| use crate::vec::{Idx, IndexVec}; |
| use arrayvec::ArrayVec; |
| use std::fmt; |
| use std::iter; |
| use std::marker::PhantomData; |
| use std::mem; |
| use std::ops::{BitAnd, BitAndAssign, BitOrAssign, Bound, Not, Range, RangeBounds, Shl}; |
| use std::rc::Rc; |
| use std::slice; |
| |
| use rustc_macros::{Decodable, Encodable}; |
| |
| use Chunk::*; |
| |
| #[cfg(test)] |
| mod tests; |
| |
| type Word = u64; |
| const WORD_BYTES: usize = mem::size_of::<Word>(); |
| const WORD_BITS: usize = WORD_BYTES * 8; |
| |
| // The choice of chunk size has some trade-offs. |
| // |
| // A big chunk size tends to favour cases where many large `ChunkedBitSet`s are |
| // present, because they require fewer `Chunk`s, reducing the number of |
| // allocations and reducing peak memory usage. Also, fewer chunk operations are |
| // required, though more of them might be `Mixed`. |
| // |
| // A small chunk size tends to favour cases where many small `ChunkedBitSet`s |
| // are present, because less space is wasted at the end of the final chunk (if |
| // it's not full). |
| const CHUNK_WORDS: usize = 32; |
| const CHUNK_BITS: usize = CHUNK_WORDS * WORD_BITS; // 2048 bits |
| |
| /// ChunkSize is small to keep `Chunk` small. The static assertion ensures it's |
| /// not too small. |
| type ChunkSize = u16; |
| const _: () = assert!(CHUNK_BITS <= ChunkSize::MAX as usize); |
| |
| pub trait BitRelations<Rhs> { |
| fn union(&mut self, other: &Rhs) -> bool; |
| fn subtract(&mut self, other: &Rhs) -> bool; |
| fn intersect(&mut self, other: &Rhs) -> bool; |
| } |
| |
| #[inline] |
| fn inclusive_start_end<T: Idx>( |
| range: impl RangeBounds<T>, |
| domain: usize, |
| ) -> Option<(usize, usize)> { |
| // Both start and end are inclusive. |
| let start = match range.start_bound().cloned() { |
| Bound::Included(start) => start.index(), |
| Bound::Excluded(start) => start.index() + 1, |
| Bound::Unbounded => 0, |
| }; |
| let end = match range.end_bound().cloned() { |
| Bound::Included(end) => end.index(), |
| Bound::Excluded(end) => end.index().checked_sub(1)?, |
| Bound::Unbounded => domain - 1, |
| }; |
| assert!(end < domain); |
| if start > end { |
| return None; |
| } |
| Some((start, end)) |
| } |
| |
| macro_rules! bit_relations_inherent_impls { |
| () => { |
| /// Sets `self = self | other` and returns `true` if `self` changed |
| /// (i.e., if new bits were added). |
| pub fn union<Rhs>(&mut self, other: &Rhs) -> bool |
| where |
| Self: BitRelations<Rhs>, |
| { |
| <Self as BitRelations<Rhs>>::union(self, other) |
| } |
| |
| /// Sets `self = self - other` and returns `true` if `self` changed. |
| /// (i.e., if any bits were removed). |
| pub fn subtract<Rhs>(&mut self, other: &Rhs) -> bool |
| where |
| Self: BitRelations<Rhs>, |
| { |
| <Self as BitRelations<Rhs>>::subtract(self, other) |
| } |
| |
| /// Sets `self = self & other` and return `true` if `self` changed. |
| /// (i.e., if any bits were removed). |
| pub fn intersect<Rhs>(&mut self, other: &Rhs) -> bool |
| where |
| Self: BitRelations<Rhs>, |
| { |
| <Self as BitRelations<Rhs>>::intersect(self, other) |
| } |
| }; |
| } |
| |
| /// A fixed-size bitset type with a dense representation. |
| /// |
| /// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation. |
| /// |
| /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also |
| /// just be `usize`. |
| /// |
| /// All operations that involve an element will panic if the element is equal |
| /// to or greater than the domain size. All operations that involve two bitsets |
| /// will panic if the bitsets have differing domain sizes. |
| /// |
| #[derive(Eq, PartialEq, Hash, Decodable, Encodable)] |
| pub struct BitSet<T> { |
| domain_size: usize, |
| words: Vec<Word>, |
| marker: PhantomData<T>, |
| } |
| |
| impl<T> BitSet<T> { |
| /// Gets the domain size. |
| pub fn domain_size(&self) -> usize { |
| self.domain_size |
| } |
| } |
| |
| impl<T: Idx> BitSet<T> { |
| /// Creates a new, empty bitset with a given `domain_size`. |
| #[inline] |
| pub fn new_empty(domain_size: usize) -> BitSet<T> { |
| let num_words = num_words(domain_size); |
| BitSet { domain_size, words: vec![0; num_words], marker: PhantomData } |
| } |
| |
| /// Creates a new, filled bitset with a given `domain_size`. |
| #[inline] |
| pub fn new_filled(domain_size: usize) -> BitSet<T> { |
| let num_words = num_words(domain_size); |
| let mut result = BitSet { domain_size, words: vec![!0; num_words], marker: PhantomData }; |
| result.clear_excess_bits(); |
| result |
| } |
| |
| /// Clear all elements. |
| #[inline] |
| pub fn clear(&mut self) { |
| self.words.fill(0); |
| } |
| |
| /// Clear excess bits in the final word. |
| fn clear_excess_bits(&mut self) { |
| clear_excess_bits_in_final_word(self.domain_size, &mut self.words); |
| } |
| |
| /// Count the number of set bits in the set. |
| pub fn count(&self) -> usize { |
| self.words.iter().map(|e| e.count_ones() as usize).sum() |
| } |
| |
| /// Returns `true` if `self` contains `elem`. |
| #[inline] |
| pub fn contains(&self, elem: T) -> bool { |
| assert!(elem.index() < self.domain_size); |
| let (word_index, mask) = word_index_and_mask(elem); |
| (self.words[word_index] & mask) != 0 |
| } |
| |
| /// Is `self` is a (non-strict) superset of `other`? |
| #[inline] |
| pub fn superset(&self, other: &BitSet<T>) -> bool { |
| assert_eq!(self.domain_size, other.domain_size); |
| self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b) |
| } |
| |
| /// Is the set empty? |
| #[inline] |
| pub fn is_empty(&self) -> bool { |
| self.words.iter().all(|a| *a == 0) |
| } |
| |
| /// Insert `elem`. Returns whether the set has changed. |
| #[inline] |
| pub fn insert(&mut self, elem: T) -> bool { |
| assert!(elem.index() < self.domain_size); |
| let (word_index, mask) = word_index_and_mask(elem); |
| let word_ref = &mut self.words[word_index]; |
| let word = *word_ref; |
| let new_word = word | mask; |
| *word_ref = new_word; |
| new_word != word |
| } |
| |
| #[inline] |
| pub fn insert_range(&mut self, elems: impl RangeBounds<T>) { |
| let Some((start, end)) = inclusive_start_end(elems, self.domain_size) else { |
| return; |
| }; |
| |
| let (start_word_index, start_mask) = word_index_and_mask(start); |
| let (end_word_index, end_mask) = word_index_and_mask(end); |
| |
| // Set all words in between start and end (exclusively of both). |
| for word_index in (start_word_index + 1)..end_word_index { |
| self.words[word_index] = !0; |
| } |
| |
| if start_word_index != end_word_index { |
| // Start and end are in different words, so we handle each in turn. |
| // |
| // We set all leading bits. This includes the start_mask bit. |
| self.words[start_word_index] |= !(start_mask - 1); |
| // And all trailing bits (i.e. from 0..=end) in the end word, |
| // including the end. |
| self.words[end_word_index] |= end_mask | end_mask - 1; |
| } else { |
| self.words[start_word_index] |= end_mask | (end_mask - start_mask); |
| } |
| } |
| |
| /// Sets all bits to true. |
| pub fn insert_all(&mut self) { |
| self.words.fill(!0); |
| self.clear_excess_bits(); |
| } |
| |
| /// Returns `true` if the set has changed. |
| #[inline] |
| pub fn remove(&mut self, elem: T) -> bool { |
| assert!(elem.index() < self.domain_size); |
| let (word_index, mask) = word_index_and_mask(elem); |
| let word_ref = &mut self.words[word_index]; |
| let word = *word_ref; |
| let new_word = word & !mask; |
| *word_ref = new_word; |
| new_word != word |
| } |
| |
| /// Gets a slice of the underlying words. |
| pub fn words(&self) -> &[Word] { |
| &self.words |
| } |
| |
| /// Iterates over the indices of set bits in a sorted order. |
| #[inline] |
| pub fn iter(&self) -> BitIter<'_, T> { |
| BitIter::new(&self.words) |
| } |
| |
| /// Duplicates the set as a hybrid set. |
| pub fn to_hybrid(&self) -> HybridBitSet<T> { |
| // Note: we currently don't bother trying to make a Sparse set. |
| HybridBitSet::Dense(self.to_owned()) |
| } |
| |
| /// Set `self = self | other`. In contrast to `union` returns `true` if the set contains at |
| /// least one bit that is not in `other` (i.e. `other` is not a superset of `self`). |
| /// |
| /// This is an optimization for union of a hybrid bitset. |
| fn reverse_union_sparse(&mut self, sparse: &SparseBitSet<T>) -> bool { |
| assert!(sparse.domain_size == self.domain_size); |
| self.clear_excess_bits(); |
| |
| let mut not_already = false; |
| // Index of the current word not yet merged. |
| let mut current_index = 0; |
| // Mask of bits that came from the sparse set in the current word. |
| let mut new_bit_mask = 0; |
| for (word_index, mask) in sparse.iter().map(|x| word_index_and_mask(*x)) { |
| // Next bit is in a word not inspected yet. |
| if word_index > current_index { |
| self.words[current_index] |= new_bit_mask; |
| // Were there any bits in the old word that did not occur in the sparse set? |
| not_already |= (self.words[current_index] ^ new_bit_mask) != 0; |
| // Check all words we skipped for any set bit. |
| not_already |= self.words[current_index + 1..word_index].iter().any(|&x| x != 0); |
| // Update next word. |
| current_index = word_index; |
| // Reset bit mask, no bits have been merged yet. |
| new_bit_mask = 0; |
| } |
| // Add bit and mark it as coming from the sparse set. |
| // self.words[word_index] |= mask; |
| new_bit_mask |= mask; |
| } |
| self.words[current_index] |= new_bit_mask; |
| // Any bits in the last inspected word that were not in the sparse set? |
| not_already |= (self.words[current_index] ^ new_bit_mask) != 0; |
| // Any bits in the tail? Note `clear_excess_bits` before. |
| not_already |= self.words[current_index + 1..].iter().any(|&x| x != 0); |
| |
| not_already |
| } |
| |
| fn last_set_in(&self, range: impl RangeBounds<T>) -> Option<T> { |
| let (start, end) = inclusive_start_end(range, self.domain_size)?; |
| let (start_word_index, _) = word_index_and_mask(start); |
| let (end_word_index, end_mask) = word_index_and_mask(end); |
| |
| let end_word = self.words[end_word_index] & (end_mask | (end_mask - 1)); |
| if end_word != 0 { |
| let pos = max_bit(end_word) + WORD_BITS * end_word_index; |
| if start <= pos { |
| return Some(T::new(pos)); |
| } |
| } |
| |
| // We exclude end_word_index from the range here, because we don't want |
| // to limit ourselves to *just* the last word: the bits set it in may be |
| // after `end`, so it may not work out. |
| if let Some(offset) = |
| self.words[start_word_index..end_word_index].iter().rposition(|&w| w != 0) |
| { |
| let word_idx = start_word_index + offset; |
| let start_word = self.words[word_idx]; |
| let pos = max_bit(start_word) + WORD_BITS * word_idx; |
| if start <= pos { |
| return Some(T::new(pos)); |
| } |
| } |
| |
| None |
| } |
| |
| bit_relations_inherent_impls! {} |
| } |
| |
| // dense REL dense |
| impl<T: Idx> BitRelations<BitSet<T>> for BitSet<T> { |
| fn union(&mut self, other: &BitSet<T>) -> bool { |
| assert_eq!(self.domain_size, other.domain_size); |
| bitwise(&mut self.words, &other.words, |a, b| a | b) |
| } |
| |
| fn subtract(&mut self, other: &BitSet<T>) -> bool { |
| assert_eq!(self.domain_size, other.domain_size); |
| bitwise(&mut self.words, &other.words, |a, b| a & !b) |
| } |
| |
| fn intersect(&mut self, other: &BitSet<T>) -> bool { |
| assert_eq!(self.domain_size, other.domain_size); |
| bitwise(&mut self.words, &other.words, |a, b| a & b) |
| } |
| } |
| |
| /// A fixed-size bitset type with a partially dense, partially sparse |
| /// representation. The bitset is broken into chunks, and chunks that are all |
| /// zeros or all ones are represented and handled very efficiently. |
| /// |
| /// This type is especially efficient for sets that typically have a large |
| /// `domain_size` with significant stretches of all zeros or all ones, and also |
| /// some stretches with lots of 0s and 1s mixed in a way that causes trouble |
| /// for `IntervalSet`. |
| /// |
| /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also |
| /// just be `usize`. |
| /// |
| /// All operations that involve an element will panic if the element is equal |
| /// to or greater than the domain size. All operations that involve two bitsets |
| /// will panic if the bitsets have differing domain sizes. |
| #[derive(Debug, PartialEq, Eq)] |
| pub struct ChunkedBitSet<T> { |
| domain_size: usize, |
| |
| /// The chunks. Each one contains exactly CHUNK_BITS values, except the |
| /// last one which contains 1..=CHUNK_BITS values. |
| chunks: Box<[Chunk]>, |
| |
| marker: PhantomData<T>, |
| } |
| |
| // Note: the chunk domain size is duplicated in each variant. This is a bit |
| // inconvenient, but it allows the type size to be smaller than if we had an |
| // outer struct containing a chunk domain size plus the `Chunk`, because the |
| // compiler can place the chunk domain size after the tag. |
| #[derive(Clone, Debug, PartialEq, Eq)] |
| enum Chunk { |
| /// A chunk that is all zeros; we don't represent the zeros explicitly. |
| Zeros(ChunkSize), |
| |
| /// A chunk that is all ones; we don't represent the ones explicitly. |
| Ones(ChunkSize), |
| |
| /// A chunk that has a mix of zeros and ones, which are represented |
| /// explicitly and densely. It never has all zeros or all ones. |
| /// |
| /// If this is the final chunk there may be excess, unused words. This |
| /// turns out to be both simpler and have better performance than |
| /// allocating the minimum number of words, largely because we avoid having |
| /// to store the length, which would make this type larger. These excess |
| /// words are always be zero, as are any excess bits in the final in-use |
| /// word. |
| /// |
| /// The second field is the count of 1s set in the chunk, and must satisfy |
| /// `0 < count < chunk_domain_size`. |
| /// |
| /// The words are within an `Rc` because it's surprisingly common to |
| /// duplicate an entire chunk, e.g. in `ChunkedBitSet::clone_from()`, or |
| /// when a `Mixed` chunk is union'd into a `Zeros` chunk. When we do need |
| /// to modify a chunk we use `Rc::make_mut`. |
| Mixed(ChunkSize, ChunkSize, Rc<[Word; CHUNK_WORDS]>), |
| } |
| |
| // This type is used a lot. Make sure it doesn't unintentionally get bigger. |
| #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] |
| crate::static_assert_size!(Chunk, 16); |
| |
| impl<T> ChunkedBitSet<T> { |
| pub fn domain_size(&self) -> usize { |
| self.domain_size |
| } |
| |
| #[cfg(test)] |
| fn assert_valid(&self) { |
| if self.domain_size == 0 { |
| assert!(self.chunks.is_empty()); |
| return; |
| } |
| |
| assert!((self.chunks.len() - 1) * CHUNK_BITS <= self.domain_size); |
| assert!(self.chunks.len() * CHUNK_BITS >= self.domain_size); |
| for chunk in self.chunks.iter() { |
| chunk.assert_valid(); |
| } |
| } |
| } |
| |
| impl<T: Idx> ChunkedBitSet<T> { |
| /// Creates a new bitset with a given `domain_size` and chunk kind. |
| fn new(domain_size: usize, is_empty: bool) -> Self { |
| let chunks = if domain_size == 0 { |
| Box::new([]) |
| } else { |
| // All the chunks have a chunk_domain_size of `CHUNK_BITS` except |
| // the final one. |
| let final_chunk_domain_size = { |
| let n = domain_size % CHUNK_BITS; |
| if n == 0 { CHUNK_BITS } else { n } |
| }; |
| let mut chunks = |
| vec![Chunk::new(CHUNK_BITS, is_empty); num_chunks(domain_size)].into_boxed_slice(); |
| *chunks.last_mut().unwrap() = Chunk::new(final_chunk_domain_size, is_empty); |
| chunks |
| }; |
| ChunkedBitSet { domain_size, chunks, marker: PhantomData } |
| } |
| |
| /// Creates a new, empty bitset with a given `domain_size`. |
| #[inline] |
| pub fn new_empty(domain_size: usize) -> Self { |
| ChunkedBitSet::new(domain_size, /* is_empty */ true) |
| } |
| |
| /// Creates a new, filled bitset with a given `domain_size`. |
| #[inline] |
| pub fn new_filled(domain_size: usize) -> Self { |
| ChunkedBitSet::new(domain_size, /* is_empty */ false) |
| } |
| |
| #[cfg(test)] |
| fn chunks(&self) -> &[Chunk] { |
| &self.chunks |
| } |
| |
| /// Count the number of bits in the set. |
| pub fn count(&self) -> usize { |
| self.chunks.iter().map(|chunk| chunk.count()).sum() |
| } |
| |
| /// Returns `true` if `self` contains `elem`. |
| #[inline] |
| pub fn contains(&self, elem: T) -> bool { |
| assert!(elem.index() < self.domain_size); |
| let chunk = &self.chunks[chunk_index(elem)]; |
| match &chunk { |
| Zeros(_) => false, |
| Ones(_) => true, |
| Mixed(_, _, words) => { |
| let (word_index, mask) = chunk_word_index_and_mask(elem); |
| (words[word_index] & mask) != 0 |
| } |
| } |
| } |
| |
| #[inline] |
| pub fn iter(&self) -> ChunkedBitIter<'_, T> { |
| ChunkedBitIter::new(self) |
| } |
| |
| /// Insert `elem`. Returns whether the set has changed. |
| pub fn insert(&mut self, elem: T) -> bool { |
| assert!(elem.index() < self.domain_size); |
| let chunk_index = chunk_index(elem); |
| let chunk = &mut self.chunks[chunk_index]; |
| match *chunk { |
| Zeros(chunk_domain_size) => { |
| if chunk_domain_size > 1 { |
| // We take some effort to avoid copying the words. |
| let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed(); |
| // SAFETY: `words` can safely be all zeroes. |
| let mut words = unsafe { words.assume_init() }; |
| let words_ref = Rc::get_mut(&mut words).unwrap(); |
| |
| let (word_index, mask) = chunk_word_index_and_mask(elem); |
| words_ref[word_index] |= mask; |
| *chunk = Mixed(chunk_domain_size, 1, words); |
| } else { |
| *chunk = Ones(chunk_domain_size); |
| } |
| true |
| } |
| Ones(_) => false, |
| Mixed(chunk_domain_size, ref mut count, ref mut words) => { |
| // We skip all the work if the bit is already set. |
| let (word_index, mask) = chunk_word_index_and_mask(elem); |
| if (words[word_index] & mask) == 0 { |
| *count += 1; |
| if *count < chunk_domain_size { |
| let words = Rc::make_mut(words); |
| words[word_index] |= mask; |
| } else { |
| *chunk = Ones(chunk_domain_size); |
| } |
| true |
| } else { |
| false |
| } |
| } |
| } |
| } |
| |
| /// Sets all bits to true. |
| pub fn insert_all(&mut self) { |
| for chunk in self.chunks.iter_mut() { |
| *chunk = match *chunk { |
| Zeros(chunk_domain_size) |
| | Ones(chunk_domain_size) |
| | Mixed(chunk_domain_size, ..) => Ones(chunk_domain_size), |
| } |
| } |
| } |
| |
| /// Returns `true` if the set has changed. |
| pub fn remove(&mut self, elem: T) -> bool { |
| assert!(elem.index() < self.domain_size); |
| let chunk_index = chunk_index(elem); |
| let chunk = &mut self.chunks[chunk_index]; |
| match *chunk { |
| Zeros(_) => false, |
| Ones(chunk_domain_size) => { |
| if chunk_domain_size > 1 { |
| // We take some effort to avoid copying the words. |
| let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed(); |
| // SAFETY: `words` can safely be all zeroes. |
| let mut words = unsafe { words.assume_init() }; |
| let words_ref = Rc::get_mut(&mut words).unwrap(); |
| |
| // Set only the bits in use. |
| let num_words = num_words(chunk_domain_size as usize); |
| words_ref[..num_words].fill(!0); |
| clear_excess_bits_in_final_word( |
| chunk_domain_size as usize, |
| &mut words_ref[..num_words], |
| ); |
| let (word_index, mask) = chunk_word_index_and_mask(elem); |
| words_ref[word_index] &= !mask; |
| *chunk = Mixed(chunk_domain_size, chunk_domain_size - 1, words); |
| } else { |
| *chunk = Zeros(chunk_domain_size); |
| } |
| true |
| } |
| Mixed(chunk_domain_size, ref mut count, ref mut words) => { |
| // We skip all the work if the bit is already clear. |
| let (word_index, mask) = chunk_word_index_and_mask(elem); |
| if (words[word_index] & mask) != 0 { |
| *count -= 1; |
| if *count > 0 { |
| let words = Rc::make_mut(words); |
| words[word_index] &= !mask; |
| } else { |
| *chunk = Zeros(chunk_domain_size); |
| } |
| true |
| } else { |
| false |
| } |
| } |
| } |
| } |
| |
| bit_relations_inherent_impls! {} |
| } |
| |
| impl<T: Idx> BitRelations<ChunkedBitSet<T>> for ChunkedBitSet<T> { |
| fn union(&mut self, other: &ChunkedBitSet<T>) -> bool { |
| assert_eq!(self.domain_size, other.domain_size); |
| debug_assert_eq!(self.chunks.len(), other.chunks.len()); |
| |
| let mut changed = false; |
| for (mut self_chunk, other_chunk) in self.chunks.iter_mut().zip(other.chunks.iter()) { |
| match (&mut self_chunk, &other_chunk) { |
| (_, Zeros(_)) | (Ones(_), _) => {} |
| (Zeros(self_chunk_domain_size), Ones(other_chunk_domain_size)) |
| | (Mixed(self_chunk_domain_size, ..), Ones(other_chunk_domain_size)) |
| | (Zeros(self_chunk_domain_size), Mixed(other_chunk_domain_size, ..)) => { |
| // `other_chunk` fully overwrites `self_chunk` |
| debug_assert_eq!(self_chunk_domain_size, other_chunk_domain_size); |
| *self_chunk = other_chunk.clone(); |
| changed = true; |
| } |
| ( |
| Mixed( |
| self_chunk_domain_size, |
| ref mut self_chunk_count, |
| ref mut self_chunk_words, |
| ), |
| Mixed(_other_chunk_domain_size, _other_chunk_count, other_chunk_words), |
| ) => { |
| // First check if the operation would change |
| // `self_chunk.words`. If not, we can avoid allocating some |
| // words, and this happens often enough that it's a |
| // performance win. Also, we only need to operate on the |
| // in-use words, hence the slicing. |
| let op = |a, b| a | b; |
| let num_words = num_words(*self_chunk_domain_size as usize); |
| if bitwise_changes( |
| &self_chunk_words[0..num_words], |
| &other_chunk_words[0..num_words], |
| op, |
| ) { |
| let self_chunk_words = Rc::make_mut(self_chunk_words); |
| let has_changed = bitwise( |
| &mut self_chunk_words[0..num_words], |
| &other_chunk_words[0..num_words], |
| op, |
| ); |
| debug_assert!(has_changed); |
| *self_chunk_count = self_chunk_words[0..num_words] |
| .iter() |
| .map(|w| w.count_ones() as ChunkSize) |
| .sum(); |
| if *self_chunk_count == *self_chunk_domain_size { |
| *self_chunk = Ones(*self_chunk_domain_size); |
| } |
| changed = true; |
| } |
| } |
| } |
| } |
| changed |
| } |
| |
| fn subtract(&mut self, _other: &ChunkedBitSet<T>) -> bool { |
| unimplemented!("implement if/when necessary"); |
| } |
| |
| fn intersect(&mut self, _other: &ChunkedBitSet<T>) -> bool { |
| unimplemented!("implement if/when necessary"); |
| } |
| } |
| |
| impl<T: Idx> BitRelations<HybridBitSet<T>> for ChunkedBitSet<T> { |
| fn union(&mut self, other: &HybridBitSet<T>) -> bool { |
| // FIXME: This is slow if `other` is dense, but it hasn't been a problem |
| // in practice so far. |
| // If a faster implementation of this operation is required, consider |
| // reopening https://github.com/rust-lang/rust/pull/94625 |
| assert_eq!(self.domain_size, other.domain_size()); |
| sequential_update(|elem| self.insert(elem), other.iter()) |
| } |
| |
| fn subtract(&mut self, other: &HybridBitSet<T>) -> bool { |
| // FIXME: This is slow if `other` is dense, but it hasn't been a problem |
| // in practice so far. |
| // If a faster implementation of this operation is required, consider |
| // reopening https://github.com/rust-lang/rust/pull/94625 |
| assert_eq!(self.domain_size, other.domain_size()); |
| sequential_update(|elem| self.remove(elem), other.iter()) |
| } |
| |
| fn intersect(&mut self, _other: &HybridBitSet<T>) -> bool { |
| unimplemented!("implement if/when necessary"); |
| } |
| } |
| |
| impl<T> Clone for ChunkedBitSet<T> { |
| fn clone(&self) -> Self { |
| ChunkedBitSet { |
| domain_size: self.domain_size, |
| chunks: self.chunks.clone(), |
| marker: PhantomData, |
| } |
| } |
| |
| /// WARNING: this implementation of clone_from will panic if the two |
| /// bitsets have different domain sizes. This constraint is not inherent to |
| /// `clone_from`, but it works with the existing call sites and allows a |
| /// faster implementation, which is important because this function is hot. |
| fn clone_from(&mut self, from: &Self) { |
| assert_eq!(self.domain_size, from.domain_size); |
| debug_assert_eq!(self.chunks.len(), from.chunks.len()); |
| |
| self.chunks.clone_from(&from.chunks) |
| } |
| } |
| |
| pub struct ChunkedBitIter<'a, T: Idx> { |
| index: usize, |
| bitset: &'a ChunkedBitSet<T>, |
| } |
| |
| impl<'a, T: Idx> ChunkedBitIter<'a, T> { |
| #[inline] |
| fn new(bitset: &'a ChunkedBitSet<T>) -> ChunkedBitIter<'a, T> { |
| ChunkedBitIter { index: 0, bitset } |
| } |
| } |
| |
| impl<'a, T: Idx> Iterator for ChunkedBitIter<'a, T> { |
| type Item = T; |
| fn next(&mut self) -> Option<T> { |
| while self.index < self.bitset.domain_size() { |
| let elem = T::new(self.index); |
| let chunk = &self.bitset.chunks[chunk_index(elem)]; |
| match &chunk { |
| Zeros(chunk_domain_size) => { |
| self.index += *chunk_domain_size as usize; |
| } |
| Ones(_chunk_domain_size) => { |
| self.index += 1; |
| return Some(elem); |
| } |
| Mixed(_chunk_domain_size, _, words) => loop { |
| let elem = T::new(self.index); |
| self.index += 1; |
| let (word_index, mask) = chunk_word_index_and_mask(elem); |
| if (words[word_index] & mask) != 0 { |
| return Some(elem); |
| } |
| if self.index % CHUNK_BITS == 0 { |
| break; |
| } |
| }, |
| } |
| } |
| None |
| } |
| } |
| |
| impl Chunk { |
| #[cfg(test)] |
| fn assert_valid(&self) { |
| match *self { |
| Zeros(chunk_domain_size) | Ones(chunk_domain_size) => { |
| assert!(chunk_domain_size as usize <= CHUNK_BITS); |
| } |
| Mixed(chunk_domain_size, count, ref words) => { |
| assert!(chunk_domain_size as usize <= CHUNK_BITS); |
| assert!(0 < count && count < chunk_domain_size); |
| |
| // Check the number of set bits matches `count`. |
| assert_eq!( |
| words.iter().map(|w| w.count_ones() as ChunkSize).sum::<ChunkSize>(), |
| count |
| ); |
| |
| // Check the not-in-use words are all zeroed. |
| let num_words = num_words(chunk_domain_size as usize); |
| if num_words < CHUNK_WORDS { |
| assert_eq!( |
| words[num_words..] |
| .iter() |
| .map(|w| w.count_ones() as ChunkSize) |
| .sum::<ChunkSize>(), |
| 0 |
| ); |
| } |
| } |
| } |
| } |
| |
| fn new(chunk_domain_size: usize, is_empty: bool) -> Self { |
| debug_assert!(chunk_domain_size <= CHUNK_BITS); |
| let chunk_domain_size = chunk_domain_size as ChunkSize; |
| if is_empty { Zeros(chunk_domain_size) } else { Ones(chunk_domain_size) } |
| } |
| |
| /// Count the number of 1s in the chunk. |
| fn count(&self) -> usize { |
| match *self { |
| Zeros(_) => 0, |
| Ones(chunk_domain_size) => chunk_domain_size as usize, |
| Mixed(_, count, _) => count as usize, |
| } |
| } |
| } |
| |
| // Applies a function to mutate a bitset, and returns true if any |
| // of the applications return true |
| fn sequential_update<T: Idx>( |
| mut self_update: impl FnMut(T) -> bool, |
| it: impl Iterator<Item = T>, |
| ) -> bool { |
| let mut changed = false; |
| for elem in it { |
| changed |= self_update(elem); |
| } |
| changed |
| } |
| |
| // Optimization of intersection for SparseBitSet that's generic |
| // over the RHS |
| fn sparse_intersect<T: Idx>( |
| set: &mut SparseBitSet<T>, |
| other_contains: impl Fn(&T) -> bool, |
| ) -> bool { |
| let size = set.elems.len(); |
| set.elems.retain(|elem| other_contains(elem)); |
| set.elems.len() != size |
| } |
| |
| // Optimization of dense/sparse intersection. The resulting set is |
| // guaranteed to be at most the size of the sparse set, and hence can be |
| // represented as a sparse set. Therefore the sparse set is copied and filtered, |
| // then returned as the new set. |
| fn dense_sparse_intersect<T: Idx>( |
| dense: &BitSet<T>, |
| sparse: &SparseBitSet<T>, |
| ) -> (SparseBitSet<T>, bool) { |
| let mut sparse_copy = sparse.clone(); |
| sparse_intersect(&mut sparse_copy, |el| dense.contains(*el)); |
| let n = sparse_copy.len(); |
| (sparse_copy, n != dense.count()) |
| } |
| |
| // hybrid REL dense |
| impl<T: Idx> BitRelations<BitSet<T>> for HybridBitSet<T> { |
| fn union(&mut self, other: &BitSet<T>) -> bool { |
| assert_eq!(self.domain_size(), other.domain_size); |
| match self { |
| HybridBitSet::Sparse(sparse) => { |
| // `self` is sparse and `other` is dense. To |
| // merge them, we have two available strategies: |
| // * Densify `self` then merge other |
| // * Clone other then integrate bits from `self` |
| // The second strategy requires dedicated method |
| // since the usual `union` returns the wrong |
| // result. In the dedicated case the computation |
| // is slightly faster if the bits of the sparse |
| // bitset map to only few words of the dense |
| // representation, i.e. indices are near each |
| // other. |
| // |
| // Benchmarking seems to suggest that the second |
| // option is worth it. |
| let mut new_dense = other.clone(); |
| let changed = new_dense.reverse_union_sparse(sparse); |
| *self = HybridBitSet::Dense(new_dense); |
| changed |
| } |
| |
| HybridBitSet::Dense(dense) => dense.union(other), |
| } |
| } |
| |
| fn subtract(&mut self, other: &BitSet<T>) -> bool { |
| assert_eq!(self.domain_size(), other.domain_size); |
| match self { |
| HybridBitSet::Sparse(sparse) => { |
| sequential_update(|elem| sparse.remove(elem), other.iter()) |
| } |
| HybridBitSet::Dense(dense) => dense.subtract(other), |
| } |
| } |
| |
| fn intersect(&mut self, other: &BitSet<T>) -> bool { |
| assert_eq!(self.domain_size(), other.domain_size); |
| match self { |
| HybridBitSet::Sparse(sparse) => sparse_intersect(sparse, |elem| other.contains(*elem)), |
| HybridBitSet::Dense(dense) => dense.intersect(other), |
| } |
| } |
| } |
| |
| // dense REL hybrid |
| impl<T: Idx> BitRelations<HybridBitSet<T>> for BitSet<T> { |
| fn union(&mut self, other: &HybridBitSet<T>) -> bool { |
| assert_eq!(self.domain_size, other.domain_size()); |
| match other { |
| HybridBitSet::Sparse(sparse) => { |
| sequential_update(|elem| self.insert(elem), sparse.iter().cloned()) |
| } |
| HybridBitSet::Dense(dense) => self.union(dense), |
| } |
| } |
| |
| fn subtract(&mut self, other: &HybridBitSet<T>) -> bool { |
| assert_eq!(self.domain_size, other.domain_size()); |
| match other { |
| HybridBitSet::Sparse(sparse) => { |
| sequential_update(|elem| self.remove(elem), sparse.iter().cloned()) |
| } |
| HybridBitSet::Dense(dense) => self.subtract(dense), |
| } |
| } |
| |
| fn intersect(&mut self, other: &HybridBitSet<T>) -> bool { |
| assert_eq!(self.domain_size, other.domain_size()); |
| match other { |
| HybridBitSet::Sparse(sparse) => { |
| let (updated, changed) = dense_sparse_intersect(self, sparse); |
| |
| // We can't directly assign the SparseBitSet to the BitSet, and |
| // doing `*self = updated.to_dense()` would cause a drop / reallocation. Instead, |
| // the BitSet is cleared and `updated` is copied into `self`. |
| self.clear(); |
| for elem in updated.iter() { |
| self.insert(*elem); |
| } |
| changed |
| } |
| HybridBitSet::Dense(dense) => self.intersect(dense), |
| } |
| } |
| } |
| |
| // hybrid REL hybrid |
| impl<T: Idx> BitRelations<HybridBitSet<T>> for HybridBitSet<T> { |
| fn union(&mut self, other: &HybridBitSet<T>) -> bool { |
| assert_eq!(self.domain_size(), other.domain_size()); |
| match self { |
| HybridBitSet::Sparse(_) => { |
| match other { |
| HybridBitSet::Sparse(other_sparse) => { |
| // Both sets are sparse. Add the elements in |
| // `other_sparse` to `self` one at a time. This |
| // may or may not cause `self` to be densified. |
| let mut changed = false; |
| for elem in other_sparse.iter() { |
| changed |= self.insert(*elem); |
| } |
| changed |
| } |
| |
| HybridBitSet::Dense(other_dense) => self.union(other_dense), |
| } |
| } |
| |
| HybridBitSet::Dense(self_dense) => self_dense.union(other), |
| } |
| } |
| |
| fn subtract(&mut self, other: &HybridBitSet<T>) -> bool { |
| assert_eq!(self.domain_size(), other.domain_size()); |
| match self { |
| HybridBitSet::Sparse(self_sparse) => { |
| sequential_update(|elem| self_sparse.remove(elem), other.iter()) |
| } |
| HybridBitSet::Dense(self_dense) => self_dense.subtract(other), |
| } |
| } |
| |
| fn intersect(&mut self, other: &HybridBitSet<T>) -> bool { |
| assert_eq!(self.domain_size(), other.domain_size()); |
| match self { |
| HybridBitSet::Sparse(self_sparse) => { |
| sparse_intersect(self_sparse, |elem| other.contains(*elem)) |
| } |
| HybridBitSet::Dense(self_dense) => match other { |
| HybridBitSet::Sparse(other_sparse) => { |
| let (updated, changed) = dense_sparse_intersect(self_dense, other_sparse); |
| *self = HybridBitSet::Sparse(updated); |
| changed |
| } |
| HybridBitSet::Dense(other_dense) => self_dense.intersect(other_dense), |
| }, |
| } |
| } |
| } |
| |
| impl<T> Clone for BitSet<T> { |
| fn clone(&self) -> Self { |
| BitSet { domain_size: self.domain_size, words: self.words.clone(), marker: PhantomData } |
| } |
| |
| fn clone_from(&mut self, from: &Self) { |
| if self.domain_size != from.domain_size { |
| self.words.resize(from.domain_size, 0); |
| self.domain_size = from.domain_size; |
| } |
| |
| self.words.copy_from_slice(&from.words); |
| } |
| } |
| |
| impl<T: Idx> fmt::Debug for BitSet<T> { |
| fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result { |
| w.debug_list().entries(self.iter()).finish() |
| } |
| } |
| |
| impl<T: Idx> ToString for BitSet<T> { |
| fn to_string(&self) -> String { |
| let mut result = String::new(); |
| let mut sep = '['; |
| |
| // Note: this is a little endian printout of bytes. |
| |
| // i tracks how many bits we have printed so far. |
| let mut i = 0; |
| for word in &self.words { |
| let mut word = *word; |
| for _ in 0..WORD_BYTES { |
| // for each byte in `word`: |
| let remain = self.domain_size - i; |
| // If less than a byte remains, then mask just that many bits. |
| let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF }; |
| assert!(mask <= 0xFF); |
| let byte = word & mask; |
| |
| result.push_str(&format!("{}{:02x}", sep, byte)); |
| |
| if remain <= 8 { |
| break; |
| } |
| word >>= 8; |
| i += 8; |
| sep = '-'; |
| } |
| sep = '|'; |
| } |
| result.push(']'); |
| |
| result |
| } |
| } |
| |
| pub struct BitIter<'a, T: Idx> { |
| /// A copy of the current word, but with any already-visited bits cleared. |
| /// (This lets us use `trailing_zeros()` to find the next set bit.) When it |
| /// is reduced to 0, we move onto the next word. |
| word: Word, |
| |
| /// The offset (measured in bits) of the current word. |
| offset: usize, |
| |
| /// Underlying iterator over the words. |
| iter: slice::Iter<'a, Word>, |
| |
| marker: PhantomData<T>, |
| } |
| |
| impl<'a, T: Idx> BitIter<'a, T> { |
| #[inline] |
| fn new(words: &'a [Word]) -> BitIter<'a, T> { |
| // We initialize `word` and `offset` to degenerate values. On the first |
| // call to `next()` we will fall through to getting the first word from |
| // `iter`, which sets `word` to the first word (if there is one) and |
| // `offset` to 0. Doing it this way saves us from having to maintain |
| // additional state about whether we have started. |
| BitIter { |
| word: 0, |
| offset: usize::MAX - (WORD_BITS - 1), |
| iter: words.iter(), |
| marker: PhantomData, |
| } |
| } |
| } |
| |
| impl<'a, T: Idx> Iterator for BitIter<'a, T> { |
| type Item = T; |
| fn next(&mut self) -> Option<T> { |
| loop { |
| if self.word != 0 { |
| // Get the position of the next set bit in the current word, |
| // then clear the bit. |
| let bit_pos = self.word.trailing_zeros() as usize; |
| let bit = 1 << bit_pos; |
| self.word ^= bit; |
| return Some(T::new(bit_pos + self.offset)); |
| } |
| |
| // Move onto the next word. `wrapping_add()` is needed to handle |
| // the degenerate initial value given to `offset` in `new()`. |
| let word = self.iter.next()?; |
| self.word = *word; |
| self.offset = self.offset.wrapping_add(WORD_BITS); |
| } |
| } |
| } |
| |
| #[inline] |
| fn bitwise<Op>(out_vec: &mut [Word], in_vec: &[Word], op: Op) -> bool |
| where |
| Op: Fn(Word, Word) -> Word, |
| { |
| assert_eq!(out_vec.len(), in_vec.len()); |
| let mut changed = 0; |
| for (out_elem, in_elem) in iter::zip(out_vec, in_vec) { |
| let old_val = *out_elem; |
| let new_val = op(old_val, *in_elem); |
| *out_elem = new_val; |
| // This is essentially equivalent to a != with changed being a bool, but |
| // in practice this code gets auto-vectorized by the compiler for most |
| // operators. Using != here causes us to generate quite poor code as the |
| // compiler tries to go back to a boolean on each loop iteration. |
| changed |= old_val ^ new_val; |
| } |
| changed != 0 |
| } |
| |
| /// Does this bitwise operation change `out_vec`? |
| #[inline] |
| fn bitwise_changes<Op>(out_vec: &[Word], in_vec: &[Word], op: Op) -> bool |
| where |
| Op: Fn(Word, Word) -> Word, |
| { |
| assert_eq!(out_vec.len(), in_vec.len()); |
| for (out_elem, in_elem) in iter::zip(out_vec, in_vec) { |
| let old_val = *out_elem; |
| let new_val = op(old_val, *in_elem); |
| if old_val != new_val { |
| return true; |
| } |
| } |
| false |
| } |
| |
| const SPARSE_MAX: usize = 8; |
| |
| /// A fixed-size bitset type with a sparse representation and a maximum of |
| /// `SPARSE_MAX` elements. The elements are stored as a sorted `ArrayVec` with |
| /// no duplicates. |
| /// |
| /// This type is used by `HybridBitSet`; do not use directly. |
| #[derive(Clone, Debug)] |
| pub struct SparseBitSet<T> { |
| domain_size: usize, |
| elems: ArrayVec<T, SPARSE_MAX>, |
| } |
| |
| impl<T: Idx> SparseBitSet<T> { |
| fn new_empty(domain_size: usize) -> Self { |
| SparseBitSet { domain_size, elems: ArrayVec::new() } |
| } |
| |
| fn len(&self) -> usize { |
| self.elems.len() |
| } |
| |
| fn is_empty(&self) -> bool { |
| self.elems.len() == 0 |
| } |
| |
| fn contains(&self, elem: T) -> bool { |
| assert!(elem.index() < self.domain_size); |
| self.elems.contains(&elem) |
| } |
| |
| fn insert(&mut self, elem: T) -> bool { |
| assert!(elem.index() < self.domain_size); |
| let changed = if let Some(i) = self.elems.iter().position(|&e| e.index() >= elem.index()) { |
| if self.elems[i] == elem { |
| // `elem` is already in the set. |
| false |
| } else { |
| // `elem` is smaller than one or more existing elements. |
| self.elems.insert(i, elem); |
| true |
| } |
| } else { |
| // `elem` is larger than all existing elements. |
| self.elems.push(elem); |
| true |
| }; |
| assert!(self.len() <= SPARSE_MAX); |
| changed |
| } |
| |
| fn remove(&mut self, elem: T) -> bool { |
| assert!(elem.index() < self.domain_size); |
| if let Some(i) = self.elems.iter().position(|&e| e == elem) { |
| self.elems.remove(i); |
| true |
| } else { |
| false |
| } |
| } |
| |
| fn to_dense(&self) -> BitSet<T> { |
| let mut dense = BitSet::new_empty(self.domain_size); |
| for elem in self.elems.iter() { |
| dense.insert(*elem); |
| } |
| dense |
| } |
| |
| fn iter(&self) -> slice::Iter<'_, T> { |
| self.elems.iter() |
| } |
| |
| bit_relations_inherent_impls! {} |
| } |
| |
| impl<T: Idx + Ord> SparseBitSet<T> { |
| fn last_set_in(&self, range: impl RangeBounds<T>) -> Option<T> { |
| let mut last_leq = None; |
| for e in self.iter() { |
| if range.contains(e) { |
| last_leq = Some(*e); |
| } |
| } |
| last_leq |
| } |
| } |
| |
| /// A fixed-size bitset type with a hybrid representation: sparse when there |
| /// are up to a `SPARSE_MAX` elements in the set, but dense when there are more |
| /// than `SPARSE_MAX`. |
| /// |
| /// This type is especially efficient for sets that typically have a small |
| /// number of elements, but a large `domain_size`, and are cleared frequently. |
| /// |
| /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also |
| /// just be `usize`. |
| /// |
| /// All operations that involve an element will panic if the element is equal |
| /// to or greater than the domain size. All operations that involve two bitsets |
| /// will panic if the bitsets have differing domain sizes. |
| #[derive(Clone)] |
| pub enum HybridBitSet<T> { |
| Sparse(SparseBitSet<T>), |
| Dense(BitSet<T>), |
| } |
| |
| impl<T: Idx> fmt::Debug for HybridBitSet<T> { |
| fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self { |
| Self::Sparse(b) => b.fmt(w), |
| Self::Dense(b) => b.fmt(w), |
| } |
| } |
| } |
| |
| impl<T: Idx> HybridBitSet<T> { |
| pub fn new_empty(domain_size: usize) -> Self { |
| HybridBitSet::Sparse(SparseBitSet::new_empty(domain_size)) |
| } |
| |
| pub fn domain_size(&self) -> usize { |
| match self { |
| HybridBitSet::Sparse(sparse) => sparse.domain_size, |
| HybridBitSet::Dense(dense) => dense.domain_size, |
| } |
| } |
| |
| pub fn clear(&mut self) { |
| let domain_size = self.domain_size(); |
| *self = HybridBitSet::new_empty(domain_size); |
| } |
| |
| pub fn contains(&self, elem: T) -> bool { |
| match self { |
| HybridBitSet::Sparse(sparse) => sparse.contains(elem), |
| HybridBitSet::Dense(dense) => dense.contains(elem), |
| } |
| } |
| |
| pub fn superset(&self, other: &HybridBitSet<T>) -> bool { |
| match (self, other) { |
| (HybridBitSet::Dense(self_dense), HybridBitSet::Dense(other_dense)) => { |
| self_dense.superset(other_dense) |
| } |
| _ => { |
| assert!(self.domain_size() == other.domain_size()); |
| other.iter().all(|elem| self.contains(elem)) |
| } |
| } |
| } |
| |
| pub fn is_empty(&self) -> bool { |
| match self { |
| HybridBitSet::Sparse(sparse) => sparse.is_empty(), |
| HybridBitSet::Dense(dense) => dense.is_empty(), |
| } |
| } |
| |
| /// Returns the previous element present in the bitset from `elem`, |
| /// inclusively of elem. That is, will return `Some(elem)` if elem is in the |
| /// bitset. |
| pub fn last_set_in(&self, range: impl RangeBounds<T>) -> Option<T> |
| where |
| T: Ord, |
| { |
| match self { |
| HybridBitSet::Sparse(sparse) => sparse.last_set_in(range), |
| HybridBitSet::Dense(dense) => dense.last_set_in(range), |
| } |
| } |
| |
| pub fn insert(&mut self, elem: T) -> bool { |
| // No need to check `elem` against `self.domain_size` here because all |
| // the match cases check it, one way or another. |
| match self { |
| HybridBitSet::Sparse(sparse) if sparse.len() < SPARSE_MAX => { |
| // The set is sparse and has space for `elem`. |
| sparse.insert(elem) |
| } |
| HybridBitSet::Sparse(sparse) if sparse.contains(elem) => { |
| // The set is sparse and does not have space for `elem`, but |
| // that doesn't matter because `elem` is already present. |
| false |
| } |
| HybridBitSet::Sparse(sparse) => { |
| // The set is sparse and full. Convert to a dense set. |
| let mut dense = sparse.to_dense(); |
| let changed = dense.insert(elem); |
| assert!(changed); |
| *self = HybridBitSet::Dense(dense); |
| changed |
| } |
| HybridBitSet::Dense(dense) => dense.insert(elem), |
| } |
| } |
| |
| pub fn insert_range(&mut self, elems: impl RangeBounds<T>) { |
| // No need to check `elem` against `self.domain_size` here because all |
| // the match cases check it, one way or another. |
| let start = match elems.start_bound().cloned() { |
| Bound::Included(start) => start.index(), |
| Bound::Excluded(start) => start.index() + 1, |
| Bound::Unbounded => 0, |
| }; |
| let end = match elems.end_bound().cloned() { |
| Bound::Included(end) => end.index() + 1, |
| Bound::Excluded(end) => end.index(), |
| Bound::Unbounded => self.domain_size() - 1, |
| }; |
| let Some(len) = end.checked_sub(start) else { return }; |
| match self { |
| HybridBitSet::Sparse(sparse) if sparse.len() + len < SPARSE_MAX => { |
| // The set is sparse and has space for `elems`. |
| for elem in start..end { |
| sparse.insert(T::new(elem)); |
| } |
| } |
| HybridBitSet::Sparse(sparse) => { |
| // The set is sparse and full. Convert to a dense set. |
| let mut dense = sparse.to_dense(); |
| dense.insert_range(elems); |
| *self = HybridBitSet::Dense(dense); |
| } |
| HybridBitSet::Dense(dense) => dense.insert_range(elems), |
| } |
| } |
| |
| pub fn insert_all(&mut self) { |
| let domain_size = self.domain_size(); |
| match self { |
| HybridBitSet::Sparse(_) => { |
| *self = HybridBitSet::Dense(BitSet::new_filled(domain_size)); |
| } |
| HybridBitSet::Dense(dense) => dense.insert_all(), |
| } |
| } |
| |
| pub fn remove(&mut self, elem: T) -> bool { |
| // Note: we currently don't bother going from Dense back to Sparse. |
| match self { |
| HybridBitSet::Sparse(sparse) => sparse.remove(elem), |
| HybridBitSet::Dense(dense) => dense.remove(elem), |
| } |
| } |
| |
| /// Converts to a dense set, consuming itself in the process. |
| pub fn to_dense(self) -> BitSet<T> { |
| match self { |
| HybridBitSet::Sparse(sparse) => sparse.to_dense(), |
| HybridBitSet::Dense(dense) => dense, |
| } |
| } |
| |
| pub fn iter(&self) -> HybridIter<'_, T> { |
| match self { |
| HybridBitSet::Sparse(sparse) => HybridIter::Sparse(sparse.iter()), |
| HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()), |
| } |
| } |
| |
| bit_relations_inherent_impls! {} |
| } |
| |
| pub enum HybridIter<'a, T: Idx> { |
| Sparse(slice::Iter<'a, T>), |
| Dense(BitIter<'a, T>), |
| } |
| |
| impl<'a, T: Idx> Iterator for HybridIter<'a, T> { |
| type Item = T; |
| |
| fn next(&mut self) -> Option<T> { |
| match self { |
| HybridIter::Sparse(sparse) => sparse.next().copied(), |
| HybridIter::Dense(dense) => dense.next(), |
| } |
| } |
| } |
| |
| /// A resizable bitset type with a dense representation. |
| /// |
| /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also |
| /// just be `usize`. |
| /// |
| /// All operations that involve an element will panic if the element is equal |
| /// to or greater than the domain size. |
| #[derive(Clone, Debug, PartialEq)] |
| pub struct GrowableBitSet<T: Idx> { |
| bit_set: BitSet<T>, |
| } |
| |
| impl<T: Idx> Default for GrowableBitSet<T> { |
| fn default() -> Self { |
| GrowableBitSet::new_empty() |
| } |
| } |
| |
| impl<T: Idx> GrowableBitSet<T> { |
| /// Ensure that the set can hold at least `min_domain_size` elements. |
| pub fn ensure(&mut self, min_domain_size: usize) { |
| if self.bit_set.domain_size < min_domain_size { |
| self.bit_set.domain_size = min_domain_size; |
| } |
| |
| let min_num_words = num_words(min_domain_size); |
| if self.bit_set.words.len() < min_num_words { |
| self.bit_set.words.resize(min_num_words, 0) |
| } |
| } |
| |
| pub fn new_empty() -> GrowableBitSet<T> { |
| GrowableBitSet { bit_set: BitSet::new_empty(0) } |
| } |
| |
| pub fn with_capacity(capacity: usize) -> GrowableBitSet<T> { |
| GrowableBitSet { bit_set: BitSet::new_empty(capacity) } |
| } |
| |
| /// Returns `true` if the set has changed. |
| #[inline] |
| pub fn insert(&mut self, elem: T) -> bool { |
| self.ensure(elem.index() + 1); |
| self.bit_set.insert(elem) |
| } |
| |
| /// Returns `true` if the set has changed. |
| #[inline] |
| pub fn remove(&mut self, elem: T) -> bool { |
| self.ensure(elem.index() + 1); |
| self.bit_set.remove(elem) |
| } |
| |
| #[inline] |
| pub fn is_empty(&self) -> bool { |
| self.bit_set.is_empty() |
| } |
| |
| #[inline] |
| pub fn contains(&self, elem: T) -> bool { |
| let (word_index, mask) = word_index_and_mask(elem); |
| self.bit_set.words.get(word_index).map_or(false, |word| (word & mask) != 0) |
| } |
| } |
| |
| /// A fixed-size 2D bit matrix type with a dense representation. |
| /// |
| /// `R` and `C` are index types used to identify rows and columns respectively; |
| /// typically newtyped `usize` wrappers, but they can also just be `usize`. |
| /// |
| /// All operations that involve a row and/or column index will panic if the |
| /// index exceeds the relevant bound. |
| #[derive(Clone, Eq, PartialEq, Hash, Decodable, Encodable)] |
| pub struct BitMatrix<R: Idx, C: Idx> { |
| num_rows: usize, |
| num_columns: usize, |
| words: Vec<Word>, |
| marker: PhantomData<(R, C)>, |
| } |
| |
| impl<R: Idx, C: Idx> BitMatrix<R, C> { |
| /// Creates a new `rows x columns` matrix, initially empty. |
| pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix<R, C> { |
| // For every element, we need one bit for every other |
| // element. Round up to an even number of words. |
| let words_per_row = num_words(num_columns); |
| BitMatrix { |
| num_rows, |
| num_columns, |
| words: vec![0; num_rows * words_per_row], |
| marker: PhantomData, |
| } |
| } |
| |
| /// Creates a new matrix, with `row` used as the value for every row. |
| pub fn from_row_n(row: &BitSet<C>, num_rows: usize) -> BitMatrix<R, C> { |
| let num_columns = row.domain_size(); |
| let words_per_row = num_words(num_columns); |
| assert_eq!(words_per_row, row.words().len()); |
| BitMatrix { |
| num_rows, |
| num_columns, |
| words: iter::repeat(row.words()).take(num_rows).flatten().cloned().collect(), |
| marker: PhantomData, |
| } |
| } |
| |
| pub fn rows(&self) -> impl Iterator<Item = R> { |
| (0..self.num_rows).map(R::new) |
| } |
| |
| /// The range of bits for a given row. |
| fn range(&self, row: R) -> (usize, usize) { |
| let words_per_row = num_words(self.num_columns); |
| let start = row.index() * words_per_row; |
| (start, start + words_per_row) |
| } |
| |
| /// Sets the cell at `(row, column)` to true. Put another way, insert |
| /// `column` to the bitset for `row`. |
| /// |
| /// Returns `true` if this changed the matrix. |
| pub fn insert(&mut self, row: R, column: C) -> bool { |
| assert!(row.index() < self.num_rows && column.index() < self.num_columns); |
| let (start, _) = self.range(row); |
| let (word_index, mask) = word_index_and_mask(column); |
| let words = &mut self.words[..]; |
| let word = words[start + word_index]; |
| let new_word = word | mask; |
| words[start + word_index] = new_word; |
| word != new_word |
| } |
| |
| /// Do the bits from `row` contain `column`? Put another way, is |
| /// the matrix cell at `(row, column)` true? Put yet another way, |
| /// if the matrix represents (transitive) reachability, can |
| /// `row` reach `column`? |
| pub fn contains(&self, row: R, column: C) -> bool { |
| assert!(row.index() < self.num_rows && column.index() < self.num_columns); |
| let (start, _) = self.range(row); |
| let (word_index, mask) = word_index_and_mask(column); |
| (self.words[start + word_index] & mask) != 0 |
| } |
| |
| /// Returns those indices that are true in rows `a` and `b`. This |
| /// is an *O*(*n*) operation where *n* is the number of elements |
| /// (somewhat independent from the actual size of the |
| /// intersection, in particular). |
| pub fn intersect_rows(&self, row1: R, row2: R) -> Vec<C> { |
| assert!(row1.index() < self.num_rows && row2.index() < self.num_rows); |
| let (row1_start, row1_end) = self.range(row1); |
| let (row2_start, row2_end) = self.range(row2); |
| let mut result = Vec::with_capacity(self.num_columns); |
| for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() { |
| let mut v = self.words[i] & self.words[j]; |
| for bit in 0..WORD_BITS { |
| if v == 0 { |
| break; |
| } |
| if v & 0x1 != 0 { |
| result.push(C::new(base * WORD_BITS + bit)); |
| } |
| v >>= 1; |
| } |
| } |
| result |
| } |
| |
| /// Adds the bits from row `read` to the bits from row `write`, and |
| /// returns `true` if anything changed. |
| /// |
| /// This is used when computing transitive reachability because if |
| /// you have an edge `write -> read`, because in that case |
| /// `write` can reach everything that `read` can (and |
| /// potentially more). |
| pub fn union_rows(&mut self, read: R, write: R) -> bool { |
| assert!(read.index() < self.num_rows && write.index() < self.num_rows); |
| let (read_start, read_end) = self.range(read); |
| let (write_start, write_end) = self.range(write); |
| let words = &mut self.words[..]; |
| let mut changed = false; |
| for (read_index, write_index) in iter::zip(read_start..read_end, write_start..write_end) { |
| let word = words[write_index]; |
| let new_word = word | words[read_index]; |
| words[write_index] = new_word; |
| changed |= word != new_word; |
| } |
| changed |
| } |
| |
| /// Adds the bits from `with` to the bits from row `write`, and |
| /// returns `true` if anything changed. |
| pub fn union_row_with(&mut self, with: &BitSet<C>, write: R) -> bool { |
| assert!(write.index() < self.num_rows); |
| assert_eq!(with.domain_size(), self.num_columns); |
| let (write_start, write_end) = self.range(write); |
| let mut changed = false; |
| for (read_index, write_index) in iter::zip(0..with.words().len(), write_start..write_end) { |
| let word = self.words[write_index]; |
| let new_word = word | with.words()[read_index]; |
| self.words[write_index] = new_word; |
| changed |= word != new_word; |
| } |
| changed |
| } |
| |
| /// Sets every cell in `row` to true. |
| pub fn insert_all_into_row(&mut self, row: R) { |
| assert!(row.index() < self.num_rows); |
| let (start, end) = self.range(row); |
| let words = &mut self.words[..]; |
| for index in start..end { |
| words[index] = !0; |
| } |
| clear_excess_bits_in_final_word(self.num_columns, &mut self.words[..end]); |
| } |
| |
| /// Gets a slice of the underlying words. |
| pub fn words(&self) -> &[Word] { |
| &self.words |
| } |
| |
| /// Iterates through all the columns set to true in a given row of |
| /// the matrix. |
| pub fn iter(&self, row: R) -> BitIter<'_, C> { |
| assert!(row.index() < self.num_rows); |
| let (start, end) = self.range(row); |
| BitIter::new(&self.words[start..end]) |
| } |
| |
| /// Returns the number of elements in `row`. |
| pub fn count(&self, row: R) -> usize { |
| let (start, end) = self.range(row); |
| self.words[start..end].iter().map(|e| e.count_ones() as usize).sum() |
| } |
| } |
| |
| impl<R: Idx, C: Idx> fmt::Debug for BitMatrix<R, C> { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| /// Forces its contents to print in regular mode instead of alternate mode. |
| struct OneLinePrinter<T>(T); |
| impl<T: fmt::Debug> fmt::Debug for OneLinePrinter<T> { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write!(fmt, "{:?}", self.0) |
| } |
| } |
| |
| write!(fmt, "BitMatrix({}x{}) ", self.num_rows, self.num_columns)?; |
| let items = self.rows().flat_map(|r| self.iter(r).map(move |c| (r, c))); |
| fmt.debug_set().entries(items.map(OneLinePrinter)).finish() |
| } |
| } |
| |
| /// A fixed-column-size, variable-row-size 2D bit matrix with a moderately |
| /// sparse representation. |
| /// |
| /// Initially, every row has no explicit representation. If any bit within a |
| /// row is set, the entire row is instantiated as `Some(<HybridBitSet>)`. |
| /// Furthermore, any previously uninstantiated rows prior to it will be |
| /// instantiated as `None`. Those prior rows may themselves become fully |
| /// instantiated later on if any of their bits are set. |
| /// |
| /// `R` and `C` are index types used to identify rows and columns respectively; |
| /// typically newtyped `usize` wrappers, but they can also just be `usize`. |
| #[derive(Clone, Debug)] |
| pub struct SparseBitMatrix<R, C> |
| where |
| R: Idx, |
| C: Idx, |
| { |
| num_columns: usize, |
| rows: IndexVec<R, Option<HybridBitSet<C>>>, |
| } |
| |
| impl<R: Idx, C: Idx> SparseBitMatrix<R, C> { |
| /// Creates a new empty sparse bit matrix with no rows or columns. |
| pub fn new(num_columns: usize) -> Self { |
| Self { num_columns, rows: IndexVec::new() } |
| } |
| |
| fn ensure_row(&mut self, row: R) -> &mut HybridBitSet<C> { |
| // Instantiate any missing rows up to and including row `row` with an empty HybridBitSet. |
| // Then replace row `row` with a full HybridBitSet if necessary. |
| self.rows.get_or_insert_with(row, || HybridBitSet::new_empty(self.num_columns)) |
| } |
| |
| /// Sets the cell at `(row, column)` to true. Put another way, insert |
| /// `column` to the bitset for `row`. |
| /// |
| /// Returns `true` if this changed the matrix. |
| pub fn insert(&mut self, row: R, column: C) -> bool { |
| self.ensure_row(row).insert(column) |
| } |
| |
| /// Sets the cell at `(row, column)` to false. Put another way, delete |
| /// `column` from the bitset for `row`. Has no effect if `row` does not |
| /// exist. |
| /// |
| /// Returns `true` if this changed the matrix. |
| pub fn remove(&mut self, row: R, column: C) -> bool { |
| match self.rows.get_mut(row) { |
| Some(Some(row)) => row.remove(column), |
| _ => false, |
| } |
| } |
| |
| /// Sets all columns at `row` to false. Has no effect if `row` does |
| /// not exist. |
| pub fn clear(&mut self, row: R) { |
| if let Some(Some(row)) = self.rows.get_mut(row) { |
| row.clear(); |
| } |
| } |
| |
| /// Do the bits from `row` contain `column`? Put another way, is |
| /// the matrix cell at `(row, column)` true? Put yet another way, |
| /// if the matrix represents (transitive) reachability, can |
| /// `row` reach `column`? |
| pub fn contains(&self, row: R, column: C) -> bool { |
| self.row(row).map_or(false, |r| r.contains(column)) |
| } |
| |
| /// Adds the bits from row `read` to the bits from row `write`, and |
| /// returns `true` if anything changed. |
| /// |
| /// This is used when computing transitive reachability because if |
| /// you have an edge `write -> read`, because in that case |
| /// `write` can reach everything that `read` can (and |
| /// potentially more). |
| pub fn union_rows(&mut self, read: R, write: R) -> bool { |
| if read == write || self.row(read).is_none() { |
| return false; |
| } |
| |
| self.ensure_row(write); |
| if let (Some(read_row), Some(write_row)) = self.rows.pick2_mut(read, write) { |
| write_row.union(read_row) |
| } else { |
| unreachable!() |
| } |
| } |
| |
| /// Insert all bits in the given row. |
| pub fn insert_all_into_row(&mut self, row: R) { |
| self.ensure_row(row).insert_all(); |
| } |
| |
| pub fn rows(&self) -> impl Iterator<Item = R> { |
| self.rows.indices() |
| } |
| |
| /// Iterates through all the columns set to true in a given row of |
| /// the matrix. |
| pub fn iter<'a>(&'a self, row: R) -> impl Iterator<Item = C> + 'a { |
| self.row(row).into_iter().flat_map(|r| r.iter()) |
| } |
| |
| pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> { |
| self.rows.get(row)?.as_ref() |
| } |
| |
| /// Intersects `row` with `set`. `set` can be either `BitSet` or |
| /// `HybridBitSet`. Has no effect if `row` does not exist. |
| /// |
| /// Returns true if the row was changed. |
| pub fn intersect_row<Set>(&mut self, row: R, set: &Set) -> bool |
| where |
| HybridBitSet<C>: BitRelations<Set>, |
| { |
| match self.rows.get_mut(row) { |
| Some(Some(row)) => row.intersect(set), |
| _ => false, |
| } |
| } |
| |
| /// Subtracts `set from `row`. `set` can be either `BitSet` or |
| /// `HybridBitSet`. Has no effect if `row` does not exist. |
| /// |
| /// Returns true if the row was changed. |
| pub fn subtract_row<Set>(&mut self, row: R, set: &Set) -> bool |
| where |
| HybridBitSet<C>: BitRelations<Set>, |
| { |
| match self.rows.get_mut(row) { |
| Some(Some(row)) => row.subtract(set), |
| _ => false, |
| } |
| } |
| |
| /// Unions `row` with `set`. `set` can be either `BitSet` or |
| /// `HybridBitSet`. |
| /// |
| /// Returns true if the row was changed. |
| pub fn union_row<Set>(&mut self, row: R, set: &Set) -> bool |
| where |
| HybridBitSet<C>: BitRelations<Set>, |
| { |
| self.ensure_row(row).union(set) |
| } |
| } |
| |
| #[inline] |
| fn num_words<T: Idx>(domain_size: T) -> usize { |
| (domain_size.index() + WORD_BITS - 1) / WORD_BITS |
| } |
| |
| #[inline] |
| fn num_chunks<T: Idx>(domain_size: T) -> usize { |
| assert!(domain_size.index() > 0); |
| (domain_size.index() + CHUNK_BITS - 1) / CHUNK_BITS |
| } |
| |
| #[inline] |
| fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) { |
| let elem = elem.index(); |
| let word_index = elem / WORD_BITS; |
| let mask = 1 << (elem % WORD_BITS); |
| (word_index, mask) |
| } |
| |
| #[inline] |
| fn chunk_index<T: Idx>(elem: T) -> usize { |
| elem.index() / CHUNK_BITS |
| } |
| |
| #[inline] |
| fn chunk_word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) { |
| let chunk_elem = elem.index() % CHUNK_BITS; |
| word_index_and_mask(chunk_elem) |
| } |
| |
| fn clear_excess_bits_in_final_word(domain_size: usize, words: &mut [Word]) { |
| let num_bits_in_final_word = domain_size % WORD_BITS; |
| if num_bits_in_final_word > 0 { |
| let mask = (1 << num_bits_in_final_word) - 1; |
| words[words.len() - 1] &= mask; |
| } |
| } |
| |
| #[inline] |
| fn max_bit(word: Word) -> usize { |
| WORD_BITS - 1 - word.leading_zeros() as usize |
| } |
| |
| /// Integral type used to represent the bit set. |
| pub trait FiniteBitSetTy: |
| BitAnd<Output = Self> |
| + BitAndAssign |
| + BitOrAssign |
| + Clone |
| + Copy |
| + Shl |
| + Not<Output = Self> |
| + PartialEq |
| + Sized |
| { |
| /// Size of the domain representable by this type, e.g. 64 for `u64`. |
| const DOMAIN_SIZE: u32; |
| |
| /// Value which represents the `FiniteBitSet` having every bit set. |
| const FILLED: Self; |
| /// Value which represents the `FiniteBitSet` having no bits set. |
| const EMPTY: Self; |
| |
| /// Value for one as the integral type. |
| const ONE: Self; |
| /// Value for zero as the integral type. |
| const ZERO: Self; |
| |
| /// Perform a checked left shift on the integral type. |
| fn checked_shl(self, rhs: u32) -> Option<Self>; |
| /// Perform a checked right shift on the integral type. |
| fn checked_shr(self, rhs: u32) -> Option<Self>; |
| } |
| |
| impl FiniteBitSetTy for u32 { |
| const DOMAIN_SIZE: u32 = 32; |
| |
| const FILLED: Self = Self::MAX; |
| const EMPTY: Self = Self::MIN; |
| |
| const ONE: Self = 1u32; |
| const ZERO: Self = 0u32; |
| |
| fn checked_shl(self, rhs: u32) -> Option<Self> { |
| self.checked_shl(rhs) |
| } |
| |
| fn checked_shr(self, rhs: u32) -> Option<Self> { |
| self.checked_shr(rhs) |
| } |
| } |
| |
| impl std::fmt::Debug for FiniteBitSet<u32> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write!(f, "{:032b}", self.0) |
| } |
| } |
| |
| impl FiniteBitSetTy for u64 { |
| const DOMAIN_SIZE: u32 = 64; |
| |
| const FILLED: Self = Self::MAX; |
| const EMPTY: Self = Self::MIN; |
| |
| const ONE: Self = 1u64; |
| const ZERO: Self = 0u64; |
| |
| fn checked_shl(self, rhs: u32) -> Option<Self> { |
| self.checked_shl(rhs) |
| } |
| |
| fn checked_shr(self, rhs: u32) -> Option<Self> { |
| self.checked_shr(rhs) |
| } |
| } |
| |
| impl std::fmt::Debug for FiniteBitSet<u64> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write!(f, "{:064b}", self.0) |
| } |
| } |
| |
| impl FiniteBitSetTy for u128 { |
| const DOMAIN_SIZE: u32 = 128; |
| |
| const FILLED: Self = Self::MAX; |
| const EMPTY: Self = Self::MIN; |
| |
| const ONE: Self = 1u128; |
| const ZERO: Self = 0u128; |
| |
| fn checked_shl(self, rhs: u32) -> Option<Self> { |
| self.checked_shl(rhs) |
| } |
| |
| fn checked_shr(self, rhs: u32) -> Option<Self> { |
| self.checked_shr(rhs) |
| } |
| } |
| |
| impl std::fmt::Debug for FiniteBitSet<u128> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write!(f, "{:0128b}", self.0) |
| } |
| } |
| |
| /// A fixed-sized bitset type represented by an integer type. Indices outwith than the range |
| /// representable by `T` are considered set. |
| #[derive(Copy, Clone, Eq, PartialEq, Decodable, Encodable)] |
| pub struct FiniteBitSet<T: FiniteBitSetTy>(pub T); |
| |
| impl<T: FiniteBitSetTy> FiniteBitSet<T> { |
| /// Creates a new, empty bitset. |
| pub fn new_empty() -> Self { |
| Self(T::EMPTY) |
| } |
| |
| /// Sets the `index`th bit. |
| pub fn set(&mut self, index: u32) { |
| self.0 |= T::ONE.checked_shl(index).unwrap_or(T::ZERO); |
| } |
| |
| /// Unsets the `index`th bit. |
| pub fn clear(&mut self, index: u32) { |
| self.0 &= !T::ONE.checked_shl(index).unwrap_or(T::ZERO); |
| } |
| |
| /// Sets the `i`th to `j`th bits. |
| pub fn set_range(&mut self, range: Range<u32>) { |
| let bits = T::FILLED |
| .checked_shl(range.end - range.start) |
| .unwrap_or(T::ZERO) |
| .not() |
| .checked_shl(range.start) |
| .unwrap_or(T::ZERO); |
| self.0 |= bits; |
| } |
| |
| /// Is the set empty? |
| pub fn is_empty(&self) -> bool { |
| self.0 == T::EMPTY |
| } |
| |
| /// Returns the domain size of the bitset. |
| pub fn within_domain(&self, index: u32) -> bool { |
| index < T::DOMAIN_SIZE |
| } |
| |
| /// Returns if the `index`th bit is set. |
| pub fn contains(&self, index: u32) -> Option<bool> { |
| self.within_domain(index) |
| .then(|| ((self.0.checked_shr(index).unwrap_or(T::ONE)) & T::ONE) == T::ONE) |
| } |
| } |
| |
| impl<T: FiniteBitSetTy> Default for FiniteBitSet<T> { |
| fn default() -> Self { |
| Self::new_empty() |
| } |
| } |