blob: a3c9da302120471c8e65cc640107a8b299240999 [file] [log] [blame]
use either::Either;
use rustc_const_eval::util::CallKind;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::{Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::{AsyncGeneratorKind, GeneratorKind};
use rustc_infer::infer::TyCtxtInferExt;
use rustc_infer::traits::ObligationCause;
use rustc_middle::mir::tcx::PlaceTy;
use rustc_middle::mir::{
self, AggregateKind, BindingForm, BorrowKind, ClearCrossCrate, ConstraintCategory,
FakeReadCause, LocalDecl, LocalInfo, LocalKind, Location, Operand, Place, PlaceRef,
ProjectionElem, Rvalue, Statement, StatementKind, Terminator, TerminatorKind, VarBindingForm,
};
use rustc_middle::ty::{
self, subst::Subst, suggest_constraining_type_params, EarlyBinder, PredicateKind, Ty,
};
use rustc_mir_dataflow::move_paths::{InitKind, MoveOutIndex, MovePathIndex};
use rustc_span::symbol::sym;
use rustc_span::{BytePos, Span};
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::TraitEngineExt as _;
use crate::borrow_set::TwoPhaseActivation;
use crate::borrowck_errors;
use crate::diagnostics::conflict_errors::StorageDeadOrDrop::LocalStorageDead;
use crate::diagnostics::find_all_local_uses;
use crate::{
borrow_set::BorrowData, diagnostics::Instance, prefixes::IsPrefixOf,
InitializationRequiringAction, MirBorrowckCtxt, PrefixSet, WriteKind,
};
use super::{
explain_borrow::{BorrowExplanation, LaterUseKind},
IncludingDowncast, RegionName, RegionNameSource, UseSpans,
};
#[derive(Debug)]
struct MoveSite {
/// Index of the "move out" that we found. The `MoveData` can
/// then tell us where the move occurred.
moi: MoveOutIndex,
/// `true` if we traversed a back edge while walking from the point
/// of error to the move site.
traversed_back_edge: bool,
}
/// Which case a StorageDeadOrDrop is for.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum StorageDeadOrDrop<'tcx> {
LocalStorageDead,
BoxedStorageDead,
Destructor(Ty<'tcx>),
}
impl<'cx, 'tcx> MirBorrowckCtxt<'cx, 'tcx> {
pub(crate) fn report_use_of_moved_or_uninitialized(
&mut self,
location: Location,
desired_action: InitializationRequiringAction,
(moved_place, used_place, span): (PlaceRef<'tcx>, PlaceRef<'tcx>, Span),
mpi: MovePathIndex,
) {
debug!(
"report_use_of_moved_or_uninitialized: location={:?} desired_action={:?} \
moved_place={:?} used_place={:?} span={:?} mpi={:?}",
location, desired_action, moved_place, used_place, span, mpi
);
let use_spans =
self.move_spans(moved_place, location).or_else(|| self.borrow_spans(span, location));
let span = use_spans.args_or_use();
let (move_site_vec, maybe_reinitialized_locations) = self.get_moved_indexes(location, mpi);
debug!(
"report_use_of_moved_or_uninitialized: move_site_vec={:?} use_spans={:?}",
move_site_vec, use_spans
);
let move_out_indices: Vec<_> =
move_site_vec.iter().map(|move_site| move_site.moi).collect();
if move_out_indices.is_empty() {
let root_place = PlaceRef { projection: &[], ..used_place };
if !self.uninitialized_error_reported.insert(root_place) {
debug!(
"report_use_of_moved_or_uninitialized place: error about {:?} suppressed",
root_place
);
return;
}
let item_msg =
match self.describe_place_with_options(used_place, IncludingDowncast(true)) {
Some(name) => format!("`{}`", name),
None => "value".to_owned(),
};
let mut err = self.cannot_act_on_uninitialized_variable(
span,
desired_action.as_noun(),
&self
.describe_place_with_options(moved_place, IncludingDowncast(true))
.unwrap_or_else(|| "_".to_owned()),
);
err.span_label(span, format!("use of possibly-uninitialized {}", item_msg));
use_spans.var_span_label_path_only(
&mut err,
format!("{} occurs due to use{}", desired_action.as_noun(), use_spans.describe()),
);
self.buffer_error(err);
} else {
if let Some((reported_place, _)) = self.has_move_error(&move_out_indices) {
if self.prefixes(*reported_place, PrefixSet::All).any(|p| p == used_place) {
debug!(
"report_use_of_moved_or_uninitialized place: error suppressed \
mois={:?}",
move_out_indices
);
return;
}
}
let is_partial_move = move_site_vec.iter().any(|move_site| {
let move_out = self.move_data.moves[(*move_site).moi];
let moved_place = &self.move_data.move_paths[move_out.path].place;
// `*(_1)` where `_1` is a `Box` is actually a move out.
let is_box_move = moved_place.as_ref().projection == [ProjectionElem::Deref]
&& self.body.local_decls[moved_place.local].ty.is_box();
!is_box_move
&& used_place != moved_place.as_ref()
&& used_place.is_prefix_of(moved_place.as_ref())
});
let partial_str = if is_partial_move { "partial " } else { "" };
let partially_str = if is_partial_move { "partially " } else { "" };
let mut err = self.cannot_act_on_moved_value(
span,
desired_action.as_noun(),
partially_str,
self.describe_place_with_options(moved_place, IncludingDowncast(true)),
);
let reinit_spans = maybe_reinitialized_locations
.iter()
.take(3)
.map(|loc| {
self.move_spans(self.move_data.move_paths[mpi].place.as_ref(), *loc)
.args_or_use()
})
.collect::<Vec<Span>>();
let reinits = maybe_reinitialized_locations.len();
if reinits == 1 {
err.span_label(reinit_spans[0], "this reinitialization might get skipped");
} else if reinits > 1 {
err.span_note(
MultiSpan::from_spans(reinit_spans),
&if reinits <= 3 {
format!("these {} reinitializations might get skipped", reinits)
} else {
format!(
"these 3 reinitializations and {} other{} might get skipped",
reinits - 3,
if reinits == 4 { "" } else { "s" }
)
},
);
}
self.add_moved_or_invoked_closure_note(location, used_place, &mut err);
let mut is_loop_move = false;
let mut in_pattern = false;
for move_site in &move_site_vec {
let move_out = self.move_data.moves[(*move_site).moi];
let moved_place = &self.move_data.move_paths[move_out.path].place;
let move_spans = self.move_spans(moved_place.as_ref(), move_out.source);
let move_span = move_spans.args_or_use();
let move_msg = if move_spans.for_closure() { " into closure" } else { "" };
let loop_message = if location == move_out.source || move_site.traversed_back_edge {
", in previous iteration of loop"
} else {
""
};
if location == move_out.source {
is_loop_move = true;
}
self.explain_captures(
&mut err,
span,
move_span,
move_spans,
*moved_place,
Some(used_place),
partially_str,
loop_message,
move_msg,
is_loop_move,
maybe_reinitialized_locations.is_empty(),
);
if let (UseSpans::PatUse(span), []) =
(move_spans, &maybe_reinitialized_locations[..])
{
if maybe_reinitialized_locations.is_empty() {
err.span_suggestion_verbose(
span.shrink_to_lo(),
&format!(
"borrow this field in the pattern to avoid moving {}",
self.describe_place(moved_place.as_ref())
.map(|n| format!("`{}`", n))
.unwrap_or_else(|| "the value".to_string())
),
"ref ".to_string(),
Applicability::MachineApplicable,
);
in_pattern = true;
}
}
}
use_spans.var_span_label_path_only(
&mut err,
format!("{} occurs due to use{}", desired_action.as_noun(), use_spans.describe()),
);
if !is_loop_move {
err.span_label(
span,
format!(
"value {} here after {}move",
desired_action.as_verb_in_past_tense(),
partial_str
),
);
}
let ty = used_place.ty(self.body, self.infcx.tcx).ty;
let needs_note = match ty.kind() {
ty::Closure(id, _) => {
let tables = self.infcx.tcx.typeck(id.expect_local());
let hir_id = self.infcx.tcx.hir().local_def_id_to_hir_id(id.expect_local());
tables.closure_kind_origins().get(hir_id).is_none()
}
_ => true,
};
let mpi = self.move_data.moves[move_out_indices[0]].path;
let place = &self.move_data.move_paths[mpi].place;
let ty = place.ty(self.body, self.infcx.tcx).ty;
// If we're in pattern, we do nothing in favor of the previous suggestion (#80913).
if is_loop_move & !in_pattern {
if let ty::Ref(_, _, hir::Mutability::Mut) = ty.kind() {
// We have a `&mut` ref, we need to reborrow on each iteration (#62112).
err.span_suggestion_verbose(
span.shrink_to_lo(),
&format!(
"consider creating a fresh reborrow of {} here",
self.describe_place(moved_place)
.map(|n| format!("`{}`", n))
.unwrap_or_else(|| "the mutable reference".to_string()),
),
"&mut *".to_string(),
Applicability::MachineApplicable,
);
}
}
let opt_name =
self.describe_place_with_options(place.as_ref(), IncludingDowncast(true));
let note_msg = match opt_name {
Some(ref name) => format!("`{}`", name),
None => "value".to_owned(),
};
if self.suggest_borrow_fn_like(&mut err, ty, &move_site_vec, &note_msg) {
// Suppress the next suggestion since we don't want to put more bounds onto
// something that already has `Fn`-like bounds (or is a closure), so we can't
// restrict anyways.
} else {
self.suggest_adding_copy_bounds(&mut err, ty, span);
}
if needs_note {
let span = if let Some(local) = place.as_local() {
Some(self.body.local_decls[local].source_info.span)
} else {
None
};
self.note_type_does_not_implement_copy(&mut err, &note_msg, ty, span, partial_str);
}
if let UseSpans::FnSelfUse {
kind: CallKind::DerefCoercion { deref_target, deref_target_ty, .. },
..
} = use_spans
{
err.note(&format!(
"{} occurs due to deref coercion to `{}`",
desired_action.as_noun(),
deref_target_ty
));
// Check first whether the source is accessible (issue #87060)
if self.infcx.tcx.sess.source_map().span_to_snippet(deref_target).is_ok() {
err.span_note(deref_target, "deref defined here");
}
}
self.buffer_move_error(move_out_indices, (used_place, err));
}
}
fn suggest_borrow_fn_like(
&self,
err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
ty: Ty<'tcx>,
move_sites: &[MoveSite],
value_name: &str,
) -> bool {
let tcx = self.infcx.tcx;
// Find out if the predicates show that the type is a Fn or FnMut
let find_fn_kind_from_did = |predicates: &[(ty::Predicate<'tcx>, Span)], substs| {
predicates.iter().find_map(|(pred, _)| {
let pred = if let Some(substs) = substs {
EarlyBinder(*pred).subst(tcx, substs).kind().skip_binder()
} else {
pred.kind().skip_binder()
};
if let ty::PredicateKind::Trait(pred) = pred && pred.self_ty() == ty {
if Some(pred.def_id()) == tcx.lang_items().fn_trait() {
return Some(hir::Mutability::Not);
} else if Some(pred.def_id()) == tcx.lang_items().fn_mut_trait() {
return Some(hir::Mutability::Mut);
}
}
None
})
};
// If the type is opaque/param/closure, and it is Fn or FnMut, let's suggest (mutably)
// borrowing the type, since `&mut F: FnMut` iff `F: FnMut` and similarly for `Fn`.
// These types seem reasonably opaque enough that they could be substituted with their
// borrowed variants in a function body when we see a move error.
let borrow_level = match ty.kind() {
ty::Param(_) => find_fn_kind_from_did(
tcx.explicit_predicates_of(self.mir_def_id().to_def_id()).predicates,
None,
),
ty::Opaque(did, substs) => {
find_fn_kind_from_did(tcx.explicit_item_bounds(*did), Some(*substs))
}
ty::Closure(_, substs) => match substs.as_closure().kind() {
ty::ClosureKind::Fn => Some(hir::Mutability::Not),
ty::ClosureKind::FnMut => Some(hir::Mutability::Mut),
_ => None,
},
_ => None,
};
let Some(borrow_level) = borrow_level else { return false; };
let sugg = move_sites
.iter()
.map(|move_site| {
let move_out = self.move_data.moves[(*move_site).moi];
let moved_place = &self.move_data.move_paths[move_out.path].place;
let move_spans = self.move_spans(moved_place.as_ref(), move_out.source);
let move_span = move_spans.args_or_use();
let suggestion = if borrow_level == hir::Mutability::Mut {
"&mut ".to_string()
} else {
"&".to_string()
};
(move_span.shrink_to_lo(), suggestion)
})
.collect();
err.multipart_suggestion_verbose(
&format!(
"consider {}borrowing {value_name}",
if borrow_level == hir::Mutability::Mut { "mutably " } else { "" }
),
sugg,
Applicability::MaybeIncorrect,
);
true
}
fn suggest_adding_copy_bounds(
&self,
err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
ty: Ty<'tcx>,
span: Span,
) {
let tcx = self.infcx.tcx;
let generics = tcx.generics_of(self.mir_def_id());
let Some(hir_generics) = tcx
.typeck_root_def_id(self.mir_def_id().to_def_id())
.as_local()
.and_then(|def_id| tcx.hir().get_generics(def_id))
else { return; };
// Try to find predicates on *generic params* that would allow copying `ty`
let predicates: Result<Vec<_>, _> = tcx.infer_ctxt().enter(|infcx| {
let mut fulfill_cx = <dyn rustc_infer::traits::TraitEngine<'_>>::new(infcx.tcx);
let copy_did = infcx.tcx.lang_items().copy_trait().unwrap();
let cause = ObligationCause::new(
span,
self.mir_hir_id(),
rustc_infer::traits::ObligationCauseCode::MiscObligation,
);
fulfill_cx.register_bound(
&infcx,
self.param_env,
// Erase any region vids from the type, which may not be resolved
infcx.tcx.erase_regions(ty),
copy_did,
cause,
);
// Select all, including ambiguous predicates
let errors = fulfill_cx.select_all_or_error(&infcx);
// Only emit suggestion if all required predicates are on generic
errors
.into_iter()
.map(|err| match err.obligation.predicate.kind().skip_binder() {
PredicateKind::Trait(predicate) => match predicate.self_ty().kind() {
ty::Param(param_ty) => Ok((
generics.type_param(param_ty, tcx),
predicate.trait_ref.print_only_trait_path().to_string(),
)),
_ => Err(()),
},
_ => Err(()),
})
.collect()
});
if let Ok(predicates) = predicates {
suggest_constraining_type_params(
tcx,
hir_generics,
err,
predicates
.iter()
.map(|(param, constraint)| (param.name.as_str(), &**constraint, None)),
);
}
}
pub(crate) fn report_move_out_while_borrowed(
&mut self,
location: Location,
(place, span): (Place<'tcx>, Span),
borrow: &BorrowData<'tcx>,
) {
debug!(
"report_move_out_while_borrowed: location={:?} place={:?} span={:?} borrow={:?}",
location, place, span, borrow
);
let value_msg = self.describe_any_place(place.as_ref());
let borrow_msg = self.describe_any_place(borrow.borrowed_place.as_ref());
let borrow_spans = self.retrieve_borrow_spans(borrow);
let borrow_span = borrow_spans.args_or_use();
let move_spans = self.move_spans(place.as_ref(), location);
let span = move_spans.args_or_use();
let mut err =
self.cannot_move_when_borrowed(span, &self.describe_any_place(place.as_ref()));
err.span_label(borrow_span, format!("borrow of {} occurs here", borrow_msg));
err.span_label(span, format!("move out of {} occurs here", value_msg));
borrow_spans.var_span_label_path_only(
&mut err,
format!("borrow occurs due to use{}", borrow_spans.describe()),
);
move_spans.var_span_label(
&mut err,
format!("move occurs due to use{}", move_spans.describe()),
"moved",
);
self.explain_why_borrow_contains_point(location, borrow, None)
.add_explanation_to_diagnostic(
self.infcx.tcx,
&self.body,
&self.local_names,
&mut err,
"",
Some(borrow_span),
None,
);
self.buffer_error(err);
}
pub(crate) fn report_use_while_mutably_borrowed(
&mut self,
location: Location,
(place, _span): (Place<'tcx>, Span),
borrow: &BorrowData<'tcx>,
) -> DiagnosticBuilder<'cx, ErrorGuaranteed> {
let borrow_spans = self.retrieve_borrow_spans(borrow);
let borrow_span = borrow_spans.args_or_use();
// Conflicting borrows are reported separately, so only check for move
// captures.
let use_spans = self.move_spans(place.as_ref(), location);
let span = use_spans.var_or_use();
// If the attempted use is in a closure then we do not care about the path span of the place we are currently trying to use
// we call `var_span_label` on `borrow_spans` to annotate if the existing borrow was in a closure
let mut err = self.cannot_use_when_mutably_borrowed(
span,
&self.describe_any_place(place.as_ref()),
borrow_span,
&self.describe_any_place(borrow.borrowed_place.as_ref()),
);
borrow_spans.var_span_label(
&mut err,
{
let place = &borrow.borrowed_place;
let desc_place = self.describe_any_place(place.as_ref());
format!("borrow occurs due to use of {}{}", desc_place, borrow_spans.describe())
},
"mutable",
);
self.explain_why_borrow_contains_point(location, borrow, None)
.add_explanation_to_diagnostic(
self.infcx.tcx,
&self.body,
&self.local_names,
&mut err,
"",
None,
None,
);
err
}
pub(crate) fn report_conflicting_borrow(
&mut self,
location: Location,
(place, span): (Place<'tcx>, Span),
gen_borrow_kind: BorrowKind,
issued_borrow: &BorrowData<'tcx>,
) -> DiagnosticBuilder<'cx, ErrorGuaranteed> {
let issued_spans = self.retrieve_borrow_spans(issued_borrow);
let issued_span = issued_spans.args_or_use();
let borrow_spans = self.borrow_spans(span, location);
let span = borrow_spans.args_or_use();
let container_name = if issued_spans.for_generator() || borrow_spans.for_generator() {
"generator"
} else {
"closure"
};
let (desc_place, msg_place, msg_borrow, union_type_name) =
self.describe_place_for_conflicting_borrow(place, issued_borrow.borrowed_place);
let explanation = self.explain_why_borrow_contains_point(location, issued_borrow, None);
let second_borrow_desc = if explanation.is_explained() { "second " } else { "" };
// FIXME: supply non-"" `opt_via` when appropriate
let first_borrow_desc;
let mut err = match (gen_borrow_kind, issued_borrow.kind) {
(BorrowKind::Shared, BorrowKind::Mut { .. }) => {
first_borrow_desc = "mutable ";
self.cannot_reborrow_already_borrowed(
span,
&desc_place,
&msg_place,
"immutable",
issued_span,
"it",
"mutable",
&msg_borrow,
None,
)
}
(BorrowKind::Mut { .. }, BorrowKind::Shared) => {
first_borrow_desc = "immutable ";
self.cannot_reborrow_already_borrowed(
span,
&desc_place,
&msg_place,
"mutable",
issued_span,
"it",
"immutable",
&msg_borrow,
None,
)
}
(BorrowKind::Mut { .. }, BorrowKind::Mut { .. }) => {
first_borrow_desc = "first ";
let mut err = self.cannot_mutably_borrow_multiply(
span,
&desc_place,
&msg_place,
issued_span,
&msg_borrow,
None,
);
self.suggest_split_at_mut_if_applicable(
&mut err,
place,
issued_borrow.borrowed_place,
);
err
}
(BorrowKind::Unique, BorrowKind::Unique) => {
first_borrow_desc = "first ";
self.cannot_uniquely_borrow_by_two_closures(span, &desc_place, issued_span, None)
}
(BorrowKind::Mut { .. } | BorrowKind::Unique, BorrowKind::Shallow) => {
if let Some(immutable_section_description) =
self.classify_immutable_section(issued_borrow.assigned_place)
{
let mut err = self.cannot_mutate_in_immutable_section(
span,
issued_span,
&desc_place,
immutable_section_description,
"mutably borrow",
);
borrow_spans.var_span_label(
&mut err,
format!(
"borrow occurs due to use of {}{}",
desc_place,
borrow_spans.describe(),
),
"immutable",
);
return err;
} else {
first_borrow_desc = "immutable ";
self.cannot_reborrow_already_borrowed(
span,
&desc_place,
&msg_place,
"mutable",
issued_span,
"it",
"immutable",
&msg_borrow,
None,
)
}
}
(BorrowKind::Unique, _) => {
first_borrow_desc = "first ";
self.cannot_uniquely_borrow_by_one_closure(
span,
container_name,
&desc_place,
"",
issued_span,
"it",
"",
None,
)
}
(BorrowKind::Shared, BorrowKind::Unique) => {
first_borrow_desc = "first ";
self.cannot_reborrow_already_uniquely_borrowed(
span,
container_name,
&desc_place,
"",
"immutable",
issued_span,
"",
None,
second_borrow_desc,
)
}
(BorrowKind::Mut { .. }, BorrowKind::Unique) => {
first_borrow_desc = "first ";
self.cannot_reborrow_already_uniquely_borrowed(
span,
container_name,
&desc_place,
"",
"mutable",
issued_span,
"",
None,
second_borrow_desc,
)
}
(BorrowKind::Shared, BorrowKind::Shared | BorrowKind::Shallow)
| (
BorrowKind::Shallow,
BorrowKind::Mut { .. }
| BorrowKind::Unique
| BorrowKind::Shared
| BorrowKind::Shallow,
) => unreachable!(),
};
if issued_spans == borrow_spans {
borrow_spans.var_span_label(
&mut err,
format!("borrows occur due to use of {}{}", desc_place, borrow_spans.describe(),),
gen_borrow_kind.describe_mutability(),
);
} else {
let borrow_place = &issued_borrow.borrowed_place;
let borrow_place_desc = self.describe_any_place(borrow_place.as_ref());
issued_spans.var_span_label(
&mut err,
format!(
"first borrow occurs due to use of {}{}",
borrow_place_desc,
issued_spans.describe(),
),
issued_borrow.kind.describe_mutability(),
);
borrow_spans.var_span_label(
&mut err,
format!(
"second borrow occurs due to use of {}{}",
desc_place,
borrow_spans.describe(),
),
gen_borrow_kind.describe_mutability(),
);
}
if union_type_name != "" {
err.note(&format!(
"{} is a field of the union `{}`, so it overlaps the field {}",
msg_place, union_type_name, msg_borrow,
));
}
explanation.add_explanation_to_diagnostic(
self.infcx.tcx,
&self.body,
&self.local_names,
&mut err,
first_borrow_desc,
None,
Some((issued_span, span)),
);
self.suggest_using_local_if_applicable(&mut err, location, issued_borrow, explanation);
err
}
#[instrument(level = "debug", skip(self, err))]
fn suggest_using_local_if_applicable(
&self,
err: &mut Diagnostic,
location: Location,
issued_borrow: &BorrowData<'tcx>,
explanation: BorrowExplanation,
) {
let used_in_call = matches!(
explanation,
BorrowExplanation::UsedLater(LaterUseKind::Call | LaterUseKind::Other, _call_span, _)
);
if !used_in_call {
debug!("not later used in call");
return;
}
let use_span =
if let BorrowExplanation::UsedLater(LaterUseKind::Other, use_span, _) = explanation {
Some(use_span)
} else {
None
};
let outer_call_loc =
if let TwoPhaseActivation::ActivatedAt(loc) = issued_borrow.activation_location {
loc
} else {
issued_borrow.reserve_location
};
let outer_call_stmt = self.body.stmt_at(outer_call_loc);
let inner_param_location = location;
let Some(inner_param_stmt) = self.body.stmt_at(inner_param_location).left() else {
debug!("`inner_param_location` {:?} is not for a statement", inner_param_location);
return;
};
let Some(&inner_param) = inner_param_stmt.kind.as_assign().map(|(p, _)| p) else {
debug!(
"`inner_param_location` {:?} is not for an assignment: {:?}",
inner_param_location, inner_param_stmt
);
return;
};
let inner_param_uses = find_all_local_uses::find(self.body, inner_param.local);
let Some((inner_call_loc, inner_call_term)) = inner_param_uses.into_iter().find_map(|loc| {
let Either::Right(term) = self.body.stmt_at(loc) else {
debug!("{:?} is a statement, so it can't be a call", loc);
return None;
};
let TerminatorKind::Call { args, .. } = &term.kind else {
debug!("not a call: {:?}", term);
return None;
};
debug!("checking call args for uses of inner_param: {:?}", args);
if args.contains(&Operand::Move(inner_param)) {
Some((loc, term))
} else {
None
}
}) else {
debug!("no uses of inner_param found as a by-move call arg");
return;
};
debug!("===> outer_call_loc = {:?}, inner_call_loc = {:?}", outer_call_loc, inner_call_loc);
let inner_call_span = inner_call_term.source_info.span;
let outer_call_span = match use_span {
Some(span) => span,
None => outer_call_stmt.either(|s| s.source_info, |t| t.source_info).span,
};
if outer_call_span == inner_call_span || !outer_call_span.contains(inner_call_span) {
// FIXME: This stops the suggestion in some cases where it should be emitted.
// Fix the spans for those cases so it's emitted correctly.
debug!(
"outer span {:?} does not strictly contain inner span {:?}",
outer_call_span, inner_call_span
);
return;
}
err.span_help(
inner_call_span,
&format!(
"try adding a local storing this{}...",
if use_span.is_some() { "" } else { " argument" }
),
);
err.span_help(
outer_call_span,
&format!(
"...and then using that local {}",
if use_span.is_some() { "here" } else { "as the argument to this call" }
),
);
}
fn suggest_split_at_mut_if_applicable(
&self,
err: &mut Diagnostic,
place: Place<'tcx>,
borrowed_place: Place<'tcx>,
) {
if let ([ProjectionElem::Index(_)], [ProjectionElem::Index(_)]) =
(&place.projection[..], &borrowed_place.projection[..])
{
err.help(
"consider using `.split_at_mut(position)` or similar method to obtain \
two mutable non-overlapping sub-slices",
);
}
}
/// Returns the description of the root place for a conflicting borrow and the full
/// descriptions of the places that caused the conflict.
///
/// In the simplest case, where there are no unions involved, if a mutable borrow of `x` is
/// attempted while a shared borrow is live, then this function will return:
/// ```
/// ("x", "", "")
/// # ;
/// ```
/// In the simple union case, if a mutable borrow of a union field `x.z` is attempted while
/// a shared borrow of another field `x.y`, then this function will return:
/// ```
/// ("x", "x.z", "x.y")
/// # ;
/// ```
/// In the more complex union case, where the union is a field of a struct, then if a mutable
/// borrow of a union field in a struct `x.u.z` is attempted while a shared borrow of
/// another field `x.u.y`, then this function will return:
/// ```
/// ("x.u", "x.u.z", "x.u.y")
/// # ;
/// ```
/// This is used when creating error messages like below:
///
/// ```text
/// cannot borrow `a.u` (via `a.u.z.c`) as immutable because it is also borrowed as
/// mutable (via `a.u.s.b`) [E0502]
/// ```
pub(crate) fn describe_place_for_conflicting_borrow(
&self,
first_borrowed_place: Place<'tcx>,
second_borrowed_place: Place<'tcx>,
) -> (String, String, String, String) {
// Define a small closure that we can use to check if the type of a place
// is a union.
let union_ty = |place_base| {
// Need to use fn call syntax `PlaceRef::ty` to determine the type of `place_base`;
// using a type annotation in the closure argument instead leads to a lifetime error.
let ty = PlaceRef::ty(&place_base, self.body, self.infcx.tcx).ty;
ty.ty_adt_def().filter(|adt| adt.is_union()).map(|_| ty)
};
// Start with an empty tuple, so we can use the functions on `Option` to reduce some
// code duplication (particularly around returning an empty description in the failure
// case).
Some(())
.filter(|_| {
// If we have a conflicting borrow of the same place, then we don't want to add
// an extraneous "via x.y" to our diagnostics, so filter out this case.
first_borrowed_place != second_borrowed_place
})
.and_then(|_| {
// We're going to want to traverse the first borrowed place to see if we can find
// field access to a union. If we find that, then we will keep the place of the
// union being accessed and the field that was being accessed so we can check the
// second borrowed place for the same union and an access to a different field.
for (place_base, elem) in first_borrowed_place.iter_projections().rev() {
match elem {
ProjectionElem::Field(field, _) if union_ty(place_base).is_some() => {
return Some((place_base, field));
}
_ => {}
}
}
None
})
.and_then(|(target_base, target_field)| {
// With the place of a union and a field access into it, we traverse the second
// borrowed place and look for an access to a different field of the same union.
for (place_base, elem) in second_borrowed_place.iter_projections().rev() {
if let ProjectionElem::Field(field, _) = elem {
if let Some(union_ty) = union_ty(place_base) {
if field != target_field && place_base == target_base {
return Some((
self.describe_any_place(place_base),
self.describe_any_place(first_borrowed_place.as_ref()),
self.describe_any_place(second_borrowed_place.as_ref()),
union_ty.to_string(),
));
}
}
}
}
None
})
.unwrap_or_else(|| {
// If we didn't find a field access into a union, or both places match, then
// only return the description of the first place.
(
self.describe_any_place(first_borrowed_place.as_ref()),
"".to_string(),
"".to_string(),
"".to_string(),
)
})
}
/// Reports StorageDeadOrDrop of `place` conflicts with `borrow`.
///
/// This means that some data referenced by `borrow` needs to live
/// past the point where the StorageDeadOrDrop of `place` occurs.
/// This is usually interpreted as meaning that `place` has too
/// short a lifetime. (But sometimes it is more useful to report
/// it as a more direct conflict between the execution of a
/// `Drop::drop` with an aliasing borrow.)
pub(crate) fn report_borrowed_value_does_not_live_long_enough(
&mut self,
location: Location,
borrow: &BorrowData<'tcx>,
place_span: (Place<'tcx>, Span),
kind: Option<WriteKind>,
) {
debug!(
"report_borrowed_value_does_not_live_long_enough(\
{:?}, {:?}, {:?}, {:?}\
)",
location, borrow, place_span, kind
);
let drop_span = place_span.1;
let root_place =
self.prefixes(borrow.borrowed_place.as_ref(), PrefixSet::All).last().unwrap();
let borrow_spans = self.retrieve_borrow_spans(borrow);
let borrow_span = borrow_spans.var_or_use_path_span();
assert!(root_place.projection.is_empty());
let proper_span = self.body.local_decls[root_place.local].source_info.span;
let root_place_projection = self.infcx.tcx.intern_place_elems(root_place.projection);
if self.access_place_error_reported.contains(&(
Place { local: root_place.local, projection: root_place_projection },
borrow_span,
)) {
debug!(
"suppressing access_place error when borrow doesn't live long enough for {:?}",
borrow_span
);
return;
}
self.access_place_error_reported.insert((
Place { local: root_place.local, projection: root_place_projection },
borrow_span,
));
let borrowed_local = borrow.borrowed_place.local;
if self.body.local_decls[borrowed_local].is_ref_to_thread_local() {
let err =
self.report_thread_local_value_does_not_live_long_enough(drop_span, borrow_span);
self.buffer_error(err);
return;
}
if let StorageDeadOrDrop::Destructor(dropped_ty) =
self.classify_drop_access_kind(borrow.borrowed_place.as_ref())
{
// If a borrow of path `B` conflicts with drop of `D` (and
// we're not in the uninteresting case where `B` is a
// prefix of `D`), then report this as a more interesting
// destructor conflict.
if !borrow.borrowed_place.as_ref().is_prefix_of(place_span.0.as_ref()) {
self.report_borrow_conflicts_with_destructor(
location, borrow, place_span, kind, dropped_ty,
);
return;
}
}
let place_desc = self.describe_place(borrow.borrowed_place.as_ref());
let kind_place = kind.filter(|_| place_desc.is_some()).map(|k| (k, place_span.0));
let explanation = self.explain_why_borrow_contains_point(location, &borrow, kind_place);
debug!(
"report_borrowed_value_does_not_live_long_enough(place_desc: {:?}, explanation: {:?})",
place_desc, explanation
);
let err = match (place_desc, explanation) {
// If the outlives constraint comes from inside the closure,
// for example:
//
// let x = 0;
// let y = &x;
// Box::new(|| y) as Box<Fn() -> &'static i32>
//
// then just use the normal error. The closure isn't escaping
// and `move` will not help here.
(
Some(ref name),
BorrowExplanation::MustBeValidFor {
category:
category @ (ConstraintCategory::Return(_)
| ConstraintCategory::CallArgument
| ConstraintCategory::OpaqueType),
from_closure: false,
ref region_name,
span,
..
},
) if borrow_spans.for_generator() | borrow_spans.for_closure() => self
.report_escaping_closure_capture(
borrow_spans,
borrow_span,
region_name,
category,
span,
&format!("`{}`", name),
),
(
ref name,
BorrowExplanation::MustBeValidFor {
category: ConstraintCategory::Assignment,
from_closure: false,
region_name:
RegionName {
source:
RegionNameSource::AnonRegionFromUpvar(upvar_span, ref upvar_name),
..
},
span,
..
},
) => self.report_escaping_data(borrow_span, name, upvar_span, upvar_name, span),
(Some(name), explanation) => self.report_local_value_does_not_live_long_enough(
location,
&name,
&borrow,
drop_span,
borrow_spans,
explanation,
),
(None, explanation) => self.report_temporary_value_does_not_live_long_enough(
location,
&borrow,
drop_span,
borrow_spans,
proper_span,
explanation,
),
};
self.buffer_error(err);
}
fn report_local_value_does_not_live_long_enough(
&mut self,
location: Location,
name: &str,
borrow: &BorrowData<'tcx>,
drop_span: Span,
borrow_spans: UseSpans<'tcx>,
explanation: BorrowExplanation,
) -> DiagnosticBuilder<'cx, ErrorGuaranteed> {
debug!(
"report_local_value_does_not_live_long_enough(\
{:?}, {:?}, {:?}, {:?}, {:?}\
)",
location, name, borrow, drop_span, borrow_spans
);
let borrow_span = borrow_spans.var_or_use_path_span();
if let BorrowExplanation::MustBeValidFor {
category,
span,
ref opt_place_desc,
from_closure: false,
..
} = explanation
{
if let Some(diag) = self.try_report_cannot_return_reference_to_local(
borrow,
borrow_span,
span,
category,
opt_place_desc.as_ref(),
) {
return diag;
}
}
let mut err = self.path_does_not_live_long_enough(borrow_span, &format!("`{}`", name));
if let Some(annotation) = self.annotate_argument_and_return_for_borrow(borrow) {
let region_name = annotation.emit(self, &mut err);
err.span_label(
borrow_span,
format!("`{}` would have to be valid for `{}`...", name, region_name),
);
let fn_hir_id = self.mir_hir_id();
err.span_label(
drop_span,
format!(
"...but `{}` will be dropped here, when the {} returns",
name,
self.infcx
.tcx
.hir()
.opt_name(fn_hir_id)
.map(|name| format!("function `{}`", name))
.unwrap_or_else(|| {
match &self
.infcx
.tcx
.typeck(self.mir_def_id())
.node_type(fn_hir_id)
.kind()
{
ty::Closure(..) => "enclosing closure",
ty::Generator(..) => "enclosing generator",
kind => bug!("expected closure or generator, found {:?}", kind),
}
.to_string()
})
),
);
err.note(
"functions cannot return a borrow to data owned within the function's scope, \
functions can only return borrows to data passed as arguments",
);
err.note(
"to learn more, visit <https://doc.rust-lang.org/book/ch04-02-\
references-and-borrowing.html#dangling-references>",
);
if let BorrowExplanation::MustBeValidFor { .. } = explanation {
} else {
explanation.add_explanation_to_diagnostic(
self.infcx.tcx,
&self.body,
&self.local_names,
&mut err,
"",
None,
None,
);
}
} else {
err.span_label(borrow_span, "borrowed value does not live long enough");
err.span_label(drop_span, format!("`{}` dropped here while still borrowed", name));
let within = if borrow_spans.for_generator() { " by generator" } else { "" };
borrow_spans.args_span_label(&mut err, format!("value captured here{}", within));
explanation.add_explanation_to_diagnostic(
self.infcx.tcx,
&self.body,
&self.local_names,
&mut err,
"",
None,
None,
);
}
err
}
fn report_borrow_conflicts_with_destructor(
&mut self,
location: Location,
borrow: &BorrowData<'tcx>,
(place, drop_span): (Place<'tcx>, Span),
kind: Option<WriteKind>,
dropped_ty: Ty<'tcx>,
) {
debug!(
"report_borrow_conflicts_with_destructor(\
{:?}, {:?}, ({:?}, {:?}), {:?}\
)",
location, borrow, place, drop_span, kind,
);
let borrow_spans = self.retrieve_borrow_spans(borrow);
let borrow_span = borrow_spans.var_or_use();
let mut err = self.cannot_borrow_across_destructor(borrow_span);
let what_was_dropped = match self.describe_place(place.as_ref()) {
Some(name) => format!("`{}`", name),
None => String::from("temporary value"),
};
let label = match self.describe_place(borrow.borrowed_place.as_ref()) {
Some(borrowed) => format!(
"here, drop of {D} needs exclusive access to `{B}`, \
because the type `{T}` implements the `Drop` trait",
D = what_was_dropped,
T = dropped_ty,
B = borrowed
),
None => format!(
"here is drop of {D}; whose type `{T}` implements the `Drop` trait",
D = what_was_dropped,
T = dropped_ty
),
};
err.span_label(drop_span, label);
// Only give this note and suggestion if they could be relevant.
let explanation =
self.explain_why_borrow_contains_point(location, borrow, kind.map(|k| (k, place)));
match explanation {
BorrowExplanation::UsedLater { .. }
| BorrowExplanation::UsedLaterWhenDropped { .. } => {
err.note("consider using a `let` binding to create a longer lived value");
}
_ => {}
}
explanation.add_explanation_to_diagnostic(
self.infcx.tcx,
&self.body,
&self.local_names,
&mut err,
"",
None,
None,
);
self.buffer_error(err);
}
fn report_thread_local_value_does_not_live_long_enough(
&mut self,
drop_span: Span,
borrow_span: Span,
) -> DiagnosticBuilder<'cx, ErrorGuaranteed> {
debug!(
"report_thread_local_value_does_not_live_long_enough(\
{:?}, {:?}\
)",
drop_span, borrow_span
);
let mut err = self.thread_local_value_does_not_live_long_enough(borrow_span);
err.span_label(
borrow_span,
"thread-local variables cannot be borrowed beyond the end of the function",
);
err.span_label(drop_span, "end of enclosing function is here");
err
}
fn report_temporary_value_does_not_live_long_enough(
&mut self,
location: Location,
borrow: &BorrowData<'tcx>,
drop_span: Span,
borrow_spans: UseSpans<'tcx>,
proper_span: Span,
explanation: BorrowExplanation,
) -> DiagnosticBuilder<'cx, ErrorGuaranteed> {
debug!(
"report_temporary_value_does_not_live_long_enough(\
{:?}, {:?}, {:?}, {:?}\
)",
location, borrow, drop_span, proper_span
);
if let BorrowExplanation::MustBeValidFor { category, span, from_closure: false, .. } =
explanation
{
if let Some(diag) = self.try_report_cannot_return_reference_to_local(
borrow,
proper_span,
span,
category,
None,
) {
return diag;
}
}
let mut err = self.temporary_value_borrowed_for_too_long(proper_span);
err.span_label(proper_span, "creates a temporary which is freed while still in use");
err.span_label(drop_span, "temporary value is freed at the end of this statement");
match explanation {
BorrowExplanation::UsedLater(..)
| BorrowExplanation::UsedLaterInLoop(..)
| BorrowExplanation::UsedLaterWhenDropped { .. } => {
// Only give this note and suggestion if it could be relevant.
err.note("consider using a `let` binding to create a longer lived value");
}
_ => {}
}
explanation.add_explanation_to_diagnostic(
self.infcx.tcx,
&self.body,
&self.local_names,
&mut err,
"",
None,
None,
);
let within = if borrow_spans.for_generator() { " by generator" } else { "" };
borrow_spans.args_span_label(&mut err, format!("value captured here{}", within));
err
}
fn try_report_cannot_return_reference_to_local(
&self,
borrow: &BorrowData<'tcx>,
borrow_span: Span,
return_span: Span,
category: ConstraintCategory,
opt_place_desc: Option<&String>,
) -> Option<DiagnosticBuilder<'cx, ErrorGuaranteed>> {
let return_kind = match category {
ConstraintCategory::Return(_) => "return",
ConstraintCategory::Yield => "yield",
_ => return None,
};
// FIXME use a better heuristic than Spans
let reference_desc = if return_span == self.body.source_info(borrow.reserve_location).span {
"reference to"
} else {
"value referencing"
};
let (place_desc, note) = if let Some(place_desc) = opt_place_desc {
let local_kind = if let Some(local) = borrow.borrowed_place.as_local() {
match self.body.local_kind(local) {
LocalKind::ReturnPointer | LocalKind::Temp => {
bug!("temporary or return pointer with a name")
}
LocalKind::Var => "local variable ",
LocalKind::Arg
if !self.upvars.is_empty() && local == ty::CAPTURE_STRUCT_LOCAL =>
{
"variable captured by `move` "
}
LocalKind::Arg => "function parameter ",
}
} else {
"local data "
};
(
format!("{}`{}`", local_kind, place_desc),
format!("`{}` is borrowed here", place_desc),
)
} else {
let root_place =
self.prefixes(borrow.borrowed_place.as_ref(), PrefixSet::All).last().unwrap();
let local = root_place.local;
match self.body.local_kind(local) {
LocalKind::ReturnPointer | LocalKind::Temp => {
("temporary value".to_string(), "temporary value created here".to_string())
}
LocalKind::Arg => (
"function parameter".to_string(),
"function parameter borrowed here".to_string(),
),
LocalKind::Var => {
("local binding".to_string(), "local binding introduced here".to_string())
}
}
};
let mut err = self.cannot_return_reference_to_local(
return_span,
return_kind,
reference_desc,
&place_desc,
);
if return_span != borrow_span {
err.span_label(borrow_span, note);
let tcx = self.infcx.tcx;
let ty_params = ty::List::empty();
let return_ty = self.regioncx.universal_regions().unnormalized_output_ty;
let return_ty = tcx.erase_regions(return_ty);
// to avoid panics
if let Some(iter_trait) = tcx.get_diagnostic_item(sym::Iterator) {
if self
.infcx
.type_implements_trait(iter_trait, return_ty, ty_params, self.param_env)
.must_apply_modulo_regions()
{
if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(return_span) {
err.span_suggestion_hidden(
return_span,
"use `.collect()` to allocate the iterator",
format!("{snippet}.collect::<Vec<_>>()"),
Applicability::MaybeIncorrect,
);
}
}
}
}
Some(err)
}
fn report_escaping_closure_capture(
&mut self,
use_span: UseSpans<'tcx>,
var_span: Span,
fr_name: &RegionName,
category: ConstraintCategory,
constraint_span: Span,
captured_var: &str,
) -> DiagnosticBuilder<'cx, ErrorGuaranteed> {
let tcx = self.infcx.tcx;
let args_span = use_span.args_or_use();
let (sugg_span, suggestion) = match tcx.sess.source_map().span_to_snippet(args_span) {
Ok(string) => {
if string.starts_with("async ") {
let pos = args_span.lo() + BytePos(6);
(args_span.with_lo(pos).with_hi(pos), "move ".to_string())
} else if string.starts_with("async|") {
let pos = args_span.lo() + BytePos(5);
(args_span.with_lo(pos).with_hi(pos), " move".to_string())
} else {
(args_span.shrink_to_lo(), "move ".to_string())
}
}
Err(_) => (args_span, "move |<args>| <body>".to_string()),
};
let kind = match use_span.generator_kind() {
Some(generator_kind) => match generator_kind {
GeneratorKind::Async(async_kind) => match async_kind {
AsyncGeneratorKind::Block => "async block",
AsyncGeneratorKind::Closure => "async closure",
_ => bug!("async block/closure expected, but async function found."),
},
GeneratorKind::Gen => "generator",
},
None => "closure",
};
let mut err =
self.cannot_capture_in_long_lived_closure(args_span, kind, captured_var, var_span);
err.span_suggestion_verbose(
sugg_span,
&format!(
"to force the {} to take ownership of {} (and any \
other referenced variables), use the `move` keyword",
kind, captured_var
),
suggestion,
Applicability::MachineApplicable,
);
match category {
ConstraintCategory::Return(_) | ConstraintCategory::OpaqueType => {
let msg = format!("{} is returned here", kind);
err.span_note(constraint_span, &msg);
}
ConstraintCategory::CallArgument => {
fr_name.highlight_region_name(&mut err);
if matches!(use_span.generator_kind(), Some(GeneratorKind::Async(_))) {
err.note(
"async blocks are not executed immediately and must either take a \
reference or ownership of outside variables they use",
);
} else {
let msg = format!("function requires argument type to outlive `{}`", fr_name);
err.span_note(constraint_span, &msg);
}
}
_ => bug!(
"report_escaping_closure_capture called with unexpected constraint \
category: `{:?}`",
category
),
}
err
}
fn report_escaping_data(
&mut self,
borrow_span: Span,
name: &Option<String>,
upvar_span: Span,
upvar_name: &str,
escape_span: Span,
) -> DiagnosticBuilder<'cx, ErrorGuaranteed> {
let tcx = self.infcx.tcx;
let (_, escapes_from) = tcx.article_and_description(self.mir_def_id().to_def_id());
let mut err =
borrowck_errors::borrowed_data_escapes_closure(tcx, escape_span, escapes_from);
err.span_label(
upvar_span,
format!("`{}` declared here, outside of the {} body", upvar_name, escapes_from),
);
err.span_label(borrow_span, format!("borrow is only valid in the {} body", escapes_from));
if let Some(name) = name {
err.span_label(
escape_span,
format!("reference to `{}` escapes the {} body here", name, escapes_from),
);
} else {
err.span_label(
escape_span,
format!("reference escapes the {} body here", escapes_from),
);
}
err
}
fn get_moved_indexes(
&mut self,
location: Location,
mpi: MovePathIndex,
) -> (Vec<MoveSite>, Vec<Location>) {
fn predecessor_locations<'a>(
body: &'a mir::Body<'_>,
location: Location,
) -> impl Iterator<Item = Location> + 'a {
if location.statement_index == 0 {
let predecessors = body.predecessors()[location.block].to_vec();
Either::Left(predecessors.into_iter().map(move |bb| body.terminator_loc(bb)))
} else {
Either::Right(std::iter::once(Location {
statement_index: location.statement_index - 1,
..location
}))
}
}
let mut mpis = vec![mpi];
let move_paths = &self.move_data.move_paths;
mpis.extend(move_paths[mpi].parents(move_paths).map(|(mpi, _)| mpi));
let mut stack = Vec::new();
let mut back_edge_stack = Vec::new();
predecessor_locations(self.body, location).for_each(|predecessor| {
if location.dominates(predecessor, &self.dominators) {
back_edge_stack.push(predecessor)
} else {
stack.push(predecessor);
}
});
let mut reached_start = false;
/* Check if the mpi is initialized as an argument */
let mut is_argument = false;
for arg in self.body.args_iter() {
let path = self.move_data.rev_lookup.find_local(arg);
if mpis.contains(&path) {
is_argument = true;
}
}
let mut visited = FxHashSet::default();
let mut move_locations = FxHashSet::default();
let mut reinits = vec![];
let mut result = vec![];
let mut dfs_iter = |result: &mut Vec<MoveSite>, location: Location, is_back_edge: bool| {
debug!(
"report_use_of_moved_or_uninitialized: (current_location={:?}, back_edge={})",
location, is_back_edge
);
if !visited.insert(location) {
return true;
}
// check for moves
let stmt_kind =
self.body[location.block].statements.get(location.statement_index).map(|s| &s.kind);
if let Some(StatementKind::StorageDead(..)) = stmt_kind {
// this analysis only tries to find moves explicitly
// written by the user, so we ignore the move-outs
// created by `StorageDead` and at the beginning
// of a function.
} else {
// If we are found a use of a.b.c which was in error, then we want to look for
// moves not only of a.b.c but also a.b and a.
//
// Note that the moves data already includes "parent" paths, so we don't have to
// worry about the other case: that is, if there is a move of a.b.c, it is already
// marked as a move of a.b and a as well, so we will generate the correct errors
// there.
for moi in &self.move_data.loc_map[location] {
debug!("report_use_of_moved_or_uninitialized: moi={:?}", moi);
let path = self.move_data.moves[*moi].path;
if mpis.contains(&path) {
debug!(
"report_use_of_moved_or_uninitialized: found {:?}",
move_paths[path].place
);
result.push(MoveSite { moi: *moi, traversed_back_edge: is_back_edge });
move_locations.insert(location);
// Strictly speaking, we could continue our DFS here. There may be
// other moves that can reach the point of error. But it is kind of
// confusing to highlight them.
//
// Example:
//
// ```
// let a = vec![];
// let b = a;
// let c = a;
// drop(a); // <-- current point of error
// ```
//
// Because we stop the DFS here, we only highlight `let c = a`,
// and not `let b = a`. We will of course also report an error at
// `let c = a` which highlights `let b = a` as the move.
return true;
}
}
}
// check for inits
let mut any_match = false;
for ii in &self.move_data.init_loc_map[location] {
let init = self.move_data.inits[*ii];
match init.kind {
InitKind::Deep | InitKind::NonPanicPathOnly => {
if mpis.contains(&init.path) {
any_match = true;
}
}
InitKind::Shallow => {
if mpi == init.path {
any_match = true;
}
}
}
}
if any_match {
reinits.push(location);
return true;
}
return false;
};
while let Some(location) = stack.pop() {
if dfs_iter(&mut result, location, false) {
continue;
}
let mut has_predecessor = false;
predecessor_locations(self.body, location).for_each(|predecessor| {
if location.dominates(predecessor, &self.dominators) {
back_edge_stack.push(predecessor)
} else {
stack.push(predecessor);
}
has_predecessor = true;
});
if !has_predecessor {
reached_start = true;
}
}
if (is_argument || !reached_start) && result.is_empty() {
/* Process back edges (moves in future loop iterations) only if
the move path is definitely initialized upon loop entry,
to avoid spurious "in previous iteration" errors.
During DFS, if there's a path from the error back to the start
of the function with no intervening init or move, then the
move path may be uninitialized at loop entry.
*/
while let Some(location) = back_edge_stack.pop() {
if dfs_iter(&mut result, location, true) {
continue;
}
predecessor_locations(self.body, location)
.for_each(|predecessor| back_edge_stack.push(predecessor));
}
}
// Check if we can reach these reinits from a move location.
let reinits_reachable = reinits
.into_iter()
.filter(|reinit| {
let mut visited = FxHashSet::default();
let mut stack = vec![*reinit];
while let Some(location) = stack.pop() {
if !visited.insert(location) {
continue;
}
if move_locations.contains(&location) {
return true;
}
stack.extend(predecessor_locations(self.body, location));
}
false
})
.collect::<Vec<Location>>();
(result, reinits_reachable)
}
pub(crate) fn report_illegal_mutation_of_borrowed(
&mut self,
location: Location,
(place, span): (Place<'tcx>, Span),
loan: &BorrowData<'tcx>,
) {
let loan_spans = self.retrieve_borrow_spans(loan);
let loan_span = loan_spans.args_or_use();
let descr_place = self.describe_any_place(place.as_ref());
if loan.kind == BorrowKind::Shallow {
if let Some(section) = self.classify_immutable_section(loan.assigned_place) {
let mut err = self.cannot_mutate_in_immutable_section(
span,
loan_span,
&descr_place,
section,
"assign",
);
loan_spans.var_span_label(
&mut err,
format!("borrow occurs due to use{}", loan_spans.describe()),
loan.kind.describe_mutability(),
);
self.buffer_error(err);
return;
}
}
let mut err = self.cannot_assign_to_borrowed(span, loan_span, &descr_place);
loan_spans.var_span_label(
&mut err,
format!("borrow occurs due to use{}", loan_spans.describe()),
loan.kind.describe_mutability(),
);
self.explain_why_borrow_contains_point(location, loan, None).add_explanation_to_diagnostic(
self.infcx.tcx,
&self.body,
&self.local_names,
&mut err,
"",
None,
None,
);
self.explain_deref_coercion(loan, &mut err);
self.buffer_error(err);
}
fn explain_deref_coercion(&mut self, loan: &BorrowData<'tcx>, err: &mut Diagnostic) {
let tcx = self.infcx.tcx;
if let (
Some(Terminator { kind: TerminatorKind::Call { from_hir_call: false, .. }, .. }),
Some((method_did, method_substs)),
) = (
&self.body[loan.reserve_location.block].terminator,
rustc_const_eval::util::find_self_call(
tcx,
self.body,
loan.assigned_place.local,
loan.reserve_location.block,
),
) {
if tcx.is_diagnostic_item(sym::deref_method, method_did) {
let deref_target =
tcx.get_diagnostic_item(sym::deref_target).and_then(|deref_target| {
Instance::resolve(tcx, self.param_env, deref_target, method_substs)
.transpose()
});
if let Some(Ok(instance)) = deref_target {
let deref_target_ty = instance.ty(tcx, self.param_env);
err.note(&format!(
"borrow occurs due to deref coercion to `{}`",
deref_target_ty
));
err.span_note(tcx.def_span(instance.def_id()), "deref defined here");
}
}
}
}
/// Reports an illegal reassignment; for example, an assignment to
/// (part of) a non-`mut` local that occurs potentially after that
/// local has already been initialized. `place` is the path being
/// assigned; `err_place` is a place providing a reason why
/// `place` is not mutable (e.g., the non-`mut` local `x` in an
/// assignment to `x.f`).
pub(crate) fn report_illegal_reassignment(
&mut self,
_location: Location,
(place, span): (Place<'tcx>, Span),
assigned_span: Span,
err_place: Place<'tcx>,
) {
let (from_arg, local_decl, local_name) = match err_place.as_local() {
Some(local) => (
self.body.local_kind(local) == LocalKind::Arg,
Some(&self.body.local_decls[local]),
self.local_names[local],
),
None => (false, None, None),
};
// If root local is initialized immediately (everything apart from let
// PATTERN;) then make the error refer to that local, rather than the
// place being assigned later.
let (place_description, assigned_span) = match local_decl {
Some(LocalDecl {
local_info:
Some(box LocalInfo::User(
ClearCrossCrate::Clear
| ClearCrossCrate::Set(BindingForm::Var(VarBindingForm {
opt_match_place: None,
..
})),
))
| Some(box LocalInfo::StaticRef { .. })
| None,
..
})
| None => (self.describe_any_place(place.as_ref()), assigned_span),
Some(decl) => (self.describe_any_place(err_place.as_ref()), decl.source_info.span),
};
let mut err = self.cannot_reassign_immutable(span, &place_description, from_arg);
let msg = if from_arg {
"cannot assign to immutable argument"
} else {
"cannot assign twice to immutable variable"
};
if span != assigned_span && !from_arg {
err.span_label(assigned_span, format!("first assignment to {}", place_description));
}
if let Some(decl) = local_decl
&& let Some(name) = local_name
&& decl.can_be_made_mutable()
{
err.span_suggestion(
decl.source_info.span,
"consider making this binding mutable",
format!("mut {}", name),
Applicability::MachineApplicable,
);
}
err.span_label(span, msg);
self.buffer_error(err);
}
fn classify_drop_access_kind(&self, place: PlaceRef<'tcx>) -> StorageDeadOrDrop<'tcx> {
let tcx = self.infcx.tcx;
let (kind, _place_ty) = place.projection.iter().fold(
(LocalStorageDead, PlaceTy::from_ty(self.body.local_decls[place.local].ty)),
|(kind, place_ty), &elem| {
(
match elem {
ProjectionElem::Deref => match kind {
StorageDeadOrDrop::LocalStorageDead
| StorageDeadOrDrop::BoxedStorageDead => {
assert!(
place_ty.ty.is_box(),
"Drop of value behind a reference or raw pointer"
);
StorageDeadOrDrop::BoxedStorageDead
}
StorageDeadOrDrop::Destructor(_) => kind,
},
ProjectionElem::Field(..) | ProjectionElem::Downcast(..) => {
match place_ty.ty.kind() {
ty::Adt(def, _) if def.has_dtor(tcx) => {
// Report the outermost adt with a destructor
match kind {
StorageDeadOrDrop::Destructor(_) => kind,
StorageDeadOrDrop::LocalStorageDead
| StorageDeadOrDrop::BoxedStorageDead => {
StorageDeadOrDrop::Destructor(place_ty.ty)
}
}
}
_ => kind,
}
}
ProjectionElem::ConstantIndex { .. }
| ProjectionElem::Subslice { .. }
| ProjectionElem::Index(_) => kind,
},
place_ty.projection_ty(tcx, elem),
)
},
);
kind
}
/// Describe the reason for the fake borrow that was assigned to `place`.
fn classify_immutable_section(&self, place: Place<'tcx>) -> Option<&'static str> {
use rustc_middle::mir::visit::Visitor;
struct FakeReadCauseFinder<'tcx> {
place: Place<'tcx>,
cause: Option<FakeReadCause>,
}
impl<'tcx> Visitor<'tcx> for FakeReadCauseFinder<'tcx> {
fn visit_statement(&mut self, statement: &Statement<'tcx>, _: Location) {
match statement {
Statement { kind: StatementKind::FakeRead(box (cause, place)), .. }
if *place == self.place =>
{
self.cause = Some(*cause);
}
_ => (),
}
}
}
let mut visitor = FakeReadCauseFinder { place, cause: None };
visitor.visit_body(&self.body);
match visitor.cause {
Some(FakeReadCause::ForMatchGuard) => Some("match guard"),
Some(FakeReadCause::ForIndex) => Some("indexing expression"),
_ => None,
}
}
/// Annotate argument and return type of function and closure with (synthesized) lifetime for
/// borrow of local value that does not live long enough.
fn annotate_argument_and_return_for_borrow(
&self,
borrow: &BorrowData<'tcx>,
) -> Option<AnnotatedBorrowFnSignature<'tcx>> {
// Define a fallback for when we can't match a closure.
let fallback = || {
let is_closure = self.infcx.tcx.is_closure(self.mir_def_id().to_def_id());
if is_closure {
None
} else {
let ty = self.infcx.tcx.type_of(self.mir_def_id());
match ty.kind() {
ty::FnDef(_, _) | ty::FnPtr(_) => self.annotate_fn_sig(
self.mir_def_id().to_def_id(),
self.infcx.tcx.fn_sig(self.mir_def_id()),
),
_ => None,
}
}
};
// In order to determine whether we need to annotate, we need to check whether the reserve
// place was an assignment into a temporary.
//
// If it was, we check whether or not that temporary is eventually assigned into the return
// place. If it was, we can add annotations about the function's return type and arguments
// and it'll make sense.
let location = borrow.reserve_location;
debug!("annotate_argument_and_return_for_borrow: location={:?}", location);
if let Some(&Statement { kind: StatementKind::Assign(box (ref reservation, _)), .. }) =
&self.body[location.block].statements.get(location.statement_index)
{
debug!("annotate_argument_and_return_for_borrow: reservation={:?}", reservation);
// Check that the initial assignment of the reserve location is into a temporary.
let mut target = match reservation.as_local() {
Some(local) if self.body.local_kind(local) == LocalKind::Temp => local,
_ => return None,
};
// Next, look through the rest of the block, checking if we are assigning the
// `target` (that is, the place that contains our borrow) to anything.
let mut annotated_closure = None;
for stmt in &self.body[location.block].statements[location.statement_index + 1..] {
debug!(
"annotate_argument_and_return_for_borrow: target={:?} stmt={:?}",
target, stmt
);
if let StatementKind::Assign(box (place, rvalue)) = &stmt.kind {
if let Some(assigned_to) = place.as_local() {
debug!(
"annotate_argument_and_return_for_borrow: assigned_to={:?} \
rvalue={:?}",
assigned_to, rvalue
);
// Check if our `target` was captured by a closure.
if let Rvalue::Aggregate(
box AggregateKind::Closure(def_id, substs),
operands,
) = rvalue
{
for operand in operands {
let (Operand::Copy(assigned_from) | Operand::Move(assigned_from)) = operand else {
continue;
};
debug!(
"annotate_argument_and_return_for_borrow: assigned_from={:?}",
assigned_from
);
// Find the local from the operand.
let Some(assigned_from_local) = assigned_from.local_or_deref_local() else {
continue;
};
if assigned_from_local != target {
continue;
}
// If a closure captured our `target` and then assigned
// into a place then we should annotate the closure in
// case it ends up being assigned into the return place.
annotated_closure =
self.annotate_fn_sig(*def_id, substs.as_closure().sig());
debug!(
"annotate_argument_and_return_for_borrow: \
annotated_closure={:?} assigned_from_local={:?} \
assigned_to={:?}",
annotated_closure, assigned_from_local, assigned_to
);
if assigned_to == mir::RETURN_PLACE {
// If it was assigned directly into the return place, then
// return now.
return annotated_closure;
} else {
// Otherwise, update the target.
target = assigned_to;
}
}
// If none of our closure's operands matched, then skip to the next
// statement.
continue;
}
// Otherwise, look at other types of assignment.
let assigned_from = match rvalue {
Rvalue::Ref(_, _, assigned_from) => assigned_from,
Rvalue::Use(operand) => match operand {
Operand::Copy(assigned_from) | Operand::Move(assigned_from) => {
assigned_from
}
_ => continue,
},
_ => continue,
};
debug!(
"annotate_argument_and_return_for_borrow: \
assigned_from={:?}",
assigned_from,
);
// Find the local from the rvalue.
let Some(assigned_from_local) = assigned_from.local_or_deref_local() else { continue };
debug!(
"annotate_argument_and_return_for_borrow: \
assigned_from_local={:?}",
assigned_from_local,
);
// Check if our local matches the target - if so, we've assigned our
// borrow to a new place.
if assigned_from_local != target {
continue;
}
// If we assigned our `target` into a new place, then we should
// check if it was the return place.
debug!(
"annotate_argument_and_return_for_borrow: \
assigned_from_local={:?} assigned_to={:?}",
assigned_from_local, assigned_to
);
if assigned_to == mir::RETURN_PLACE {
// If it was then return the annotated closure if there was one,
// else, annotate this function.
return annotated_closure.or_else(fallback);
}
// If we didn't assign into the return place, then we just update
// the target.
target = assigned_to;
}
}
}
// Check the terminator if we didn't find anything in the statements.
let terminator = &self.body[location.block].terminator();
debug!(
"annotate_argument_and_return_for_borrow: target={:?} terminator={:?}",
target, terminator
);
if let TerminatorKind::Call { destination: Some((place, _)), args, .. } =
&terminator.kind
{
if let Some(assigned_to) = place.as_local() {
debug!(
"annotate_argument_and_return_for_borrow: assigned_to={:?} args={:?}",
assigned_to, args
);
for operand in args {
let (Operand::Copy(assigned_from) | Operand::Move(assigned_from)) = operand else {
continue;
};
debug!(
"annotate_argument_and_return_for_borrow: assigned_from={:?}",
assigned_from,
);
if let Some(assigned_from_local) = assigned_from.local_or_deref_local() {
debug!(
"annotate_argument_and_return_for_borrow: assigned_from_local={:?}",
assigned_from_local,
);
if assigned_to == mir::RETURN_PLACE && assigned_from_local == target {
return annotated_closure.or_else(fallback);
}
}
}
}
}
}
// If we haven't found an assignment into the return place, then we need not add
// any annotations.
debug!("annotate_argument_and_return_for_borrow: none found");
None
}
/// Annotate the first argument and return type of a function signature if they are
/// references.
fn annotate_fn_sig(
&self,
did: DefId,
sig: ty::PolyFnSig<'tcx>,
) -> Option<AnnotatedBorrowFnSignature<'tcx>> {
debug!("annotate_fn_sig: did={:?} sig={:?}", did, sig);
let is_closure = self.infcx.tcx.is_closure(did);
let fn_hir_id = self.infcx.tcx.hir().local_def_id_to_hir_id(did.as_local()?);
let fn_decl = self.infcx.tcx.hir().fn_decl_by_hir_id(fn_hir_id)?;
// We need to work out which arguments to highlight. We do this by looking
// at the return type, where there are three cases:
//
// 1. If there are named arguments, then we should highlight the return type and
// highlight any of the arguments that are also references with that lifetime.
// If there are no arguments that have the same lifetime as the return type,
// then don't highlight anything.
// 2. The return type is a reference with an anonymous lifetime. If this is
// the case, then we can take advantage of (and teach) the lifetime elision
// rules.
//
// We know that an error is being reported. So the arguments and return type
// must satisfy the elision rules. Therefore, if there is a single argument
// then that means the return type and first (and only) argument have the same
// lifetime and the borrow isn't meeting that, we can highlight the argument
// and return type.
//
// If there are multiple arguments then the first argument must be self (else
// it would not satisfy the elision rules), so we can highlight self and the
// return type.
// 3. The return type is not a reference. In this case, we don't highlight
// anything.
let return_ty = sig.output();
match return_ty.skip_binder().kind() {
ty::Ref(return_region, _, _) if return_region.has_name() && !is_closure => {
// This is case 1 from above, return type is a named reference so we need to
// search for relevant arguments.
let mut arguments = Vec::new();
for (index, argument) in sig.inputs().skip_binder().iter().enumerate() {
if let ty::Ref(argument_region, _, _) = argument.kind() {
if argument_region == return_region {
// Need to use the `rustc_middle::ty` types to compare against the
// `return_region`. Then use the `rustc_hir` type to get only
// the lifetime span.
if let hir::TyKind::Rptr(lifetime, _) = &fn_decl.inputs[index].kind {
// With access to the lifetime, we can get
// the span of it.
arguments.push((*argument, lifetime.span));
} else {
bug!("ty type is a ref but hir type is not");
}
}
}
}
// We need to have arguments. This shouldn't happen, but it's worth checking.
if arguments.is_empty() {
return None;
}
// We use a mix of the HIR and the Ty types to get information
// as the HIR doesn't have full types for closure arguments.
let return_ty = sig.output().skip_binder();
let mut return_span = fn_decl.output.span();
if let hir::FnRetTy::Return(ty) = &fn_decl.output {
if let hir::TyKind::Rptr(lifetime, _) = ty.kind {
return_span = lifetime.span;
}
}
Some(AnnotatedBorrowFnSignature::NamedFunction {
arguments,
return_ty,
return_span,
})
}
ty::Ref(_, _, _) if is_closure => {
// This is case 2 from above but only for closures, return type is anonymous
// reference so we select
// the first argument.
let argument_span = fn_decl.inputs.first()?.span;
let argument_ty = sig.inputs().skip_binder().first()?;
// Closure arguments are wrapped in a tuple, so we need to get the first
// from that.
if let ty::Tuple(elems) = argument_ty.kind() {
let &argument_ty = elems.first()?;
if let ty::Ref(_, _, _) = argument_ty.kind() {
return Some(AnnotatedBorrowFnSignature::Closure {
argument_ty,
argument_span,
});
}
}
None
}
ty::Ref(_, _, _) => {
// This is also case 2 from above but for functions, return type is still an
// anonymous reference so we select the first argument.
let argument_span = fn_decl.inputs.first()?.span;
let argument_ty = *sig.inputs().skip_binder().first()?;
let return_span = fn_decl.output.span();
let return_ty = sig.output().skip_binder();
// We expect the first argument to be a reference.
match argument_ty.kind() {
ty::Ref(_, _, _) => {}
_ => return None,
}
Some(AnnotatedBorrowFnSignature::AnonymousFunction {
argument_ty,
argument_span,
return_ty,
return_span,
})
}
_ => {
// This is case 3 from above, return type is not a reference so don't highlight
// anything.
None
}
}
}
}
#[derive(Debug)]
enum AnnotatedBorrowFnSignature<'tcx> {
NamedFunction {
arguments: Vec<(Ty<'tcx>, Span)>,
return_ty: Ty<'tcx>,
return_span: Span,
},
AnonymousFunction {
argument_ty: Ty<'tcx>,
argument_span: Span,
return_ty: Ty<'tcx>,
return_span: Span,
},
Closure {
argument_ty: Ty<'tcx>,
argument_span: Span,
},
}
impl<'tcx> AnnotatedBorrowFnSignature<'tcx> {
/// Annotate the provided diagnostic with information about borrow from the fn signature that
/// helps explain.
pub(crate) fn emit(&self, cx: &mut MirBorrowckCtxt<'_, 'tcx>, diag: &mut Diagnostic) -> String {
match self {
&AnnotatedBorrowFnSignature::Closure { argument_ty, argument_span } => {
diag.span_label(
argument_span,
format!("has type `{}`", cx.get_name_for_ty(argument_ty, 0)),
);
cx.get_region_name_for_ty(argument_ty, 0)
}
&AnnotatedBorrowFnSignature::AnonymousFunction {
argument_ty,
argument_span,
return_ty,
return_span,
} => {
let argument_ty_name = cx.get_name_for_ty(argument_ty, 0);
diag.span_label(argument_span, format!("has type `{}`", argument_ty_name));
let return_ty_name = cx.get_name_for_ty(return_ty, 0);
let types_equal = return_ty_name == argument_ty_name;
diag.span_label(
return_span,
format!(
"{}has type `{}`",
if types_equal { "also " } else { "" },
return_ty_name,
),
);
diag.note(
"argument and return type have the same lifetime due to lifetime elision rules",
);
diag.note(
"to learn more, visit <https://doc.rust-lang.org/book/ch10-03-\
lifetime-syntax.html#lifetime-elision>",
);
cx.get_region_name_for_ty(return_ty, 0)
}
AnnotatedBorrowFnSignature::NamedFunction { arguments, return_ty, return_span } => {
// Region of return type and arguments checked to be the same earlier.
let region_name = cx.get_region_name_for_ty(*return_ty, 0);
for (_, argument_span) in arguments {
diag.span_label(*argument_span, format!("has lifetime `{}`", region_name));
}
diag.span_label(*return_span, format!("also has lifetime `{}`", region_name,));
diag.help(&format!(
"use data from the highlighted arguments which match the `{}` lifetime of \
the return type",
region_name,
));
region_name
}
}
}
}