| //! A constant propagation optimization pass based on dataflow analysis. |
| //! |
| //! Currently, this pass only propagates scalar values. |
| |
| use rustc_const_eval::interpret::{ConstValue, ImmTy, Immediate, InterpCx, Scalar}; |
| use rustc_data_structures::fx::FxHashMap; |
| use rustc_middle::mir::visit::{MutVisitor, Visitor}; |
| use rustc_middle::mir::*; |
| use rustc_middle::ty::{self, Ty, TyCtxt}; |
| use rustc_mir_dataflow::value_analysis::{Map, State, TrackElem, ValueAnalysis, ValueOrPlace}; |
| use rustc_mir_dataflow::{lattice::FlatSet, Analysis, ResultsVisitor, SwitchIntEdgeEffects}; |
| use rustc_span::DUMMY_SP; |
| |
| use crate::MirPass; |
| |
| // These constants are somewhat random guesses and have not been optimized. |
| // If `tcx.sess.mir_opt_level() >= 4`, we ignore the limits (this can become very expensive). |
| const BLOCK_LIMIT: usize = 100; |
| const PLACE_LIMIT: usize = 100; |
| |
| pub struct DataflowConstProp; |
| |
| impl<'tcx> MirPass<'tcx> for DataflowConstProp { |
| fn is_enabled(&self, sess: &rustc_session::Session) -> bool { |
| sess.mir_opt_level() >= 3 |
| } |
| |
| #[instrument(skip_all level = "debug")] |
| fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { |
| if tcx.sess.mir_opt_level() < 4 && body.basic_blocks.len() > BLOCK_LIMIT { |
| debug!("aborted dataflow const prop due too many basic blocks"); |
| return; |
| } |
| |
| // Decide which places to track during the analysis. |
| let map = Map::from_filter(tcx, body, Ty::is_scalar); |
| |
| // We want to have a somewhat linear runtime w.r.t. the number of statements/terminators. |
| // Let's call this number `n`. Dataflow analysis has `O(h*n)` transfer function |
| // applications, where `h` is the height of the lattice. Because the height of our lattice |
| // is linear w.r.t. the number of tracked places, this is `O(tracked_places * n)`. However, |
| // because every transfer function application could traverse the whole map, this becomes |
| // `O(num_nodes * tracked_places * n)` in terms of time complexity. Since the number of |
| // map nodes is strongly correlated to the number of tracked places, this becomes more or |
| // less `O(n)` if we place a constant limit on the number of tracked places. |
| if tcx.sess.mir_opt_level() < 4 && map.tracked_places() > PLACE_LIMIT { |
| debug!("aborted dataflow const prop due to too many tracked places"); |
| return; |
| } |
| |
| // Perform the actual dataflow analysis. |
| let analysis = ConstAnalysis::new(tcx, body, map); |
| let results = debug_span!("analyze") |
| .in_scope(|| analysis.wrap().into_engine(tcx, body).iterate_to_fixpoint()); |
| |
| // Collect results and patch the body afterwards. |
| let mut visitor = CollectAndPatch::new(tcx, &results.analysis.0.map); |
| debug_span!("collect").in_scope(|| results.visit_reachable_with(body, &mut visitor)); |
| debug_span!("patch").in_scope(|| visitor.visit_body(body)); |
| } |
| } |
| |
| struct ConstAnalysis<'tcx> { |
| map: Map, |
| tcx: TyCtxt<'tcx>, |
| ecx: InterpCx<'tcx, 'tcx, DummyMachine>, |
| param_env: ty::ParamEnv<'tcx>, |
| } |
| |
| impl<'tcx> ValueAnalysis<'tcx> for ConstAnalysis<'tcx> { |
| type Value = FlatSet<ScalarTy<'tcx>>; |
| |
| const NAME: &'static str = "ConstAnalysis"; |
| |
| fn map(&self) -> &Map { |
| &self.map |
| } |
| |
| fn handle_assign( |
| &self, |
| target: Place<'tcx>, |
| rvalue: &Rvalue<'tcx>, |
| state: &mut State<Self::Value>, |
| ) { |
| match rvalue { |
| Rvalue::CheckedBinaryOp(op, box (left, right)) => { |
| let target = self.map().find(target.as_ref()); |
| if let Some(target) = target { |
| // We should not track any projections other than |
| // what is overwritten below, but just in case... |
| state.flood_idx(target, self.map()); |
| } |
| |
| let value_target = target |
| .and_then(|target| self.map().apply(target, TrackElem::Field(0_u32.into()))); |
| let overflow_target = target |
| .and_then(|target| self.map().apply(target, TrackElem::Field(1_u32.into()))); |
| |
| if value_target.is_some() || overflow_target.is_some() { |
| let (val, overflow) = self.binary_op(state, *op, left, right); |
| |
| if let Some(value_target) = value_target { |
| state.assign_idx(value_target, ValueOrPlace::Value(val), self.map()); |
| } |
| if let Some(overflow_target) = overflow_target { |
| let overflow = match overflow { |
| FlatSet::Top => FlatSet::Top, |
| FlatSet::Elem(overflow) => { |
| if overflow { |
| // Overflow cannot be reliably propagated. See: https://github.com/rust-lang/rust/pull/101168#issuecomment-1288091446 |
| FlatSet::Top |
| } else { |
| self.wrap_scalar(Scalar::from_bool(false), self.tcx.types.bool) |
| } |
| } |
| FlatSet::Bottom => FlatSet::Bottom, |
| }; |
| state.assign_idx( |
| overflow_target, |
| ValueOrPlace::Value(overflow), |
| self.map(), |
| ); |
| } |
| } |
| } |
| _ => self.super_assign(target, rvalue, state), |
| } |
| } |
| |
| fn handle_rvalue( |
| &self, |
| rvalue: &Rvalue<'tcx>, |
| state: &mut State<Self::Value>, |
| ) -> ValueOrPlace<Self::Value> { |
| match rvalue { |
| Rvalue::Cast( |
| kind @ (CastKind::IntToInt |
| | CastKind::FloatToInt |
| | CastKind::FloatToFloat |
| | CastKind::IntToFloat), |
| operand, |
| ty, |
| ) => match self.eval_operand(operand, state) { |
| FlatSet::Elem(op) => match kind { |
| CastKind::IntToInt | CastKind::IntToFloat => { |
| self.ecx.int_to_int_or_float(&op, *ty) |
| } |
| CastKind::FloatToInt | CastKind::FloatToFloat => { |
| self.ecx.float_to_float_or_int(&op, *ty) |
| } |
| _ => unreachable!(), |
| } |
| .map(|result| ValueOrPlace::Value(self.wrap_immediate(result, *ty))) |
| .unwrap_or(ValueOrPlace::top()), |
| _ => ValueOrPlace::top(), |
| }, |
| Rvalue::BinaryOp(op, box (left, right)) => { |
| // Overflows must be ignored here. |
| let (val, _overflow) = self.binary_op(state, *op, left, right); |
| ValueOrPlace::Value(val) |
| } |
| Rvalue::UnaryOp(op, operand) => match self.eval_operand(operand, state) { |
| FlatSet::Elem(value) => self |
| .ecx |
| .unary_op(*op, &value) |
| .map(|val| ValueOrPlace::Value(self.wrap_immty(val))) |
| .unwrap_or(ValueOrPlace::Value(FlatSet::Top)), |
| FlatSet::Bottom => ValueOrPlace::Value(FlatSet::Bottom), |
| FlatSet::Top => ValueOrPlace::Value(FlatSet::Top), |
| }, |
| _ => self.super_rvalue(rvalue, state), |
| } |
| } |
| |
| fn handle_constant( |
| &self, |
| constant: &Constant<'tcx>, |
| _state: &mut State<Self::Value>, |
| ) -> Self::Value { |
| constant |
| .literal |
| .eval(self.tcx, self.param_env) |
| .try_to_scalar() |
| .map(|value| FlatSet::Elem(ScalarTy(value, constant.ty()))) |
| .unwrap_or(FlatSet::Top) |
| } |
| |
| fn handle_switch_int( |
| &self, |
| discr: &Operand<'tcx>, |
| apply_edge_effects: &mut impl SwitchIntEdgeEffects<State<Self::Value>>, |
| ) { |
| // FIXME: The dataflow framework only provides the state if we call `apply()`, which makes |
| // this more inefficient than it has to be. |
| let mut discr_value = None; |
| let mut handled = false; |
| apply_edge_effects.apply(|state, target| { |
| let discr_value = match discr_value { |
| Some(value) => value, |
| None => { |
| let value = match self.handle_operand(discr, state) { |
| ValueOrPlace::Value(value) => value, |
| ValueOrPlace::Place(place) => state.get_idx(place, self.map()), |
| }; |
| let result = match value { |
| FlatSet::Top => FlatSet::Top, |
| FlatSet::Elem(ScalarTy(scalar, _)) => { |
| let int = scalar.assert_int(); |
| FlatSet::Elem(int.assert_bits(int.size())) |
| } |
| FlatSet::Bottom => FlatSet::Bottom, |
| }; |
| discr_value = Some(result); |
| result |
| } |
| }; |
| |
| let FlatSet::Elem(choice) = discr_value else { |
| // Do nothing if we don't know which branch will be taken. |
| return |
| }; |
| |
| if target.value.map(|n| n == choice).unwrap_or(!handled) { |
| // Branch is taken. Has no effect on state. |
| handled = true; |
| } else { |
| // Branch is not taken. |
| state.mark_unreachable(); |
| } |
| }) |
| } |
| } |
| |
| #[derive(Clone, PartialEq, Eq)] |
| struct ScalarTy<'tcx>(Scalar, Ty<'tcx>); |
| |
| impl<'tcx> std::fmt::Debug for ScalarTy<'tcx> { |
| fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| // This is used for dataflow visualization, so we return something more concise. |
| std::fmt::Display::fmt(&ConstantKind::Val(ConstValue::Scalar(self.0), self.1), f) |
| } |
| } |
| |
| impl<'tcx> ConstAnalysis<'tcx> { |
| pub fn new(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, map: Map) -> Self { |
| let param_env = tcx.param_env(body.source.def_id()); |
| Self { |
| map, |
| tcx, |
| ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine), |
| param_env: param_env, |
| } |
| } |
| |
| fn binary_op( |
| &self, |
| state: &mut State<FlatSet<ScalarTy<'tcx>>>, |
| op: BinOp, |
| left: &Operand<'tcx>, |
| right: &Operand<'tcx>, |
| ) -> (FlatSet<ScalarTy<'tcx>>, FlatSet<bool>) { |
| let left = self.eval_operand(left, state); |
| let right = self.eval_operand(right, state); |
| match (left, right) { |
| (FlatSet::Elem(left), FlatSet::Elem(right)) => { |
| match self.ecx.overflowing_binary_op(op, &left, &right) { |
| Ok((val, overflow, ty)) => (self.wrap_scalar(val, ty), FlatSet::Elem(overflow)), |
| _ => (FlatSet::Top, FlatSet::Top), |
| } |
| } |
| (FlatSet::Bottom, _) | (_, FlatSet::Bottom) => (FlatSet::Bottom, FlatSet::Bottom), |
| (_, _) => { |
| // Could attempt some algebraic simplifcations here. |
| (FlatSet::Top, FlatSet::Top) |
| } |
| } |
| } |
| |
| fn eval_operand( |
| &self, |
| op: &Operand<'tcx>, |
| state: &mut State<FlatSet<ScalarTy<'tcx>>>, |
| ) -> FlatSet<ImmTy<'tcx>> { |
| let value = match self.handle_operand(op, state) { |
| ValueOrPlace::Value(value) => value, |
| ValueOrPlace::Place(place) => state.get_idx(place, &self.map), |
| }; |
| match value { |
| FlatSet::Top => FlatSet::Top, |
| FlatSet::Elem(ScalarTy(scalar, ty)) => self |
| .tcx |
| .layout_of(self.param_env.and(ty)) |
| .map(|layout| FlatSet::Elem(ImmTy::from_scalar(scalar, layout))) |
| .unwrap_or(FlatSet::Top), |
| FlatSet::Bottom => FlatSet::Bottom, |
| } |
| } |
| |
| fn wrap_scalar(&self, scalar: Scalar, ty: Ty<'tcx>) -> FlatSet<ScalarTy<'tcx>> { |
| FlatSet::Elem(ScalarTy(scalar, ty)) |
| } |
| |
| fn wrap_immediate(&self, imm: Immediate, ty: Ty<'tcx>) -> FlatSet<ScalarTy<'tcx>> { |
| match imm { |
| Immediate::Scalar(scalar) => self.wrap_scalar(scalar, ty), |
| _ => FlatSet::Top, |
| } |
| } |
| |
| fn wrap_immty(&self, val: ImmTy<'tcx>) -> FlatSet<ScalarTy<'tcx>> { |
| self.wrap_immediate(*val, val.layout.ty) |
| } |
| } |
| |
| struct CollectAndPatch<'tcx, 'map> { |
| tcx: TyCtxt<'tcx>, |
| map: &'map Map, |
| |
| /// For a given MIR location, this stores the values of the operands used by that location. In |
| /// particular, this is before the effect, such that the operands of `_1 = _1 + _2` are |
| /// properly captured. (This may become UB soon, but it is currently emitted even by safe code.) |
| before_effect: FxHashMap<(Location, Place<'tcx>), ScalarTy<'tcx>>, |
| |
| /// Stores the assigned values for assignments where the Rvalue is constant. |
| assignments: FxHashMap<Location, ScalarTy<'tcx>>, |
| } |
| |
| impl<'tcx, 'map> CollectAndPatch<'tcx, 'map> { |
| fn new(tcx: TyCtxt<'tcx>, map: &'map Map) -> Self { |
| Self { tcx, map, before_effect: FxHashMap::default(), assignments: FxHashMap::default() } |
| } |
| |
| fn make_operand(&self, scalar: ScalarTy<'tcx>) -> Operand<'tcx> { |
| Operand::Constant(Box::new(Constant { |
| span: DUMMY_SP, |
| user_ty: None, |
| literal: ConstantKind::Val(ConstValue::Scalar(scalar.0), scalar.1), |
| })) |
| } |
| } |
| |
| impl<'mir, 'tcx, 'map> ResultsVisitor<'mir, 'tcx> for CollectAndPatch<'tcx, 'map> { |
| type FlowState = State<FlatSet<ScalarTy<'tcx>>>; |
| |
| fn visit_statement_before_primary_effect( |
| &mut self, |
| state: &Self::FlowState, |
| statement: &'mir Statement<'tcx>, |
| location: Location, |
| ) { |
| match &statement.kind { |
| StatementKind::Assign(box (_, rvalue)) => { |
| OperandCollector { state, visitor: self }.visit_rvalue(rvalue, location); |
| } |
| _ => (), |
| } |
| } |
| |
| fn visit_statement_after_primary_effect( |
| &mut self, |
| state: &Self::FlowState, |
| statement: &'mir Statement<'tcx>, |
| location: Location, |
| ) { |
| match statement.kind { |
| StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(_)))) => { |
| // Don't overwrite the assignment if it already uses a constant (to keep the span). |
| } |
| StatementKind::Assign(box (place, _)) => match state.get(place.as_ref(), self.map) { |
| FlatSet::Top => (), |
| FlatSet::Elem(value) => { |
| self.assignments.insert(location, value); |
| } |
| FlatSet::Bottom => { |
| // This assignment is either unreachable, or an uninitialized value is assigned. |
| } |
| }, |
| _ => (), |
| } |
| } |
| |
| fn visit_terminator_before_primary_effect( |
| &mut self, |
| state: &Self::FlowState, |
| terminator: &'mir Terminator<'tcx>, |
| location: Location, |
| ) { |
| OperandCollector { state, visitor: self }.visit_terminator(terminator, location); |
| } |
| } |
| |
| impl<'tcx, 'map> MutVisitor<'tcx> for CollectAndPatch<'tcx, 'map> { |
| fn tcx<'a>(&'a self) -> TyCtxt<'tcx> { |
| self.tcx |
| } |
| |
| fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) { |
| if let Some(value) = self.assignments.get(&location) { |
| match &mut statement.kind { |
| StatementKind::Assign(box (_, rvalue)) => { |
| *rvalue = Rvalue::Use(self.make_operand(value.clone())); |
| } |
| _ => bug!("found assignment info for non-assign statement"), |
| } |
| } else { |
| self.super_statement(statement, location); |
| } |
| } |
| |
| fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) { |
| match operand { |
| Operand::Copy(place) | Operand::Move(place) => { |
| if let Some(value) = self.before_effect.get(&(location, *place)) { |
| *operand = self.make_operand(value.clone()); |
| } |
| } |
| _ => (), |
| } |
| } |
| } |
| |
| struct OperandCollector<'tcx, 'map, 'a> { |
| state: &'a State<FlatSet<ScalarTy<'tcx>>>, |
| visitor: &'a mut CollectAndPatch<'tcx, 'map>, |
| } |
| |
| impl<'tcx, 'map, 'a> Visitor<'tcx> for OperandCollector<'tcx, 'map, 'a> { |
| fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) { |
| match operand { |
| Operand::Copy(place) | Operand::Move(place) => { |
| match self.state.get(place.as_ref(), self.visitor.map) { |
| FlatSet::Top => (), |
| FlatSet::Elem(value) => { |
| self.visitor.before_effect.insert((location, *place), value); |
| } |
| FlatSet::Bottom => (), |
| } |
| } |
| _ => (), |
| } |
| } |
| } |
| |
| struct DummyMachine; |
| |
| impl<'mir, 'tcx> rustc_const_eval::interpret::Machine<'mir, 'tcx> for DummyMachine { |
| rustc_const_eval::interpret::compile_time_machine!(<'mir, 'tcx>); |
| type MemoryKind = !; |
| const PANIC_ON_ALLOC_FAIL: bool = true; |
| |
| fn enforce_alignment(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool { |
| unimplemented!() |
| } |
| |
| fn enforce_validity(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool { |
| unimplemented!() |
| } |
| |
| fn find_mir_or_eval_fn( |
| _ecx: &mut InterpCx<'mir, 'tcx, Self>, |
| _instance: ty::Instance<'tcx>, |
| _abi: rustc_target::spec::abi::Abi, |
| _args: &[rustc_const_eval::interpret::OpTy<'tcx, Self::Provenance>], |
| _destination: &rustc_const_eval::interpret::PlaceTy<'tcx, Self::Provenance>, |
| _target: Option<BasicBlock>, |
| _unwind: rustc_const_eval::interpret::StackPopUnwind, |
| ) -> interpret::InterpResult<'tcx, Option<(&'mir Body<'tcx>, ty::Instance<'tcx>)>> { |
| unimplemented!() |
| } |
| |
| fn call_intrinsic( |
| _ecx: &mut InterpCx<'mir, 'tcx, Self>, |
| _instance: ty::Instance<'tcx>, |
| _args: &[rustc_const_eval::interpret::OpTy<'tcx, Self::Provenance>], |
| _destination: &rustc_const_eval::interpret::PlaceTy<'tcx, Self::Provenance>, |
| _target: Option<BasicBlock>, |
| _unwind: rustc_const_eval::interpret::StackPopUnwind, |
| ) -> interpret::InterpResult<'tcx> { |
| unimplemented!() |
| } |
| |
| fn assert_panic( |
| _ecx: &mut InterpCx<'mir, 'tcx, Self>, |
| _msg: &rustc_middle::mir::AssertMessage<'tcx>, |
| _unwind: Option<BasicBlock>, |
| ) -> interpret::InterpResult<'tcx> { |
| unimplemented!() |
| } |
| |
| fn binary_ptr_op( |
| _ecx: &InterpCx<'mir, 'tcx, Self>, |
| _bin_op: BinOp, |
| _left: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>, |
| _right: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>, |
| ) -> interpret::InterpResult<'tcx, (interpret::Scalar<Self::Provenance>, bool, Ty<'tcx>)> { |
| throw_unsup!(Unsupported("".into())) |
| } |
| |
| fn expose_ptr( |
| _ecx: &mut InterpCx<'mir, 'tcx, Self>, |
| _ptr: interpret::Pointer<Self::Provenance>, |
| ) -> interpret::InterpResult<'tcx> { |
| unimplemented!() |
| } |
| |
| fn init_frame_extra( |
| _ecx: &mut InterpCx<'mir, 'tcx, Self>, |
| _frame: rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance>, |
| ) -> interpret::InterpResult< |
| 'tcx, |
| rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>, |
| > { |
| unimplemented!() |
| } |
| |
| fn stack<'a>( |
| _ecx: &'a InterpCx<'mir, 'tcx, Self>, |
| ) -> &'a [rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>] |
| { |
| unimplemented!() |
| } |
| |
| fn stack_mut<'a>( |
| _ecx: &'a mut InterpCx<'mir, 'tcx, Self>, |
| ) -> &'a mut Vec< |
| rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>, |
| > { |
| unimplemented!() |
| } |
| } |