
| self, |
| adt_did: DefId, |
| validate: impl Fn(Self, DefId) -> Result<(), ErrorGuaranteed>, |
| ) -> Option<ty::Destructor> { |
| let drop_trait = self.lang_items().drop_trait()?; |
| self.ensure().coherent_trait(drop_trait); |
| |
| let ty = self.type_of(adt_did).instantiate_identity(); |
| let mut dtor_candidate = None; |
| self.for_each_relevant_impl(drop_trait, ty, |impl_did| { |
| if validate(self, impl_did).is_err() { |
| // Already `ErrorGuaranteed`, no need to delay a span bug here. |
| return; |
| } |
| |
| let Some(item_id) = self.associated_item_def_ids(impl_did).first() else { |
| self.sess |
| .delay_span_bug(self.def_span(impl_did), "Drop impl without drop function"); |
| return; |
| }; |
| |
| if let Some((old_item_id, _)) = dtor_candidate { |
| self.sess |
| .struct_span_err(self.def_span(item_id), "multiple drop impls found") |
| .span_note(self.def_span(old_item_id), "other impl here") |
| .delay_as_bug(); |
| } |
| |
| dtor_candidate = Some((*item_id, self.constness(impl_did))); |
| }); |
| |
| let (did, constness) = dtor_candidate?; |
| Some(ty::Destructor { did, constness }) |
| } |
| |
| /// Returns the set of types that are required to be alive in |
| /// order to run the destructor of `def` (see RFCs 769 and |
| /// 1238). |
| /// |
| /// Note that this returns only the constraints for the |
| /// destructor of `def` itself. For the destructors of the |
| /// contents, you need `adt_dtorck_constraint`. |
| pub fn destructor_constraints(self, def: ty::AdtDef<'tcx>) -> Vec<ty::GenericArg<'tcx>> { |
| let dtor = match def.destructor(self) { |
| None => { |
| debug!("destructor_constraints({:?}) - no dtor", def.did()); |
| return vec![]; |
| } |
| Some(dtor) => dtor.did, |
| }; |
| |
| let impl_def_id = self.parent(dtor); |
| let impl_generics = self.generics_of(impl_def_id); |
| |
| // We have a destructor - all the parameters that are not |
| // pure_wrt_drop (i.e, don't have a #[may_dangle] attribute) |
| // must be live. |
| |
| // We need to return the list of parameters from the ADTs |
| // generics/args that correspond to impure parameters on the |
| // impl's generics. This is a bit ugly, but conceptually simple: |
| // |
| // Suppose our ADT looks like the following |
| // |
| // struct S<X, Y, Z>(X, Y, Z); |
| // |
| // and the impl is |
| // |
| // impl<#[may_dangle] P0, P1, P2> Drop for S<P1, P2, P0> |
| // |
| // We want to return the parameters (X, Y). For that, we match |
| // up the item-args <X, Y, Z> with the args on the impl ADT, |
| // <P1, P2, P0>, and then look up which of the impl args refer to |
| // parameters marked as pure. |
| |
| let impl_args = match *self.type_of(impl_def_id).instantiate_identity().kind() { |
| ty::Adt(def_, args) if def_ == def => args, |
| _ => bug!(), |
| }; |
| |
| let item_args = match *self.type_of(def.did()).instantiate_identity().kind() { |
| ty::Adt(def_, args) if def_ == def => args, |
| _ => bug!(), |
| }; |
| |
| let result = iter::zip(item_args, impl_args) |
| .filter(|&(_, k)| { |
| match k.unpack() { |
| GenericArgKind::Lifetime(region) => match region.kind() { |
| ty::ReEarlyBound(ref ebr) => { |
| !impl_generics.region_param(ebr, self).pure_wrt_drop |
| } |
| // Error: not a region param |
| _ => false, |
| }, |
| GenericArgKind::Type(ty) => match ty.kind() { |
| ty::Param(ref pt) => !impl_generics.type_param(pt, self).pure_wrt_drop, |
| // Error: not a type param |
| _ => false, |
| }, |
| GenericArgKind::Const(ct) => match ct.kind() { |
| ty::ConstKind::Param(ref pc) => { |
| !impl_generics.const_param(pc, self).pure_wrt_drop |
| } |
| // Error: not a const param |
| _ => false, |
| }, |
| } |
| }) |
| .map(|(item_param, _)| item_param) |
| .collect(); |
| debug!("destructor_constraint({:?}) = {:?}", def.did(), result); |
| result |
| } |
| |
| /// Checks whether each generic argument is simply a unique generic parameter. |
| pub fn uses_unique_generic_params( |
| self, |
| args: GenericArgsRef<'tcx>, |
| ignore_regions: CheckRegions, |
| ) -> Result<(), NotUniqueParam<'tcx>> { |
| let mut seen = GrowableBitSet::default(); |
| let mut seen_late = FxHashSet::default(); |
| for arg in args { |
| match arg.unpack() { |
| GenericArgKind::Lifetime(lt) => match (ignore_regions, lt.kind()) { |
| (CheckRegions::Bound, ty::ReLateBound(di, reg)) => { |
| if !seen_late.insert((di, reg)) { |
| return Err(NotUniqueParam::DuplicateParam(lt.into())); |
| } |
| } |
| (CheckRegions::OnlyEarlyBound | CheckRegions::Bound, ty::ReEarlyBound(p)) => { |
| if !seen.insert(p.index) { |
| return Err(NotUniqueParam::DuplicateParam(lt.into())); |
| } |
| } |
| (CheckRegions::OnlyEarlyBound | CheckRegions::Bound, _) => { |
| return Err(NotUniqueParam::NotParam(lt.into())); |
| } |
| (CheckRegions::No, _) => {} |
| }, |
| GenericArgKind::Type(t) => match t.kind() { |
| ty::Param(p) => { |
| if !seen.insert(p.index) { |
| return Err(NotUniqueParam::DuplicateParam(t.into())); |
| } |
| } |
| _ => return Err(NotUniqueParam::NotParam(t.into())), |
| }, |
| GenericArgKind::Const(c) => match c.kind() { |
| ty::ConstKind::Param(p) => { |
| if !seen.insert(p.index) { |
| return Err(NotUniqueParam::DuplicateParam(c.into())); |
| } |
| } |
| _ => return Err(NotUniqueParam::NotParam(c.into())), |
| }, |
| } |
| } |
| |
| Ok(()) |
| } |
| |
| /// Checks whether each generic argument is simply a unique generic placeholder. |
| /// |
| /// This is used in the new solver, which canonicalizes params to placeholders |
| /// for better caching. |
| pub fn uses_unique_placeholders_ignoring_regions( |
| self, |
| args: GenericArgsRef<'tcx>, |
| ) -> Result<(), NotUniqueParam<'tcx>> { |
| let mut seen = GrowableBitSet::default(); |
| for arg in args { |
| match arg.unpack() { |
| // Ignore regions, since we can't resolve those in a canonicalized |
| // query in the trait solver. |
| GenericArgKind::Lifetime(_) => {} |
| GenericArgKind::Type(t) => match t.kind() { |
| ty::Placeholder(p) => { |
| if !seen.insert(p.bound.var) { |
| return Err(NotUniqueParam::DuplicateParam(t.into())); |
| } |
| } |
| _ => return Err(NotUniqueParam::NotParam(t.into())), |
| }, |
| GenericArgKind::Const(c) => match c.kind() { |
| ty::ConstKind::Placeholder(p) => { |
| if !seen.insert(p.bound) { |
| return Err(NotUniqueParam::DuplicateParam(c.into())); |
| } |
| } |
| _ => return Err(NotUniqueParam::NotParam(c.into())), |
| }, |
| } |
| } |
| |
| Ok(()) |
| } |
| |
| /// Returns `true` if `def_id` refers to a closure (e.g., `|x| x * 2`). Note |
| /// that closures have a `DefId`, but the closure *expression* also |
| /// has a `HirId` that is located within the context where the |
| /// closure appears (and, sadly, a corresponding `NodeId`, since |
| /// those are not yet phased out). The parent of the closure's |
| /// `DefId` will also be the context where it appears. |
| pub fn is_closure(self, def_id: DefId) -> bool { |
| matches!(self.def_kind(def_id), DefKind::Closure | DefKind::Generator) |
| } |
| |
| /// Returns `true` if `def_id` refers to a definition that does not have its own |
| /// type-checking context, i.e. closure, generator or inline const. |
| pub fn is_typeck_child(self, def_id: DefId) -> bool { |
| matches!( |
| self.def_kind(def_id), |
| DefKind::Closure | DefKind::Generator | DefKind::InlineConst |
| ) |
| } |
| |
| /// Returns `true` if `def_id` refers to a trait (i.e., `trait Foo { ... }`). |
| pub fn is_trait(self, def_id: DefId) -> bool { |
| self.def_kind(def_id) == DefKind::Trait |
| } |
| |
| /// Returns `true` if `def_id` refers to a trait alias (i.e., `trait Foo = ...;`), |
| /// and `false` otherwise. |
| pub fn is_trait_alias(self, def_id: DefId) -> bool { |
| self.def_kind(def_id) == DefKind::TraitAlias |
| } |
| |
| /// Returns `true` if this `DefId` refers to the implicit constructor for |
| /// a tuple struct like `struct Foo(u32)`, and `false` otherwise. |
| pub fn is_constructor(self, def_id: DefId) -> bool { |
| matches!(self.def_kind(def_id), DefKind::Ctor(..)) |
| } |
| |
| /// Given the `DefId`, returns the `DefId` of the innermost item that |
| /// has its own type-checking context or "inference environment". |
| /// |
| /// For example, a closure has its own `DefId`, but it is type-checked |
| /// with the containing item. Similarly, an inline const block has its |
| /// own `DefId` but it is type-checked together with the containing item. |
| /// |
| /// Therefore, when we fetch the |
| /// `typeck` the closure, for example, we really wind up |
| /// fetching the `typeck` the enclosing fn item. |
| pub fn typeck_root_def_id(self, def_id: DefId) -> DefId { |
| let mut def_id = def_id; |
| while self.is_typeck_child(def_id) { |
| def_id = self.parent(def_id); |
| } |
| def_id |
| } |
| |
| /// Given the `DefId` and args a closure, creates the type of |
| /// `self` argument that the closure expects. For example, for a |
| /// `Fn` closure, this would return a reference type `&T` where |
| /// `T = closure_ty`. |
| /// |
| /// Returns `None` if this closure's kind has not yet been inferred. |
| /// This should only be possible during type checking. |
| /// |
| /// Note that the return value is a late-bound region and hence |
| /// wrapped in a binder. |
| pub fn closure_env_ty( |
| self, |
| closure_def_id: DefId, |
| closure_args: GenericArgsRef<'tcx>, |
| env_region: ty::Region<'tcx>, |
| ) -> Option<Ty<'tcx>> { |
| let closure_ty = Ty::new_closure(self, closure_def_id, closure_args); |
| let closure_kind_ty = closure_args.as_closure().kind_ty(); |
| let closure_kind = closure_kind_ty.to_opt_closure_kind()?; |
| let env_ty = match closure_kind { |
| ty::ClosureKind::Fn => Ty::new_imm_ref(self, env_region, closure_ty), |
| ty::ClosureKind::FnMut => Ty::new_mut_ref(self, env_region, closure_ty), |
| ty::ClosureKind::FnOnce => closure_ty, |
| }; |
| Some(env_ty) |
| } |
| |
| /// Returns `true` if the node pointed to by `def_id` is a `static` item. |
| #[inline] |
| pub fn is_static(self, def_id: DefId) -> bool { |
| matches!(self.def_kind(def_id), DefKind::Static(_)) |
| } |
| |
| #[inline] |
| pub fn static_mutability(self, def_id: DefId) -> Option<hir::Mutability> { |
| if let DefKind::Static(mt) = self.def_kind(def_id) { Some(mt) } else { None } |
| } |
| |
| /// Returns `true` if this is a `static` item with the `#[thread_local]` attribute. |
| pub fn is_thread_local_static(self, def_id: DefId) -> bool { |
| self.codegen_fn_attrs(def_id).flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) |
| } |
| |
| /// Returns `true` if the node pointed to by `def_id` is a mutable `static` item. |
| #[inline] |
| pub fn is_mutable_static(self, def_id: DefId) -> bool { |
| self.static_mutability(def_id) == Some(hir::Mutability::Mut) |
| } |
| |
| /// Returns `true` if the item pointed to by `def_id` is a thread local which needs a |
| /// thread local shim generated. |
| #[inline] |
| pub fn needs_thread_local_shim(self, def_id: DefId) -> bool { |
| !self.sess.target.dll_tls_export |
| && self.is_thread_local_static(def_id) |
| && !self.is_foreign_item(def_id) |
| } |
| |
| /// Returns the type a reference to the thread local takes in MIR. |
| pub fn thread_local_ptr_ty(self, def_id: DefId) -> Ty<'tcx> { |
| let static_ty = self.type_of(def_id).instantiate_identity(); |
| if self.is_mutable_static(def_id) { |
| Ty::new_mut_ptr(self, static_ty) |
| } else if self.is_foreign_item(def_id) { |
| Ty::new_imm_ptr(self, static_ty) |
| } else { |
| // FIXME: These things don't *really* have 'static lifetime. |
| Ty::new_imm_ref(self, self.lifetimes.re_static, static_ty) |
| } |
| } |
| |
| /// Get the type of the pointer to the static that we use in MIR. |
| pub fn static_ptr_ty(self, def_id: DefId) -> Ty<'tcx> { |
| // Make sure that any constants in the static's type are evaluated. |
| let static_ty = self.normalize_erasing_regions( |
| ty::ParamEnv::empty(), |
| self.type_of(def_id).instantiate_identity(), |
| ); |
| |
| // Make sure that accesses to unsafe statics end up using raw pointers. |
| // For thread-locals, this needs to be kept in sync with `Rvalue::ty`. |
| if self.is_mutable_static(def_id) { |
| Ty::new_mut_ptr(self, static_ty) |
| } else if self.is_foreign_item(def_id) { |
| Ty::new_imm_ptr(self, static_ty) |
| } else { |
| Ty::new_imm_ref(self, self.lifetimes.re_erased, static_ty) |
| } |
| } |
| |
| /// Return the set of types that should be taken into account when checking |
| /// trait bounds on a generator's internal state. |
| pub fn generator_hidden_types( |
| self, |
| def_id: DefId, |
| ) -> impl Iterator<Item = ty::EarlyBinder<Ty<'tcx>>> { |
| let generator_layout = self.mir_generator_witnesses(def_id); |
| generator_layout |
| .as_ref() |
| .map_or_else(|| [].iter(), |l| l.field_tys.iter()) |
| .filter(|decl| !decl.ignore_for_traits) |
| .map(|decl| ty::EarlyBinder::bind(decl.ty)) |
| } |
| |
| /// Normalizes all opaque types in the given value, replacing them |
| /// with their underlying types. |
| pub fn expand_opaque_types(self, val: Ty<'tcx>) -> Ty<'tcx> { |
| let mut visitor = OpaqueTypeExpander { |
| seen_opaque_tys: FxHashSet::default(), |
| expanded_cache: FxHashMap::default(), |
| primary_def_id: None, |
| found_recursion: false, |
| found_any_recursion: false, |
| check_recursion: false, |
| expand_generators: false, |
| tcx: self, |
| }; |
| val.fold_with(&mut visitor) |
| } |
| |
| /// Expands the given impl trait type, stopping if the type is recursive. |
| #[instrument(skip(self), level = "debug", ret)] |
| pub fn try_expand_impl_trait_type( |
| self, |
| def_id: DefId, |
| args: GenericArgsRef<'tcx>, |
| ) -> Result<Ty<'tcx>, Ty<'tcx>> { |
| let mut visitor = OpaqueTypeExpander { |
| seen_opaque_tys: FxHashSet::default(), |
| expanded_cache: FxHashMap::default(), |
| primary_def_id: Some(def_id), |
| found_recursion: false, |
| found_any_recursion: false, |
| check_recursion: true, |
| expand_generators: true, |
| tcx: self, |
| }; |
| |
| let expanded_type = visitor.expand_opaque_ty(def_id, args).unwrap(); |
| if visitor.found_recursion { Err(expanded_type) } else { Ok(expanded_type) } |
| } |
| |
| /// Query and get an English description for the item's kind. |
| pub fn def_descr(self, def_id: DefId) -> &'static str { |
| self.def_kind_descr(self.def_kind(def_id), def_id) |
| } |
| |
| /// Get an English description for the item's kind. |
| pub fn def_kind_descr(self, def_kind: DefKind, def_id: DefId) -> &'static str { |
| match def_kind { |
| DefKind::AssocFn if self.associated_item(def_id).fn_has_self_parameter => "method", |
| DefKind::Generator => match self.generator_kind(def_id).unwrap() { |
| rustc_hir::GeneratorKind::Async(..) => "async closure", |
| rustc_hir::GeneratorKind::Gen => "generator", |
| }, |
| _ => def_kind.descr(def_id), |
| } |
| } |
| |
| /// Gets an English article for the [`TyCtxt::def_descr`]. |
| pub fn def_descr_article(self, def_id: DefId) -> &'static str { |
| self.def_kind_descr_article(self.def_kind(def_id), def_id) |
| } |
| |
| /// Gets an English article for the [`TyCtxt::def_kind_descr`]. |
| pub fn def_kind_descr_article(self, def_kind: DefKind, def_id: DefId) -> &'static str { |
| match def_kind { |
| DefKind::AssocFn if self.associated_item(def_id).fn_has_self_parameter => "a", |
| DefKind::Generator => match self.generator_kind(def_id).unwrap() { |
| rustc_hir::GeneratorKind::Async(..) => "an", |
| rustc_hir::GeneratorKind::Gen => "a", |
| }, |
| _ => def_kind.article(), |
| } |
| } |
| |
| /// Return `true` if the supplied `CrateNum` is "user-visible," meaning either a [public] |
| /// dependency, or a [direct] private dependency. This is used to decide whether the crate can |
| /// be shown in `impl` suggestions. |
| /// |
| /// [public]: TyCtxt::is_private_dep |
| /// [direct]: rustc_session::cstore::ExternCrate::is_direct |
| pub fn is_user_visible_dep(self, key: CrateNum) -> bool { |
| // | Private | Direct | Visible | | |
| // |---------|--------|---------|--------------------| |
| // | Yes | Yes | Yes | !true || true | |
| // | No | Yes | Yes | !false || true | |
| // | Yes | No | No | !true || false | |
| // | No | No | Yes | !false || false | |
| !self.is_private_dep(key) |
| // If `extern_crate` is `None`, then the crate was injected (e.g., by the allocator). |
| // Treat that kind of crate as "indirect", since it's an implementation detail of |
| // the language. |
| || self.extern_crate(key.as_def_id()).map_or(false, |e| e.is_direct()) |
| } |
| } |
| |
| struct OpaqueTypeExpander<'tcx> { |
| // Contains the DefIds of the opaque types that are currently being |
| // expanded. When we expand an opaque type we insert the DefId of |
| // that type, and when we finish expanding that type we remove the |
| // its DefId. |
| seen_opaque_tys: FxHashSet<DefId>, |
| // Cache of all expansions we've seen so far. This is a critical |
| // optimization for some large types produced by async fn trees. |
| expanded_cache: FxHashMap<(DefId, GenericArgsRef<'tcx>), Ty<'tcx>>, |
| primary_def_id: Option<DefId>, |
| found_recursion: bool, |
| found_any_recursion: bool, |
| expand_generators: bool, |
| /// Whether or not to check for recursive opaque types. |
| /// This is `true` when we're explicitly checking for opaque type |
| /// recursion, and 'false' otherwise to avoid unnecessary work. |
| check_recursion: bool, |
| tcx: TyCtxt<'tcx>, |
| } |
| |
| impl<'tcx> OpaqueTypeExpander<'tcx> { |
| fn expand_opaque_ty(&mut self, def_id: DefId, args: GenericArgsRef<'tcx>) -> Option<Ty<'tcx>> { |
| if self.found_any_recursion { |
| return None; |
| } |
| let args = args.fold_with(self); |
| if !self.check_recursion || self.seen_opaque_tys.insert(def_id) { |
| let expanded_ty = match self.expanded_cache.get(&(def_id, args)) { |
| Some(expanded_ty) => *expanded_ty, |
| None => { |
| let generic_ty = self.tcx.type_of(def_id); |
| let concrete_ty = generic_ty.instantiate(self.tcx, args); |
| let expanded_ty = self.fold_ty(concrete_ty); |
| self.expanded_cache.insert((def_id, args), expanded_ty); |
| expanded_ty |
| } |
| }; |
| if self.check_recursion { |
| self.seen_opaque_tys.remove(&def_id); |
| } |
| Some(expanded_ty) |
| } else { |
| // If another opaque type that we contain is recursive, then it |
| // will report the error, so we don't have to. |
| self.found_any_recursion = true; |
| self.found_recursion = def_id == *self.primary_def_id.as_ref().unwrap(); |
| None |
| } |
| } |
| |
| fn expand_generator(&mut self, def_id: DefId, args: GenericArgsRef<'tcx>) -> Option<Ty<'tcx>> { |
| if self.found_any_recursion { |
| return None; |
| } |
| let args = args.fold_with(self); |
| if !self.check_recursion || self.seen_opaque_tys.insert(def_id) { |
| let expanded_ty = match self.expanded_cache.get(&(def_id, args)) { |
| Some(expanded_ty) => *expanded_ty, |
| None => { |
| for bty in self.tcx.generator_hidden_types(def_id) { |
| let hidden_ty = bty.instantiate(self.tcx, args); |
| self.fold_ty(hidden_ty); |
| } |
| let expanded_ty = Ty::new_generator_witness(self.tcx, def_id, args); |
| self.expanded_cache.insert((def_id, args), expanded_ty); |
| expanded_ty |
| } |
| }; |
| if self.check_recursion { |
| self.seen_opaque_tys.remove(&def_id); |
| } |
| Some(expanded_ty) |
| } else { |
| // If another opaque type that we contain is recursive, then it |
| // will report the error, so we don't have to. |
| self.found_any_recursion = true; |
| self.found_recursion = def_id == *self.primary_def_id.as_ref().unwrap(); |
| None |
| } |
| } |
| } |
| |
| impl<'tcx> TypeFolder<TyCtxt<'tcx>> for OpaqueTypeExpander<'tcx> { |
| fn interner(&self) -> TyCtxt<'tcx> { |
| self.tcx |
| } |
| |
| fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { |
| let mut t = if let ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) = *t.kind() { |
| self.expand_opaque_ty(def_id, args).unwrap_or(t) |
| } else if t.has_opaque_types() || t.has_generators() { |
| t.super_fold_with(self) |
| } else { |
| t |
| }; |
| if self.expand_generators { |
| if let ty::GeneratorWitness(def_id, args) = *t.kind() { |
| t = self.expand_generator(def_id, args).unwrap_or(t); |
| } |
| } |
| t |
| } |
| |
| fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> { |
| if let ty::PredicateKind::Clause(clause) = p.kind().skip_binder() |
| && let ty::ClauseKind::Projection(projection_pred) = clause |
| { |
| p.kind() |
| .rebind(ty::ProjectionPredicate { |
| projection_ty: projection_pred.projection_ty.fold_with(self), |
| // Don't fold the term on the RHS of the projection predicate. |
| // This is because for default trait methods with RPITITs, we |
| // install a `NormalizesTo(Projection(RPITIT) -> Opaque(RPITIT))` |
| // predicate, which would trivially cause a cycle when we do |
| // anything that requires `ParamEnv::with_reveal_all_normalized`. |
| term: projection_pred.term, |
| }) |
| .to_predicate(self.tcx) |
| } else { |
| p.super_fold_with(self) |
| } |
| } |
| } |
| |
| impl<'tcx> Ty<'tcx> { |
| pub fn int_size_and_signed(self, tcx: TyCtxt<'tcx>) -> (Size, bool) { |
| let (int, signed) = match *self.kind() { |
| ty::Int(ity) => (Integer::from_int_ty(&tcx, ity), true), |
| ty::Uint(uty) => (Integer::from_uint_ty(&tcx, uty), false), |
| _ => bug!("non integer discriminant"), |
| }; |
| (int.size(), signed) |
| } |
| |
| /// Returns the maximum value for the given numeric type (including `char`s) |
| /// or returns `None` if the type is not numeric. |
| pub fn numeric_max_val(self, tcx: TyCtxt<'tcx>) -> Option<ty::Const<'tcx>> { |
| let val = match self.kind() { |
| ty::Int(_) | ty::Uint(_) => { |
| let (size, signed) = self.int_size_and_signed(tcx); |
| let val = |
| if signed { size.signed_int_max() as u128 } else { size.unsigned_int_max() }; |
| Some(val) |
| } |
| ty::Char => Some(std::char::MAX as u128), |
| ty::Float(fty) => Some(match fty { |
| ty::FloatTy::F32 => rustc_apfloat::ieee::Single::INFINITY.to_bits(), |
| ty::FloatTy::F64 => rustc_apfloat::ieee::Double::INFINITY.to_bits(), |
| }), |
| _ => None, |
| }; |
| |
| val.map(|v| ty::Const::from_bits(tcx, v, ty::ParamEnv::empty().and(self))) |
| } |
| |
| /// Returns the minimum value for the given numeric type (including `char`s) |
| /// or returns `None` if the type is not numeric. |
| pub fn numeric_min_val(self, tcx: TyCtxt<'tcx>) -> Option<ty::Const<'tcx>> { |
| let val = match self.kind() { |
| ty::Int(_) | ty::Uint(_) => { |
| let (size, signed) = self.int_size_and_signed(tcx); |
| let val = if signed { size.truncate(size.signed_int_min() as u128) } else { 0 }; |
| Some(val) |
| } |
| ty::Char => Some(0), |
| ty::Float(fty) => Some(match fty { |
| ty::FloatTy::F32 => (-::rustc_apfloat::ieee::Single::INFINITY).to_bits(), |
| ty::FloatTy::F64 => (-::rustc_apfloat::ieee::Double::INFINITY).to_bits(), |
| }), |
| _ => None, |
| }; |
| |
| val.map(|v| ty::Const::from_bits(tcx, v, ty::ParamEnv::empty().and(self))) |
| } |
| |
| /// Checks whether values of this type `T` are *moved* or *copied* |
| /// when referenced -- this amounts to a check for whether `T: |
| /// Copy`, but note that we **don't** consider lifetimes when |
| /// doing this check. This means that we may generate MIR which |
| /// does copies even when the type actually doesn't satisfy the |
| /// full requirements for the `Copy` trait (cc #29149) -- this |
| /// winds up being reported as an error during NLL borrow check. |
| pub fn is_copy_modulo_regions(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool { |
| self.is_trivially_pure_clone_copy() || tcx.is_copy_raw(param_env.and(self)) |
| } |
| |
| /// Checks whether values of this type `T` have a size known at |
| /// compile time (i.e., whether `T: Sized`). Lifetimes are ignored |
| /// for the purposes of this check, so it can be an |
| /// over-approximation in generic contexts, where one can have |
| /// strange rules like `<T as Foo<'static>>::Bar: Sized` that |
| /// actually carry lifetime requirements. |
| pub fn is_sized(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool { |
| self.is_trivially_sized(tcx) || tcx.is_sized_raw(param_env.and(self)) |
| } |
| |
| /// Checks whether values of this type `T` implement the `Freeze` |
| /// trait -- frozen types are those that do not contain an |
| /// `UnsafeCell` anywhere. This is a language concept used to |
| /// distinguish "true immutability", which is relevant to |
| /// optimization as well as the rules around static values. Note |
| /// that the `Freeze` trait is not exposed to end users and is |
| /// effectively an implementation detail. |
| pub fn is_freeze(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool { |
| self.is_trivially_freeze() || tcx.is_freeze_raw(param_env.and(self)) |
| } |
| |
| /// Fast path helper for testing if a type is `Freeze`. |
| /// |
| /// Returning true means the type is known to be `Freeze`. Returning |
| /// `false` means nothing -- could be `Freeze`, might not be. |
| fn is_trivially_freeze(self) -> bool { |
| match self.kind() { |
| ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::Bool |
| | ty::Char |
| | ty::Str |
| | ty::Never |
| | ty::Ref(..) |
| | ty::RawPtr(_) |
| | ty::FnDef(..) |
| | ty::Error(_) |
| | ty::FnPtr(_) => true, |
| ty::Tuple(fields) => fields.iter().all(Self::is_trivially_freeze), |
| ty::Slice(elem_ty) | ty::Array(elem_ty, _) => elem_ty.is_trivially_freeze(), |
| ty::Adt(..) |
| | ty::Bound(..) |
| | ty::Closure(..) |
| | ty::Dynamic(..) |
| | ty::Foreign(_) |
| | ty::Generator(..) |
| | ty::GeneratorWitness(..) |
| | ty::Infer(_) |
| | ty::Alias(..) |
| | ty::Param(_) |
| | ty::Placeholder(_) => false, |
| } |
| } |
| |
| /// Checks whether values of this type `T` implement the `Unpin` trait. |
| pub fn is_unpin(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool { |
| self.is_trivially_unpin() || tcx.is_unpin_raw(param_env.and(self)) |
| } |
| |
| /// Fast path helper for testing if a type is `Unpin`. |
| /// |
| /// Returning true means the type is known to be `Unpin`. Returning |
| /// `false` means nothing -- could be `Unpin`, might not be. |
| fn is_trivially_unpin(self) -> bool { |
| match self.kind() { |
| ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::Bool |
| | ty::Char |
| | ty::Str |
| | ty::Never |
| | ty::Ref(..) |
| | ty::RawPtr(_) |
| | ty::FnDef(..) |
| | ty::Error(_) |
| | ty::FnPtr(_) => true, |
| ty::Tuple(fields) => fields.iter().all(Self::is_trivially_unpin), |
| ty::Slice(elem_ty) | ty::Array(elem_ty, _) => elem_ty.is_trivially_unpin(), |
| ty::Adt(..) |
| | ty::Bound(..) |
| | ty::Closure(..) |
| | ty::Dynamic(..) |
| | ty::Foreign(_) |
| | ty::Generator(..) |
| | ty::GeneratorWitness(..) |
| | ty::Infer(_) |
| | ty::Alias(..) |
| | ty::Param(_) |
| | ty::Placeholder(_) => false, |
| } |
| } |
| |
| /// If `ty.needs_drop(...)` returns `true`, then `ty` is definitely |
| /// non-copy and *might* have a destructor attached; if it returns |
| /// `false`, then `ty` definitely has no destructor (i.e., no drop glue). |
| /// |
| /// (Note that this implies that if `ty` has a destructor attached, |
| /// then `needs_drop` will definitely return `true` for `ty`.) |
| /// |
| /// Note that this method is used to check eligible types in unions. |
| #[inline] |
| pub fn needs_drop(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool { |
| // Avoid querying in simple cases. |
| match needs_drop_components(tcx, self) { |
| Err(AlwaysRequiresDrop) => true, |
| Ok(components) => { |
| let query_ty = match *components { |
| [] => return false, |
| // If we've got a single component, call the query with that |
| // to increase the chance that we hit the query cache. |
| [component_ty] => component_ty, |
| _ => self, |
| }; |
| |
| // This doesn't depend on regions, so try to minimize distinct |
| // query keys used. |
| // If normalization fails, we just use `query_ty`. |
| debug_assert!(!param_env.has_infer()); |
| let query_ty = tcx |
| .try_normalize_erasing_regions(param_env, query_ty) |
| .unwrap_or_else(|_| tcx.erase_regions(query_ty)); |
| |
| tcx.needs_drop_raw(param_env.and(query_ty)) |
| } |
| } |
| } |
| |
| /// Checks if `ty` has a significant drop. |
| /// |
| /// Note that this method can return false even if `ty` has a destructor |
| /// attached; even if that is the case then the adt has been marked with |
| /// the attribute `rustc_insignificant_dtor`. |
| /// |
| /// Note that this method is used to check for change in drop order for |
| /// 2229 drop reorder migration analysis. |
| #[inline] |
| pub fn has_significant_drop(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool { |
| // Avoid querying in simple cases. |
| match needs_drop_components(tcx, self) { |
| Err(AlwaysRequiresDrop) => true, |
| Ok(components) => { |
| let query_ty = match *components { |
| [] => return false, |
| // If we've got a single component, call the query with that |
| // to increase the chance that we hit the query cache. |
| [component_ty] => component_ty, |
| _ => self, |
| }; |
| |
| // FIXME(#86868): We should be canonicalizing, or else moving this to a method of inference |
| // context, or *something* like that, but for now just avoid passing inference |
| // variables to queries that can't cope with them. Instead, conservatively |
| // return "true" (may change drop order). |
| if query_ty.has_infer() { |
| return true; |
| } |
| |
| // This doesn't depend on regions, so try to minimize distinct |
| // query keys used. |
| let erased = tcx.normalize_erasing_regions(param_env, query_ty); |
| tcx.has_significant_drop_raw(param_env.and(erased)) |
| } |
| } |
| } |
| |
| /// Returns `true` if equality for this type is both reflexive and structural. |
| /// |
| /// Reflexive equality for a type is indicated by an `Eq` impl for that type. |
| /// |
| /// Primitive types (`u32`, `str`) have structural equality by definition. For composite data |
| /// types, equality for the type as a whole is structural when it is the same as equality |
| /// between all components (fields, array elements, etc.) of that type. For ADTs, structural |
| /// equality is indicated by an implementation of `PartialStructuralEq` and `StructuralEq` for |
| /// that type. |
| /// |
| /// This function is "shallow" because it may return `true` for a composite type whose fields |
| /// are not `StructuralEq`. For example, `[T; 4]` has structural equality regardless of `T` |
| /// because equality for arrays is determined by the equality of each array element. If you |
| /// want to know whether a given call to `PartialEq::eq` will proceed structurally all the way |
| /// down, you will need to use a type visitor. |
| #[inline] |
| pub fn is_structural_eq_shallow(self, tcx: TyCtxt<'tcx>) -> bool { |
| match self.kind() { |
| // Look for an impl of both `PartialStructuralEq` and `StructuralEq`. |
| ty::Adt(..) => tcx.has_structural_eq_impls(self), |
| |
| // Primitive types that satisfy `Eq`. |
| ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Str | ty::Never => true, |
| |
| // Composite types that satisfy `Eq` when all of their fields do. |
| // |
| // Because this function is "shallow", we return `true` for these composites regardless |
| // of the type(s) contained within. |
| ty::Ref(..) | ty::Array(..) | ty::Slice(_) | ty::Tuple(..) => true, |
| |
| // Raw pointers use bitwise comparison. |
| ty::RawPtr(_) | ty::FnPtr(_) => true, |
| |
| // Floating point numbers are not `Eq`. |
| ty::Float(_) => false, |
| |
| // Conservatively return `false` for all others... |
| |
| // Anonymous function types |
| ty::FnDef(..) | ty::Closure(..) | ty::Dynamic(..) | ty::Generator(..) => false, |
| |
| // Generic or inferred types |
| // |
| // FIXME(ecstaticmorse): Maybe we should `bug` here? This should probably only be |
| // called for known, fully-monomorphized types. |
| ty::Alias(..) | ty::Param(_) | ty::Bound(..) | ty::Placeholder(_) | ty::Infer(_) => { |
| false |
| } |
| |
| ty::Foreign(_) | ty::GeneratorWitness(..) | ty::Error(_) => false, |
| } |
| } |
| |
| /// Peel off all reference types in this type until there are none left. |
| /// |
| /// This method is idempotent, i.e. `ty.peel_refs().peel_refs() == ty.peel_refs()`. |
| /// |
| /// # Examples |
| /// |
| /// - `u8` -> `u8` |
| /// - `&'a mut u8` -> `u8` |
| /// - `&'a &'b u8` -> `u8` |
| /// - `&'a *const &'b u8 -> *const &'b u8` |
| pub fn peel_refs(self) -> Ty<'tcx> { |
| let mut ty = self; |
| while let ty::Ref(_, inner_ty, _) = ty.kind() { |
| ty = *inner_ty; |
| } |
| ty |
| } |
| |
| #[inline] |
| pub fn outer_exclusive_binder(self) -> ty::DebruijnIndex { |
| self.0.outer_exclusive_binder |
| } |
| } |
| |
| pub enum ExplicitSelf<'tcx> { |
| ByValue, |
| ByReference(ty::Region<'tcx>, hir::Mutability), |
| ByRawPointer(hir::Mutability), |
| ByBox, |
| Other, |
| } |
| |
| impl<'tcx> ExplicitSelf<'tcx> { |
| /// Categorizes an explicit self declaration like `self: SomeType` |
| /// into either `self`, `&self`, `&mut self`, `Box<Self>`, or |
| /// `Other`. |
| /// This is mainly used to require the arbitrary_self_types feature |
| /// in the case of `Other`, to improve error messages in the common cases, |
| /// and to make `Other` non-object-safe. |
| /// |
| /// Examples: |
| /// |
| /// ```ignore (illustrative) |
| /// impl<'a> Foo for &'a T { |
| /// // Legal declarations: |
| /// fn method1(self: &&'a T); // ExplicitSelf::ByReference |
| /// fn method2(self: &'a T); // ExplicitSelf::ByValue |
| /// fn method3(self: Box<&'a T>); // ExplicitSelf::ByBox |
| /// fn method4(self: Rc<&'a T>); // ExplicitSelf::Other |
| /// |
| /// // Invalid cases will be caught by `check_method_receiver`: |
| /// fn method_err1(self: &'a mut T); // ExplicitSelf::Other |
| /// fn method_err2(self: &'static T) // ExplicitSelf::ByValue |
| /// fn method_err3(self: &&T) // ExplicitSelf::ByReference |
| /// } |
| /// ``` |
| /// |
| pub fn determine<P>(self_arg_ty: Ty<'tcx>, is_self_ty: P) -> ExplicitSelf<'tcx> |
| where |
| P: Fn(Ty<'tcx>) -> bool, |
| { |
| use self::ExplicitSelf::*; |
| |
| match *self_arg_ty.kind() { |
| _ if is_self_ty(self_arg_ty) => ByValue, |
| ty::Ref(region, ty, mutbl) if is_self_ty(ty) => ByReference(region, mutbl), |
| ty::RawPtr(ty::TypeAndMut { ty, mutbl }) if is_self_ty(ty) => ByRawPointer(mutbl), |
| ty::Adt(def, _) if def.is_box() && is_self_ty(self_arg_ty.boxed_ty()) => ByBox, |
| _ => Other, |
| } |
| } |
| } |
| |
| /// Returns a list of types such that the given type needs drop if and only if |
| /// *any* of the returned types need drop. Returns `Err(AlwaysRequiresDrop)` if |
| /// this type always needs drop. |
| pub fn needs_drop_components<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| ty: Ty<'tcx>, |
| ) -> Result<SmallVec<[Ty<'tcx>; 2]>, AlwaysRequiresDrop> { |
| match *ty.kind() { |
| ty::Infer(ty::FreshIntTy(_)) |
| | ty::Infer(ty::FreshFloatTy(_)) |
| | ty::Bool |
| | ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::Never |
| | ty::FnDef(..) |
| | ty::FnPtr(_) |
| | ty::Char |
| | ty::RawPtr(_) |
| | ty::Ref(..) |
| | ty::Str => Ok(SmallVec::new()), |
| |
| // Foreign types can never have destructors. |
| ty::Foreign(..) => Ok(SmallVec::new()), |
| |
| ty::Dynamic(..) | ty::Error(_) => Err(AlwaysRequiresDrop), |
| |
| ty::Slice(ty) => needs_drop_components(tcx, ty), |
| ty::Array(elem_ty, size) => { |
| match needs_drop_components(tcx, elem_ty) { |
| Ok(v) if v.is_empty() => Ok(v), |
| res => match size.try_to_target_usize(tcx) { |
| // Arrays of size zero don't need drop, even if their element |
| // type does. |
| Some(0) => Ok(SmallVec::new()), |
| Some(_) => res, |
| // We don't know which of the cases above we are in, so |
| // return the whole type and let the caller decide what to |
| // do. |
| None => Ok(smallvec![ty]), |
| }, |
| } |
| } |
| // If any field needs drop, then the whole tuple does. |
| ty::Tuple(fields) => fields.iter().try_fold(SmallVec::new(), move |mut acc, elem| { |
| acc.extend(needs_drop_components(tcx, elem)?); |
| Ok(acc) |
| }), |
| |
| // These require checking for `Copy` bounds or `Adt` destructors. |
| ty::Adt(..) |
| | ty::Alias(..) |
| | ty::Param(_) |
| | ty::Bound(..) |
| | ty::Placeholder(..) |
| | ty::Infer(_) |
| | ty::Closure(..) |
| | ty::Generator(..) |
| | ty::GeneratorWitness(..) => Ok(smallvec![ty]), |
| } |
| } |
| |
| pub fn is_trivially_const_drop(ty: Ty<'_>) -> bool { |
| match *ty.kind() { |
| ty::Bool |
| | ty::Char |
| | ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::Infer(ty::IntVar(_)) |
| | ty::Infer(ty::FloatVar(_)) |
| | ty::Str |
| | ty::RawPtr(_) |
| | ty::Ref(..) |
| | ty::FnDef(..) |
| | ty::FnPtr(_) |
| | ty::Never |
| | ty::Foreign(_) => true, |
| |
| ty::Alias(..) |
| | ty::Dynamic(..) |
| | ty::Error(_) |
| | ty::Bound(..) |
| | ty::Param(_) |
| | ty::Placeholder(_) |
| | ty::Infer(_) => false, |
| |
| // Not trivial because they have components, and instead of looking inside, |
| // we'll just perform trait selection. |
| ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) | ty::Adt(..) => false, |
| |
| ty::Array(ty, _) | ty::Slice(ty) => is_trivially_const_drop(ty), |
| |
| ty::Tuple(tys) => tys.iter().all(|ty| is_trivially_const_drop(ty)), |
| } |
| } |
| |
| /// Does the equivalent of |
| /// ```ignore (illustrative) |
| /// let v = self.iter().map(|p| p.fold_with(folder)).collect::<SmallVec<[_; 8]>>(); |
| /// folder.tcx().intern_*(&v) |
| /// ``` |
| pub fn fold_list<'tcx, F, T>( |
| list: &'tcx ty::List<T>, |
| folder: &mut F, |
| intern: impl FnOnce(TyCtxt<'tcx>, &[T]) -> &'tcx ty::List<T>, |
| ) -> Result<&'tcx ty::List<T>, F::Error> |
| where |
| F: FallibleTypeFolder<TyCtxt<'tcx>>, |
| T: TypeFoldable<TyCtxt<'tcx>> + PartialEq + Copy, |
| { |
| let mut iter = list.iter(); |
| // Look for the first element that changed |
| match iter.by_ref().enumerate().find_map(|(i, t)| match t.try_fold_with(folder) { |
| Ok(new_t) if new_t == t => None, |
| new_t => Some((i, new_t)), |
| }) { |
| Some((i, Ok(new_t))) => { |
| // An element changed, prepare to intern the resulting list |
| let mut new_list = SmallVec::<[_; 8]>::with_capacity(list.len()); |
| new_list.extend_from_slice(&list[..i]); |
| new_list.push(new_t); |
| for t in iter { |
| new_list.push(t.try_fold_with(folder)?) |
| } |
| Ok(intern(folder.interner(), &new_list)) |
| } |
| Some((_, Err(err))) => { |
| return Err(err); |
| } |
| None => Ok(list), |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, HashStable, TyEncodable, TyDecodable)] |
| pub struct AlwaysRequiresDrop; |
| |
| /// Reveals all opaque types in the given value, replacing them |
| /// with their underlying types. |
| pub fn reveal_opaque_types_in_bounds<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| val: &'tcx ty::List<ty::Clause<'tcx>>, |
| ) -> &'tcx ty::List<ty::Clause<'tcx>> { |
| let mut visitor = OpaqueTypeExpander { |
| seen_opaque_tys: FxHashSet::default(), |
| expanded_cache: FxHashMap::default(), |
| primary_def_id: None, |
| found_recursion: false, |
| found_any_recursion: false, |
| check_recursion: false, |
| expand_generators: false, |
| tcx, |
| }; |
| val.fold_with(&mut visitor) |
| } |
| |
| /// Determines whether an item is annotated with `doc(hidden)`. |
| fn is_doc_hidden(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { |
| tcx.get_attrs(def_id, sym::doc) |
| .filter_map(|attr| attr.meta_item_list()) |
| .any(|items| items.iter().any(|item| item.has_name(sym::hidden))) |
| } |
| |
| /// Determines whether an item is annotated with `doc(notable_trait)`. |
| pub fn is_doc_notable_trait(tcx: TyCtxt<'_>, def_id: DefId) -> bool { |
| tcx.get_attrs(def_id, sym::doc) |
| .filter_map(|attr| attr.meta_item_list()) |
| .any(|items| items.iter().any(|item| item.has_name(sym::notable_trait))) |
| } |
| |
| /// Determines whether an item is an intrinsic by Abi. |
| pub fn is_intrinsic(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { |
| matches!(tcx.fn_sig(def_id).skip_binder().abi(), Abi::RustIntrinsic | Abi::PlatformIntrinsic) |
| } |
| |
| pub fn provide(providers: &mut Providers) { |
| *providers = Providers { |
| reveal_opaque_types_in_bounds, |
| is_doc_hidden, |
| is_doc_notable_trait, |
| is_intrinsic, |
| ..*providers |
| } |
| } |