| //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Eliminate conditions based on constraints collected from dominating |
| // conditions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/ConstraintElimination.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/ConstraintSystem.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DebugCounter.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| |
| #include <cmath> |
| #include <optional> |
| #include <string> |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "constraint-elimination" |
| |
| STATISTIC(NumCondsRemoved, "Number of instructions removed"); |
| DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", |
| "Controls which conditions are eliminated"); |
| |
| static cl::opt<unsigned> |
| MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, |
| cl::desc("Maximum number of rows to keep in constraint system")); |
| |
| static cl::opt<bool> DumpReproducers( |
| "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, |
| cl::desc("Dump IR to reproduce successful transformations.")); |
| |
| static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); |
| static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); |
| |
| // A helper to multiply 2 signed integers where overflowing is allowed. |
| static int64_t multiplyWithOverflow(int64_t A, int64_t B) { |
| int64_t Result; |
| MulOverflow(A, B, Result); |
| return Result; |
| } |
| |
| // A helper to add 2 signed integers where overflowing is allowed. |
| static int64_t addWithOverflow(int64_t A, int64_t B) { |
| int64_t Result; |
| AddOverflow(A, B, Result); |
| return Result; |
| } |
| |
| static Instruction *getContextInstForUse(Use &U) { |
| Instruction *UserI = cast<Instruction>(U.getUser()); |
| if (auto *Phi = dyn_cast<PHINode>(UserI)) |
| UserI = Phi->getIncomingBlock(U)->getTerminator(); |
| return UserI; |
| } |
| |
| namespace { |
| /// Represents either |
| /// * a condition that holds on entry to a block (=conditional fact) |
| /// * an assume (=assume fact) |
| /// * a use of a compare instruction to simplify. |
| /// It also tracks the Dominator DFS in and out numbers for each entry. |
| struct FactOrCheck { |
| union { |
| Instruction *Inst; |
| Use *U; |
| }; |
| unsigned NumIn; |
| unsigned NumOut; |
| bool HasInst; |
| bool Not; |
| |
| FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool Not) |
| : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), |
| HasInst(true), Not(Not) {} |
| |
| FactOrCheck(DomTreeNode *DTN, Use *U) |
| : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), |
| HasInst(false), Not(false) {} |
| |
| static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, |
| bool Not = false) { |
| return FactOrCheck(DTN, Inst, Not); |
| } |
| |
| static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { |
| return FactOrCheck(DTN, U); |
| } |
| |
| static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { |
| return FactOrCheck(DTN, CI, false); |
| } |
| |
| bool isCheck() const { |
| return !HasInst || |
| match(Inst, m_Intrinsic<Intrinsic::ssub_with_overflow>()); |
| } |
| |
| Instruction *getContextInst() const { |
| if (HasInst) |
| return Inst; |
| return getContextInstForUse(*U); |
| } |
| Instruction *getInstructionToSimplify() const { |
| assert(isCheck()); |
| if (HasInst) |
| return Inst; |
| // The use may have been simplified to a constant already. |
| return dyn_cast<Instruction>(*U); |
| } |
| bool isConditionFact() const { return !isCheck() && isa<CmpInst>(Inst); } |
| }; |
| |
| /// Keep state required to build worklist. |
| struct State { |
| DominatorTree &DT; |
| SmallVector<FactOrCheck, 64> WorkList; |
| |
| State(DominatorTree &DT) : DT(DT) {} |
| |
| /// Process block \p BB and add known facts to work-list. |
| void addInfoFor(BasicBlock &BB); |
| |
| /// Returns true if we can add a known condition from BB to its successor |
| /// block Succ. |
| bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { |
| return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); |
| } |
| }; |
| |
| class ConstraintInfo; |
| |
| struct StackEntry { |
| unsigned NumIn; |
| unsigned NumOut; |
| bool IsSigned = false; |
| /// Variables that can be removed from the system once the stack entry gets |
| /// removed. |
| SmallVector<Value *, 2> ValuesToRelease; |
| |
| StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, |
| SmallVector<Value *, 2> ValuesToRelease) |
| : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), |
| ValuesToRelease(ValuesToRelease) {} |
| }; |
| |
| /// Struct to express a pre-condition of the form %Op0 Pred %Op1. |
| struct PreconditionTy { |
| CmpInst::Predicate Pred; |
| Value *Op0; |
| Value *Op1; |
| |
| PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) |
| : Pred(Pred), Op0(Op0), Op1(Op1) {} |
| }; |
| |
| struct ConstraintTy { |
| SmallVector<int64_t, 8> Coefficients; |
| SmallVector<PreconditionTy, 2> Preconditions; |
| |
| SmallVector<SmallVector<int64_t, 8>> ExtraInfo; |
| |
| bool IsSigned = false; |
| |
| ConstraintTy() = default; |
| |
| ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, |
| bool IsNe) |
| : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { |
| } |
| |
| unsigned size() const { return Coefficients.size(); } |
| |
| unsigned empty() const { return Coefficients.empty(); } |
| |
| /// Returns true if all preconditions for this list of constraints are |
| /// satisfied given \p CS and the corresponding \p Value2Index mapping. |
| bool isValid(const ConstraintInfo &Info) const; |
| |
| bool isEq() const { return IsEq; } |
| |
| bool isNe() const { return IsNe; } |
| |
| /// Check if the current constraint is implied by the given ConstraintSystem. |
| /// |
| /// \return true or false if the constraint is proven to be respectively true, |
| /// or false. When the constraint cannot be proven to be either true or false, |
| /// std::nullopt is returned. |
| std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; |
| |
| private: |
| bool IsEq = false; |
| bool IsNe = false; |
| }; |
| |
| /// Wrapper encapsulating separate constraint systems and corresponding value |
| /// mappings for both unsigned and signed information. Facts are added to and |
| /// conditions are checked against the corresponding system depending on the |
| /// signed-ness of their predicates. While the information is kept separate |
| /// based on signed-ness, certain conditions can be transferred between the two |
| /// systems. |
| class ConstraintInfo { |
| |
| ConstraintSystem UnsignedCS; |
| ConstraintSystem SignedCS; |
| |
| const DataLayout &DL; |
| |
| public: |
| ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) |
| : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} |
| |
| DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { |
| return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); |
| } |
| const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { |
| return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); |
| } |
| |
| ConstraintSystem &getCS(bool Signed) { |
| return Signed ? SignedCS : UnsignedCS; |
| } |
| const ConstraintSystem &getCS(bool Signed) const { |
| return Signed ? SignedCS : UnsignedCS; |
| } |
| |
| void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } |
| void popLastNVariables(bool Signed, unsigned N) { |
| getCS(Signed).popLastNVariables(N); |
| } |
| |
| bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; |
| |
| void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, |
| unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); |
| |
| /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of |
| /// constraints, using indices from the corresponding constraint system. |
| /// New variables that need to be added to the system are collected in |
| /// \p NewVariables. |
| ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, |
| SmallVectorImpl<Value *> &NewVariables) const; |
| |
| /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of |
| /// constraints using getConstraint. Returns an empty constraint if the result |
| /// cannot be used to query the existing constraint system, e.g. because it |
| /// would require adding new variables. Also tries to convert signed |
| /// predicates to unsigned ones if possible to allow using the unsigned system |
| /// which increases the effectiveness of the signed <-> unsigned transfer |
| /// logic. |
| ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, |
| Value *Op1) const; |
| |
| /// Try to add information from \p A \p Pred \p B to the unsigned/signed |
| /// system if \p Pred is signed/unsigned. |
| void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, |
| unsigned NumIn, unsigned NumOut, |
| SmallVectorImpl<StackEntry> &DFSInStack); |
| }; |
| |
| /// Represents a (Coefficient * Variable) entry after IR decomposition. |
| struct DecompEntry { |
| int64_t Coefficient; |
| Value *Variable; |
| /// True if the variable is known positive in the current constraint. |
| bool IsKnownNonNegative; |
| |
| DecompEntry(int64_t Coefficient, Value *Variable, |
| bool IsKnownNonNegative = false) |
| : Coefficient(Coefficient), Variable(Variable), |
| IsKnownNonNegative(IsKnownNonNegative) {} |
| }; |
| |
| /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. |
| struct Decomposition { |
| int64_t Offset = 0; |
| SmallVector<DecompEntry, 3> Vars; |
| |
| Decomposition(int64_t Offset) : Offset(Offset) {} |
| Decomposition(Value *V, bool IsKnownNonNegative = false) { |
| Vars.emplace_back(1, V, IsKnownNonNegative); |
| } |
| Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) |
| : Offset(Offset), Vars(Vars) {} |
| |
| void add(int64_t OtherOffset) { |
| Offset = addWithOverflow(Offset, OtherOffset); |
| } |
| |
| void add(const Decomposition &Other) { |
| add(Other.Offset); |
| append_range(Vars, Other.Vars); |
| } |
| |
| void mul(int64_t Factor) { |
| Offset = multiplyWithOverflow(Offset, Factor); |
| for (auto &Var : Vars) |
| Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); |
| } |
| }; |
| |
| } // namespace |
| |
| static Decomposition decompose(Value *V, |
| SmallVectorImpl<PreconditionTy> &Preconditions, |
| bool IsSigned, const DataLayout &DL); |
| |
| static bool canUseSExt(ConstantInt *CI) { |
| const APInt &Val = CI->getValue(); |
| return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); |
| } |
| |
| static Decomposition |
| decomposeGEP(GEPOperator &GEP, SmallVectorImpl<PreconditionTy> &Preconditions, |
| bool IsSigned, const DataLayout &DL) { |
| // Do not reason about pointers where the index size is larger than 64 bits, |
| // as the coefficients used to encode constraints are 64 bit integers. |
| if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) |
| return &GEP; |
| |
| if (!GEP.isInBounds()) |
| return &GEP; |
| |
| assert(!IsSigned && "The logic below only supports decomposition for " |
| "unsinged predicates at the moment."); |
| Type *PtrTy = GEP.getType()->getScalarType(); |
| unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); |
| MapVector<Value *, APInt> VariableOffsets; |
| APInt ConstantOffset(BitWidth, 0); |
| if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) |
| return &GEP; |
| |
| // Handle the (gep (gep ....), C) case by incrementing the constant |
| // coefficient of the inner GEP, if C is a constant. |
| auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); |
| if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { |
| auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); |
| Result.add(ConstantOffset.getSExtValue()); |
| |
| if (ConstantOffset.isNegative()) { |
| unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); |
| int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); |
| if (ConstantOffsetI % Scale != 0) |
| return &GEP; |
| // Add pre-condition ensuring the GEP is increasing monotonically and |
| // can be de-composed. |
| // Both sides are normalized by being divided by Scale. |
| Preconditions.emplace_back( |
| CmpInst::ICMP_SGE, InnerGEP->getOperand(1), |
| ConstantInt::get(InnerGEP->getOperand(1)->getType(), |
| -1 * (ConstantOffsetI / Scale))); |
| } |
| return Result; |
| } |
| |
| Decomposition Result(ConstantOffset.getSExtValue(), |
| DecompEntry(1, GEP.getPointerOperand())); |
| for (auto [Index, Scale] : VariableOffsets) { |
| auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); |
| IdxResult.mul(Scale.getSExtValue()); |
| Result.add(IdxResult); |
| |
| // If Op0 is signed non-negative, the GEP is increasing monotonically and |
| // can be de-composed. |
| if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) |
| Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, |
| ConstantInt::get(Index->getType(), 0)); |
| } |
| return Result; |
| } |
| |
| // Decomposes \p V into a constant offset + list of pairs { Coefficient, |
| // Variable } where Coefficient * Variable. The sum of the constant offset and |
| // pairs equals \p V. |
| static Decomposition decompose(Value *V, |
| SmallVectorImpl<PreconditionTy> &Preconditions, |
| bool IsSigned, const DataLayout &DL) { |
| |
| auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, |
| bool IsSignedB) { |
| auto ResA = decompose(A, Preconditions, IsSigned, DL); |
| auto ResB = decompose(B, Preconditions, IsSignedB, DL); |
| ResA.add(ResB); |
| return ResA; |
| }; |
| |
| Type *Ty = V->getType()->getScalarType(); |
| if (Ty->isPointerTy() && !IsSigned) { |
| if (auto *GEP = dyn_cast<GEPOperator>(V)) |
| return decomposeGEP(*GEP, Preconditions, IsSigned, DL); |
| return V; |
| } |
| |
| // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so |
| // coefficient add/mul may wrap, while the operation in the full bit width |
| // would not. |
| if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) |
| return V; |
| |
| // Decompose \p V used with a signed predicate. |
| if (IsSigned) { |
| if (auto *CI = dyn_cast<ConstantInt>(V)) { |
| if (canUseSExt(CI)) |
| return CI->getSExtValue(); |
| } |
| Value *Op0; |
| Value *Op1; |
| if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) |
| return MergeResults(Op0, Op1, IsSigned); |
| |
| ConstantInt *CI; |
| if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { |
| auto Result = decompose(Op0, Preconditions, IsSigned, DL); |
| Result.mul(CI->getSExtValue()); |
| return Result; |
| } |
| |
| return V; |
| } |
| |
| if (auto *CI = dyn_cast<ConstantInt>(V)) { |
| if (CI->uge(MaxConstraintValue)) |
| return V; |
| return int64_t(CI->getZExtValue()); |
| } |
| |
| Value *Op0; |
| bool IsKnownNonNegative = false; |
| if (match(V, m_ZExt(m_Value(Op0)))) { |
| IsKnownNonNegative = true; |
| V = Op0; |
| } |
| |
| Value *Op1; |
| ConstantInt *CI; |
| if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { |
| return MergeResults(Op0, Op1, IsSigned); |
| } |
| if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { |
| if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) |
| Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, |
| ConstantInt::get(Op0->getType(), 0)); |
| if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) |
| Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, |
| ConstantInt::get(Op1->getType(), 0)); |
| |
| return MergeResults(Op0, Op1, IsSigned); |
| } |
| |
| if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && |
| canUseSExt(CI)) { |
| Preconditions.emplace_back( |
| CmpInst::ICMP_UGE, Op0, |
| ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); |
| return MergeResults(Op0, CI, true); |
| } |
| |
| // Decompose or as an add if there are no common bits between the operands. |
| if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && |
| haveNoCommonBitsSet(Op0, CI, DL)) { |
| return MergeResults(Op0, CI, IsSigned); |
| } |
| |
| if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { |
| if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) |
| return {V, IsKnownNonNegative}; |
| auto Result = decompose(Op1, Preconditions, IsSigned, DL); |
| Result.mul(int64_t{1} << CI->getSExtValue()); |
| return Result; |
| } |
| |
| if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && |
| (!CI->isNegative())) { |
| auto Result = decompose(Op1, Preconditions, IsSigned, DL); |
| Result.mul(CI->getSExtValue()); |
| return Result; |
| } |
| |
| if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) |
| return {-1 * CI->getSExtValue(), {{1, Op0}}}; |
| if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) |
| return {0, {{1, Op0}, {-1, Op1}}}; |
| |
| return {V, IsKnownNonNegative}; |
| } |
| |
| ConstraintTy |
| ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, |
| SmallVectorImpl<Value *> &NewVariables) const { |
| assert(NewVariables.empty() && "NewVariables must be empty when passed in"); |
| bool IsEq = false; |
| bool IsNe = false; |
| |
| // Try to convert Pred to one of ULE/SLT/SLE/SLT. |
| switch (Pred) { |
| case CmpInst::ICMP_UGT: |
| case CmpInst::ICMP_UGE: |
| case CmpInst::ICMP_SGT: |
| case CmpInst::ICMP_SGE: { |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| std::swap(Op0, Op1); |
| break; |
| } |
| case CmpInst::ICMP_EQ: |
| if (match(Op1, m_Zero())) { |
| Pred = CmpInst::ICMP_ULE; |
| } else { |
| IsEq = true; |
| Pred = CmpInst::ICMP_ULE; |
| } |
| break; |
| case CmpInst::ICMP_NE: |
| if (match(Op1, m_Zero())) { |
| Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); |
| std::swap(Op0, Op1); |
| } else { |
| IsNe = true; |
| Pred = CmpInst::ICMP_ULE; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && |
| Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) |
| return {}; |
| |
| SmallVector<PreconditionTy, 4> Preconditions; |
| bool IsSigned = CmpInst::isSigned(Pred); |
| auto &Value2Index = getValue2Index(IsSigned); |
| auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), |
| Preconditions, IsSigned, DL); |
| auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), |
| Preconditions, IsSigned, DL); |
| int64_t Offset1 = ADec.Offset; |
| int64_t Offset2 = BDec.Offset; |
| Offset1 *= -1; |
| |
| auto &VariablesA = ADec.Vars; |
| auto &VariablesB = BDec.Vars; |
| |
| // First try to look up \p V in Value2Index and NewVariables. Otherwise add a |
| // new entry to NewVariables. |
| DenseMap<Value *, unsigned> NewIndexMap; |
| auto GetOrAddIndex = [&Value2Index, &NewVariables, |
| &NewIndexMap](Value *V) -> unsigned { |
| auto V2I = Value2Index.find(V); |
| if (V2I != Value2Index.end()) |
| return V2I->second; |
| auto Insert = |
| NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); |
| if (Insert.second) |
| NewVariables.push_back(V); |
| return Insert.first->second; |
| }; |
| |
| // Make sure all variables have entries in Value2Index or NewVariables. |
| for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) |
| GetOrAddIndex(KV.Variable); |
| |
| // Build result constraint, by first adding all coefficients from A and then |
| // subtracting all coefficients from B. |
| ConstraintTy Res( |
| SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), |
| IsSigned, IsEq, IsNe); |
| // Collect variables that are known to be positive in all uses in the |
| // constraint. |
| DenseMap<Value *, bool> KnownNonNegativeVariables; |
| auto &R = Res.Coefficients; |
| for (const auto &KV : VariablesA) { |
| R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; |
| auto I = |
| KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); |
| I.first->second &= KV.IsKnownNonNegative; |
| } |
| |
| for (const auto &KV : VariablesB) { |
| if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, |
| R[GetOrAddIndex(KV.Variable)])) |
| return {}; |
| auto I = |
| KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); |
| I.first->second &= KV.IsKnownNonNegative; |
| } |
| |
| int64_t OffsetSum; |
| if (AddOverflow(Offset1, Offset2, OffsetSum)) |
| return {}; |
| if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) |
| if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) |
| return {}; |
| R[0] = OffsetSum; |
| Res.Preconditions = std::move(Preconditions); |
| |
| // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new |
| // variables. |
| while (!NewVariables.empty()) { |
| int64_t Last = R.back(); |
| if (Last != 0) |
| break; |
| R.pop_back(); |
| Value *RemovedV = NewVariables.pop_back_val(); |
| NewIndexMap.erase(RemovedV); |
| } |
| |
| // Add extra constraints for variables that are known positive. |
| for (auto &KV : KnownNonNegativeVariables) { |
| if (!KV.second || |
| (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) |
| continue; |
| SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); |
| C[GetOrAddIndex(KV.first)] = -1; |
| Res.ExtraInfo.push_back(C); |
| } |
| return Res; |
| } |
| |
| ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, |
| Value *Op0, |
| Value *Op1) const { |
| // If both operands are known to be non-negative, change signed predicates to |
| // unsigned ones. This increases the reasoning effectiveness in combination |
| // with the signed <-> unsigned transfer logic. |
| if (CmpInst::isSigned(Pred) && |
| isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && |
| isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) |
| Pred = CmpInst::getUnsignedPredicate(Pred); |
| |
| SmallVector<Value *> NewVariables; |
| ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); |
| if (!NewVariables.empty()) |
| return {}; |
| return R; |
| } |
| |
| bool ConstraintTy::isValid(const ConstraintInfo &Info) const { |
| return Coefficients.size() > 0 && |
| all_of(Preconditions, [&Info](const PreconditionTy &C) { |
| return Info.doesHold(C.Pred, C.Op0, C.Op1); |
| }); |
| } |
| |
| std::optional<bool> |
| ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { |
| bool IsConditionImplied = CS.isConditionImplied(Coefficients); |
| |
| if (IsEq || IsNe) { |
| auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); |
| bool IsNegatedOrEqualImplied = |
| !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); |
| |
| // In order to check that `%a == %b` is true (equality), both conditions `%a |
| // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` |
| // is true), we return true if they both hold, false in the other cases. |
| if (IsConditionImplied && IsNegatedOrEqualImplied) |
| return IsEq; |
| |
| auto Negated = ConstraintSystem::negate(Coefficients); |
| bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); |
| |
| auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); |
| bool IsStrictLessThanImplied = |
| !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); |
| |
| // In order to check that `%a != %b` is true (non-equality), either |
| // condition `%a > %b` or `%a < %b` must hold true. When checking for |
| // non-equality (`IsNe` is true), we return true if one of the two holds, |
| // false in the other cases. |
| if (IsNegatedImplied || IsStrictLessThanImplied) |
| return IsNe; |
| |
| return std::nullopt; |
| } |
| |
| if (IsConditionImplied) |
| return true; |
| |
| auto Negated = ConstraintSystem::negate(Coefficients); |
| auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); |
| if (IsNegatedImplied) |
| return false; |
| |
| // Neither the condition nor its negated holds, did not prove anything. |
| return std::nullopt; |
| } |
| |
| bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, |
| Value *B) const { |
| auto R = getConstraintForSolving(Pred, A, B); |
| return R.isValid(*this) && |
| getCS(R.IsSigned).isConditionImplied(R.Coefficients); |
| } |
| |
| void ConstraintInfo::transferToOtherSystem( |
| CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, |
| unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { |
| // Check if we can combine facts from the signed and unsigned systems to |
| // derive additional facts. |
| if (!A->getType()->isIntegerTy()) |
| return; |
| // FIXME: This currently depends on the order we add facts. Ideally we |
| // would first add all known facts and only then try to add additional |
| // facts. |
| switch (Pred) { |
| default: |
| break; |
| case CmpInst::ICMP_ULT: |
| // If B is a signed positive constant, A >=s 0 and A <s B. |
| if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { |
| addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, |
| NumOut, DFSInStack); |
| addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); |
| } |
| break; |
| case CmpInst::ICMP_SLT: |
| if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) |
| addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); |
| break; |
| case CmpInst::ICMP_SGT: { |
| if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) |
| addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, |
| NumOut, DFSInStack); |
| if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) |
| addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); |
| |
| break; |
| } |
| case CmpInst::ICMP_SGE: |
| if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { |
| addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); |
| } |
| break; |
| } |
| } |
| |
| #ifndef NDEBUG |
| |
| static void dumpConstraint(ArrayRef<int64_t> C, |
| const DenseMap<Value *, unsigned> &Value2Index) { |
| ConstraintSystem CS(Value2Index); |
| CS.addVariableRowFill(C); |
| CS.dump(); |
| } |
| #endif |
| |
| void State::addInfoFor(BasicBlock &BB) { |
| // True as long as long as the current instruction is guaranteed to execute. |
| bool GuaranteedToExecute = true; |
| // Queue conditions and assumes. |
| for (Instruction &I : BB) { |
| if (auto Cmp = dyn_cast<ICmpInst>(&I)) { |
| for (Use &U : Cmp->uses()) { |
| auto *UserI = getContextInstForUse(U); |
| auto *DTN = DT.getNode(UserI->getParent()); |
| if (!DTN) |
| continue; |
| WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); |
| } |
| continue; |
| } |
| |
| if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { |
| WorkList.push_back( |
| FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); |
| continue; |
| } |
| |
| if (isa<MinMaxIntrinsic>(&I)) { |
| WorkList.push_back(FactOrCheck::getFact(DT.getNode(&BB), &I)); |
| continue; |
| } |
| |
| Value *Cond; |
| // For now, just handle assumes with a single compare as condition. |
| if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && |
| isa<ICmpInst>(Cond)) { |
| if (GuaranteedToExecute) { |
| // The assume is guaranteed to execute when BB is entered, hence Cond |
| // holds on entry to BB. |
| WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), |
| cast<Instruction>(Cond))); |
| } else { |
| WorkList.emplace_back( |
| FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); |
| } |
| } |
| GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); |
| } |
| |
| auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); |
| if (!Br || !Br->isConditional()) |
| return; |
| |
| Value *Cond = Br->getCondition(); |
| |
| // If the condition is a chain of ORs/AND and the successor only has the |
| // current block as predecessor, queue conditions for the successor. |
| Value *Op0, *Op1; |
| if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || |
| match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { |
| bool IsOr = match(Cond, m_LogicalOr()); |
| bool IsAnd = match(Cond, m_LogicalAnd()); |
| // If there's a select that matches both AND and OR, we need to commit to |
| // one of the options. Arbitrarily pick OR. |
| if (IsOr && IsAnd) |
| IsAnd = false; |
| |
| BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); |
| if (canAddSuccessor(BB, Successor)) { |
| SmallVector<Value *> CondWorkList; |
| SmallPtrSet<Value *, 8> SeenCond; |
| auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { |
| if (SeenCond.insert(V).second) |
| CondWorkList.push_back(V); |
| }; |
| QueueValue(Op1); |
| QueueValue(Op0); |
| while (!CondWorkList.empty()) { |
| Value *Cur = CondWorkList.pop_back_val(); |
| if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { |
| WorkList.emplace_back( |
| FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); |
| continue; |
| } |
| if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { |
| QueueValue(Op1); |
| QueueValue(Op0); |
| continue; |
| } |
| if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { |
| QueueValue(Op1); |
| QueueValue(Op0); |
| continue; |
| } |
| } |
| } |
| return; |
| } |
| |
| auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); |
| if (!CmpI) |
| return; |
| if (canAddSuccessor(BB, Br->getSuccessor(0))) |
| WorkList.emplace_back( |
| FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); |
| if (canAddSuccessor(BB, Br->getSuccessor(1))) |
| WorkList.emplace_back( |
| FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); |
| } |
| |
| namespace { |
| /// Helper to keep track of a condition and if it should be treated as negated |
| /// for reproducer construction. |
| /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a |
| /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. |
| struct ReproducerEntry { |
| ICmpInst::Predicate Pred; |
| Value *LHS; |
| Value *RHS; |
| |
| ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) |
| : Pred(Pred), LHS(LHS), RHS(RHS) {} |
| }; |
| } // namespace |
| |
| /// Helper function to generate a reproducer function for simplifying \p Cond. |
| /// The reproducer function contains a series of @llvm.assume calls, one for |
| /// each condition in \p Stack. For each condition, the operand instruction are |
| /// cloned until we reach operands that have an entry in \p Value2Index. Those |
| /// will then be added as function arguments. \p DT is used to order cloned |
| /// instructions. The reproducer function will get added to \p M, if it is |
| /// non-null. Otherwise no reproducer function is generated. |
| static void generateReproducer(CmpInst *Cond, Module *M, |
| ArrayRef<ReproducerEntry> Stack, |
| ConstraintInfo &Info, DominatorTree &DT) { |
| if (!M) |
| return; |
| |
| LLVMContext &Ctx = Cond->getContext(); |
| |
| LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); |
| |
| ValueToValueMapTy Old2New; |
| SmallVector<Value *> Args; |
| SmallPtrSet<Value *, 8> Seen; |
| // Traverse Cond and its operands recursively until we reach a value that's in |
| // Value2Index or not an instruction, or not a operation that |
| // ConstraintElimination can decompose. Such values will be considered as |
| // external inputs to the reproducer, they are collected and added as function |
| // arguments later. |
| auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { |
| auto &Value2Index = Info.getValue2Index(IsSigned); |
| SmallVector<Value *, 4> WorkList(Ops); |
| while (!WorkList.empty()) { |
| Value *V = WorkList.pop_back_val(); |
| if (!Seen.insert(V).second) |
| continue; |
| if (Old2New.find(V) != Old2New.end()) |
| continue; |
| if (isa<Constant>(V)) |
| continue; |
| |
| auto *I = dyn_cast<Instruction>(V); |
| if (Value2Index.contains(V) || !I || |
| !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { |
| Old2New[V] = V; |
| Args.push_back(V); |
| LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); |
| } else { |
| append_range(WorkList, I->operands()); |
| } |
| } |
| }; |
| |
| for (auto &Entry : Stack) |
| if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) |
| CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); |
| CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); |
| |
| SmallVector<Type *> ParamTys; |
| for (auto *P : Args) |
| ParamTys.push_back(P->getType()); |
| |
| FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, |
| /*isVarArg=*/false); |
| Function *F = Function::Create(FTy, Function::ExternalLinkage, |
| Cond->getModule()->getName() + |
| Cond->getFunction()->getName() + "repro", |
| M); |
| // Add arguments to the reproducer function for each external value collected. |
| for (unsigned I = 0; I < Args.size(); ++I) { |
| F->getArg(I)->setName(Args[I]->getName()); |
| Old2New[Args[I]] = F->getArg(I); |
| } |
| |
| BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); |
| IRBuilder<> Builder(Entry); |
| Builder.CreateRet(Builder.getTrue()); |
| Builder.SetInsertPoint(Entry->getTerminator()); |
| |
| // Clone instructions in \p Ops and their operands recursively until reaching |
| // an value in Value2Index (external input to the reproducer). Update Old2New |
| // mapping for the original and cloned instructions. Sort instructions to |
| // clone by dominance, then insert the cloned instructions in the function. |
| auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { |
| SmallVector<Value *, 4> WorkList(Ops); |
| SmallVector<Instruction *> ToClone; |
| auto &Value2Index = Info.getValue2Index(IsSigned); |
| while (!WorkList.empty()) { |
| Value *V = WorkList.pop_back_val(); |
| if (Old2New.find(V) != Old2New.end()) |
| continue; |
| |
| auto *I = dyn_cast<Instruction>(V); |
| if (!Value2Index.contains(V) && I) { |
| Old2New[V] = nullptr; |
| ToClone.push_back(I); |
| append_range(WorkList, I->operands()); |
| } |
| } |
| |
| sort(ToClone, |
| [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); |
| for (Instruction *I : ToClone) { |
| Instruction *Cloned = I->clone(); |
| Old2New[I] = Cloned; |
| Old2New[I]->setName(I->getName()); |
| Cloned->insertBefore(&*Builder.GetInsertPoint()); |
| Cloned->dropUnknownNonDebugMetadata(); |
| Cloned->setDebugLoc({}); |
| } |
| }; |
| |
| // Materialize the assumptions for the reproducer using the entries in Stack. |
| // That is, first clone the operands of the condition recursively until we |
| // reach an external input to the reproducer and add them to the reproducer |
| // function. Then add an ICmp for the condition (with the inverse predicate if |
| // the entry is negated) and an assert using the ICmp. |
| for (auto &Entry : Stack) { |
| if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) |
| continue; |
| |
| LLVM_DEBUG( |
| dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; |
| Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; |
| Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); |
| CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); |
| |
| auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); |
| Builder.CreateAssumption(Cmp); |
| } |
| |
| // Finally, clone the condition to reproduce and remap instruction operands in |
| // the reproducer using Old2New. |
| CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); |
| Entry->getTerminator()->setOperand(0, Cond); |
| remapInstructionsInBlocks({Entry}, Old2New); |
| |
| assert(!verifyFunction(*F, &dbgs())); |
| } |
| |
| static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, |
| unsigned NumIn, unsigned NumOut, |
| Instruction *ContextInst) { |
| LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); |
| |
| CmpInst::Predicate Pred = Cmp->getPredicate(); |
| Value *A = Cmp->getOperand(0); |
| Value *B = Cmp->getOperand(1); |
| |
| auto R = Info.getConstraintForSolving(Pred, A, B); |
| if (R.empty() || !R.isValid(Info)){ |
| LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); |
| return std::nullopt; |
| } |
| |
| auto &CSToUse = Info.getCS(R.IsSigned); |
| |
| // If there was extra information collected during decomposition, apply |
| // it now and remove it immediately once we are done with reasoning |
| // about the constraint. |
| for (auto &Row : R.ExtraInfo) |
| CSToUse.addVariableRow(Row); |
| auto InfoRestorer = make_scope_exit([&]() { |
| for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) |
| CSToUse.popLastConstraint(); |
| }); |
| |
| if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { |
| if (!DebugCounter::shouldExecute(EliminatedCounter)) |
| return std::nullopt; |
| |
| LLVM_DEBUG({ |
| if (*ImpliedCondition) { |
| dbgs() << "Condition " << *Cmp; |
| } else { |
| auto InversePred = Cmp->getInversePredicate(); |
| dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " |
| << *A << ", " << *B; |
| } |
| dbgs() << " implied by dominating constraints\n"; |
| CSToUse.dump(); |
| }); |
| return ImpliedCondition; |
| } |
| |
| return std::nullopt; |
| } |
| |
| static bool checkAndReplaceCondition( |
| CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, |
| Instruction *ContextInst, Module *ReproducerModule, |
| ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT) { |
| auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { |
| generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); |
| Constant *ConstantC = ConstantInt::getBool( |
| CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); |
| Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, |
| ContextInst](Use &U) { |
| auto *UserI = getContextInstForUse(U); |
| auto *DTN = DT.getNode(UserI->getParent()); |
| if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) |
| return false; |
| if (UserI->getParent() == ContextInst->getParent() && |
| UserI->comesBefore(ContextInst)) |
| return false; |
| |
| // Conditions in an assume trivially simplify to true. Skip uses |
| // in assume calls to not destroy the available information. |
| auto *II = dyn_cast<IntrinsicInst>(U.getUser()); |
| return !II || II->getIntrinsicID() != Intrinsic::assume; |
| }); |
| NumCondsRemoved++; |
| return true; |
| }; |
| |
| if (auto ImpliedCondition = |
| checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) |
| return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); |
| return false; |
| } |
| |
| static void |
| removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, |
| Module *ReproducerModule, |
| SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, |
| SmallVectorImpl<StackEntry> &DFSInStack) { |
| Info.popLastConstraint(E.IsSigned); |
| // Remove variables in the system that went out of scope. |
| auto &Mapping = Info.getValue2Index(E.IsSigned); |
| for (Value *V : E.ValuesToRelease) |
| Mapping.erase(V); |
| Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); |
| DFSInStack.pop_back(); |
| if (ReproducerModule) |
| ReproducerCondStack.pop_back(); |
| } |
| |
| /// Check if the first condition for an AND implies the second. |
| static bool checkAndSecondOpImpliedByFirst( |
| FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, |
| SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, |
| SmallVectorImpl<StackEntry> &DFSInStack) { |
| CmpInst::Predicate Pred; |
| Value *A, *B; |
| Instruction *And = CB.getContextInst(); |
| if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) |
| return false; |
| |
| // Optimistically add fact from first condition. |
| unsigned OldSize = DFSInStack.size(); |
| Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); |
| if (OldSize == DFSInStack.size()) |
| return false; |
| |
| bool Changed = false; |
| // Check if the second condition can be simplified now. |
| if (auto ImpliedCondition = |
| checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, |
| CB.NumOut, CB.getContextInst())) { |
| And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); |
| Changed = true; |
| } |
| |
| // Remove entries again. |
| while (OldSize < DFSInStack.size()) { |
| StackEntry E = DFSInStack.back(); |
| removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, |
| DFSInStack); |
| } |
| return Changed; |
| } |
| |
| void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, |
| unsigned NumIn, unsigned NumOut, |
| SmallVectorImpl<StackEntry> &DFSInStack) { |
| // If the constraint has a pre-condition, skip the constraint if it does not |
| // hold. |
| SmallVector<Value *> NewVariables; |
| auto R = getConstraint(Pred, A, B, NewVariables); |
| |
| // TODO: Support non-equality for facts as well. |
| if (!R.isValid(*this) || R.isNe()) |
| return; |
| |
| LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; |
| A->printAsOperand(dbgs(), false); dbgs() << ", "; |
| B->printAsOperand(dbgs(), false); dbgs() << "'\n"); |
| bool Added = false; |
| auto &CSToUse = getCS(R.IsSigned); |
| if (R.Coefficients.empty()) |
| return; |
| |
| Added |= CSToUse.addVariableRowFill(R.Coefficients); |
| |
| // If R has been added to the system, add the new variables and queue it for |
| // removal once it goes out-of-scope. |
| if (Added) { |
| SmallVector<Value *, 2> ValuesToRelease; |
| auto &Value2Index = getValue2Index(R.IsSigned); |
| for (Value *V : NewVariables) { |
| Value2Index.insert({V, Value2Index.size() + 1}); |
| ValuesToRelease.push_back(V); |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << " constraint: "; |
| dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); |
| dbgs() << "\n"; |
| }); |
| |
| DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, |
| std::move(ValuesToRelease)); |
| |
| if (R.isEq()) { |
| // Also add the inverted constraint for equality constraints. |
| for (auto &Coeff : R.Coefficients) |
| Coeff *= -1; |
| CSToUse.addVariableRowFill(R.Coefficients); |
| |
| DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, |
| SmallVector<Value *, 2>()); |
| } |
| } |
| } |
| |
| static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, |
| SmallVectorImpl<Instruction *> &ToRemove) { |
| bool Changed = false; |
| IRBuilder<> Builder(II->getParent(), II->getIterator()); |
| Value *Sub = nullptr; |
| for (User *U : make_early_inc_range(II->users())) { |
| if (match(U, m_ExtractValue<0>(m_Value()))) { |
| if (!Sub) |
| Sub = Builder.CreateSub(A, B); |
| U->replaceAllUsesWith(Sub); |
| Changed = true; |
| } else if (match(U, m_ExtractValue<1>(m_Value()))) { |
| U->replaceAllUsesWith(Builder.getFalse()); |
| Changed = true; |
| } else |
| continue; |
| |
| if (U->use_empty()) { |
| auto *I = cast<Instruction>(U); |
| ToRemove.push_back(I); |
| I->setOperand(0, PoisonValue::get(II->getType())); |
| Changed = true; |
| } |
| } |
| |
| if (II->use_empty()) { |
| II->eraseFromParent(); |
| Changed = true; |
| } |
| return Changed; |
| } |
| |
| static bool |
| tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, |
| SmallVectorImpl<Instruction *> &ToRemove) { |
| auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, |
| ConstraintInfo &Info) { |
| auto R = Info.getConstraintForSolving(Pred, A, B); |
| if (R.size() < 2 || !R.isValid(Info)) |
| return false; |
| |
| auto &CSToUse = Info.getCS(R.IsSigned); |
| return CSToUse.isConditionImplied(R.Coefficients); |
| }; |
| |
| bool Changed = false; |
| if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { |
| // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and |
| // can be simplified to a regular sub. |
| Value *A = II->getArgOperand(0); |
| Value *B = II->getArgOperand(1); |
| if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || |
| !DoesConditionHold(CmpInst::ICMP_SGE, B, |
| ConstantInt::get(A->getType(), 0), Info)) |
| return false; |
| Changed = replaceSubOverflowUses(II, A, B, ToRemove); |
| } |
| return Changed; |
| } |
| |
| static bool eliminateConstraints(Function &F, DominatorTree &DT, |
| OptimizationRemarkEmitter &ORE) { |
| bool Changed = false; |
| DT.updateDFSNumbers(); |
| SmallVector<Value *> FunctionArgs; |
| for (Value &Arg : F.args()) |
| FunctionArgs.push_back(&Arg); |
| ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); |
| State S(DT); |
| std::unique_ptr<Module> ReproducerModule( |
| DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); |
| |
| // First, collect conditions implied by branches and blocks with their |
| // Dominator DFS in and out numbers. |
| for (BasicBlock &BB : F) { |
| if (!DT.getNode(&BB)) |
| continue; |
| S.addInfoFor(BB); |
| } |
| |
| // Next, sort worklist by dominance, so that dominating conditions to check |
| // and facts come before conditions and facts dominated by them. If a |
| // condition to check and a fact have the same numbers, conditional facts come |
| // first. Assume facts and checks are ordered according to their relative |
| // order in the containing basic block. Also make sure conditions with |
| // constant operands come before conditions without constant operands. This |
| // increases the effectiveness of the current signed <-> unsigned fact |
| // transfer logic. |
| stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { |
| auto HasNoConstOp = [](const FactOrCheck &B) { |
| return !isa<ConstantInt>(B.Inst->getOperand(0)) && |
| !isa<ConstantInt>(B.Inst->getOperand(1)); |
| }; |
| // If both entries have the same In numbers, conditional facts come first. |
| // Otherwise use the relative order in the basic block. |
| if (A.NumIn == B.NumIn) { |
| if (A.isConditionFact() && B.isConditionFact()) { |
| bool NoConstOpA = HasNoConstOp(A); |
| bool NoConstOpB = HasNoConstOp(B); |
| return NoConstOpA < NoConstOpB; |
| } |
| if (A.isConditionFact()) |
| return true; |
| if (B.isConditionFact()) |
| return false; |
| auto *InstA = A.getContextInst(); |
| auto *InstB = B.getContextInst(); |
| return InstA->comesBefore(InstB); |
| } |
| return A.NumIn < B.NumIn; |
| }); |
| |
| SmallVector<Instruction *> ToRemove; |
| |
| // Finally, process ordered worklist and eliminate implied conditions. |
| SmallVector<StackEntry, 16> DFSInStack; |
| SmallVector<ReproducerEntry> ReproducerCondStack; |
| for (FactOrCheck &CB : S.WorkList) { |
| // First, pop entries from the stack that are out-of-scope for CB. Remove |
| // the corresponding entry from the constraint system. |
| while (!DFSInStack.empty()) { |
| auto &E = DFSInStack.back(); |
| LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut |
| << "\n"); |
| LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); |
| assert(E.NumIn <= CB.NumIn); |
| if (CB.NumOut <= E.NumOut) |
| break; |
| LLVM_DEBUG({ |
| dbgs() << "Removing "; |
| dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), |
| Info.getValue2Index(E.IsSigned)); |
| dbgs() << "\n"; |
| }); |
| removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, |
| DFSInStack); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Processing "); |
| |
| // For a block, check if any CmpInsts become known based on the current set |
| // of constraints. |
| if (CB.isCheck()) { |
| Instruction *Inst = CB.getInstructionToSimplify(); |
| if (!Inst) |
| continue; |
| LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); |
| if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { |
| Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); |
| } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { |
| bool Simplified = checkAndReplaceCondition( |
| Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), |
| ReproducerModule.get(), ReproducerCondStack, S.DT); |
| if (!Simplified && match(CB.getContextInst(), |
| m_LogicalAnd(m_Value(), m_Specific(Inst)))) { |
| Simplified = |
| checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), |
| ReproducerCondStack, DFSInStack); |
| } |
| Changed |= Simplified; |
| } |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << "fact to add to the system: " << *CB.Inst << "\n"); |
| auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { |
| if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { |
| LLVM_DEBUG( |
| dbgs() |
| << "Skip adding constraint because system has too many rows.\n"); |
| return; |
| } |
| |
| Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); |
| if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) |
| ReproducerCondStack.emplace_back(Pred, A, B); |
| |
| Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); |
| if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { |
| // Add dummy entries to ReproducerCondStack to keep it in sync with |
| // DFSInStack. |
| for (unsigned I = 0, |
| E = (DFSInStack.size() - ReproducerCondStack.size()); |
| I < E; ++I) { |
| ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, |
| nullptr, nullptr); |
| } |
| } |
| }; |
| |
| ICmpInst::Predicate Pred; |
| if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { |
| Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); |
| AddFact(Pred, MinMax, MinMax->getLHS()); |
| AddFact(Pred, MinMax, MinMax->getRHS()); |
| continue; |
| } |
| |
| Value *A, *B; |
| Value *Cmp = CB.Inst; |
| match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); |
| if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { |
| // Use the inverse predicate if required. |
| if (CB.Not) |
| Pred = CmpInst::getInversePredicate(Pred); |
| |
| AddFact(Pred, A, B); |
| } |
| } |
| |
| if (ReproducerModule && !ReproducerModule->functions().empty()) { |
| std::string S; |
| raw_string_ostream StringS(S); |
| ReproducerModule->print(StringS, nullptr); |
| StringS.flush(); |
| OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); |
| Rem << ore::NV("module") << S; |
| ORE.emit(Rem); |
| } |
| |
| #ifndef NDEBUG |
| unsigned SignedEntries = |
| count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); |
| assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && |
| "updates to CS and DFSInStack are out of sync"); |
| assert(Info.getCS(true).size() == SignedEntries && |
| "updates to CS and DFSInStack are out of sync"); |
| #endif |
| |
| for (Instruction *I : ToRemove) |
| I->eraseFromParent(); |
| return Changed; |
| } |
| |
| PreservedAnalyses ConstraintEliminationPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| if (!eliminateConstraints(F, DT, ORE)) |
| return PreservedAnalyses::all(); |
| |
| PreservedAnalyses PA; |
| PA.preserve<DominatorTreeAnalysis>(); |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |