| //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that RISCV uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RISCVISelLowering.h" |
| #include "MCTargetDesc/RISCVMatInt.h" |
| #include "RISCV.h" |
| #include "RISCVMachineFunctionInfo.h" |
| #include "RISCVRegisterInfo.h" |
| #include "RISCVSubtarget.h" |
| #include "RISCVTargetMachine.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/DiagnosticPrinter.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/IntrinsicsRISCV.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "riscv-lower" |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| |
| RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, |
| const RISCVSubtarget &STI) |
| : TargetLowering(TM), Subtarget(STI) { |
| |
| if (Subtarget.isRV32E()) |
| report_fatal_error("Codegen not yet implemented for RV32E"); |
| |
| RISCVABI::ABI ABI = Subtarget.getTargetABI(); |
| assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); |
| |
| if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && |
| !Subtarget.hasStdExtF()) { |
| errs() << "Hard-float 'f' ABI can't be used for a target that " |
| "doesn't support the F instruction set extension (ignoring " |
| "target-abi)\n"; |
| ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; |
| } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && |
| !Subtarget.hasStdExtD()) { |
| errs() << "Hard-float 'd' ABI can't be used for a target that " |
| "doesn't support the D instruction set extension (ignoring " |
| "target-abi)\n"; |
| ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; |
| } |
| |
| switch (ABI) { |
| default: |
| report_fatal_error("Don't know how to lower this ABI"); |
| case RISCVABI::ABI_ILP32: |
| case RISCVABI::ABI_ILP32F: |
| case RISCVABI::ABI_ILP32D: |
| case RISCVABI::ABI_LP64: |
| case RISCVABI::ABI_LP64F: |
| case RISCVABI::ABI_LP64D: |
| break; |
| } |
| |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| // Set up the register classes. |
| addRegisterClass(XLenVT, &RISCV::GPRRegClass); |
| |
| if (Subtarget.hasStdExtZfh()) |
| addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); |
| if (Subtarget.hasStdExtF()) |
| addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); |
| if (Subtarget.hasStdExtD()) |
| addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); |
| |
| static const MVT::SimpleValueType BoolVecVTs[] = { |
| MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, |
| MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; |
| static const MVT::SimpleValueType IntVecVTs[] = { |
| MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, |
| MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, |
| MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, |
| MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, |
| MVT::nxv4i64, MVT::nxv8i64}; |
| static const MVT::SimpleValueType F16VecVTs[] = { |
| MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, |
| MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; |
| static const MVT::SimpleValueType F32VecVTs[] = { |
| MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; |
| static const MVT::SimpleValueType F64VecVTs[] = { |
| MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; |
| |
| if (Subtarget.hasVInstructions()) { |
| auto addRegClassForRVV = [this](MVT VT) { |
| unsigned Size = VT.getSizeInBits().getKnownMinValue(); |
| assert(Size <= 512 && isPowerOf2_32(Size)); |
| const TargetRegisterClass *RC; |
| if (Size <= 64) |
| RC = &RISCV::VRRegClass; |
| else if (Size == 128) |
| RC = &RISCV::VRM2RegClass; |
| else if (Size == 256) |
| RC = &RISCV::VRM4RegClass; |
| else |
| RC = &RISCV::VRM8RegClass; |
| |
| addRegisterClass(VT, RC); |
| }; |
| |
| for (MVT VT : BoolVecVTs) |
| addRegClassForRVV(VT); |
| for (MVT VT : IntVecVTs) { |
| if (VT.getVectorElementType() == MVT::i64 && |
| !Subtarget.hasVInstructionsI64()) |
| continue; |
| addRegClassForRVV(VT); |
| } |
| |
| if (Subtarget.hasVInstructionsF16()) |
| for (MVT VT : F16VecVTs) |
| addRegClassForRVV(VT); |
| |
| if (Subtarget.hasVInstructionsF32()) |
| for (MVT VT : F32VecVTs) |
| addRegClassForRVV(VT); |
| |
| if (Subtarget.hasVInstructionsF64()) |
| for (MVT VT : F64VecVTs) |
| addRegClassForRVV(VT); |
| |
| if (Subtarget.useRVVForFixedLengthVectors()) { |
| auto addRegClassForFixedVectors = [this](MVT VT) { |
| MVT ContainerVT = getContainerForFixedLengthVector(VT); |
| unsigned RCID = getRegClassIDForVecVT(ContainerVT); |
| const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); |
| addRegisterClass(VT, TRI.getRegClass(RCID)); |
| }; |
| for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) |
| if (useRVVForFixedLengthVectorVT(VT)) |
| addRegClassForFixedVectors(VT); |
| |
| for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) |
| if (useRVVForFixedLengthVectorVT(VT)) |
| addRegClassForFixedVectors(VT); |
| } |
| } |
| |
| // Compute derived properties from the register classes. |
| computeRegisterProperties(STI.getRegisterInfo()); |
| |
| setStackPointerRegisterToSaveRestore(RISCV::X2); |
| |
| for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) |
| setLoadExtAction(N, XLenVT, MVT::i1, Promote); |
| |
| // TODO: add all necessary setOperationAction calls. |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::BR_CC, XLenVT, Expand); |
| setOperationAction(ISD::BRCOND, MVT::Other, Custom); |
| setOperationAction(ISD::SELECT_CC, XLenVT, Expand); |
| |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| if (!Subtarget.hasStdExtZbb()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| } |
| |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::ADD, MVT::i32, Custom); |
| setOperationAction(ISD::SUB, MVT::i32, Custom); |
| setOperationAction(ISD::SHL, MVT::i32, Custom); |
| setOperationAction(ISD::SRA, MVT::i32, Custom); |
| setOperationAction(ISD::SRL, MVT::i32, Custom); |
| |
| setOperationAction(ISD::UADDO, MVT::i32, Custom); |
| setOperationAction(ISD::USUBO, MVT::i32, Custom); |
| setOperationAction(ISD::UADDSAT, MVT::i32, Custom); |
| setOperationAction(ISD::USUBSAT, MVT::i32, Custom); |
| } else { |
| setLibcallName(RTLIB::SHL_I128, nullptr); |
| setLibcallName(RTLIB::SRL_I128, nullptr); |
| setLibcallName(RTLIB::SRA_I128, nullptr); |
| setLibcallName(RTLIB::MUL_I128, nullptr); |
| setLibcallName(RTLIB::MULO_I64, nullptr); |
| } |
| |
| if (!Subtarget.hasStdExtM()) { |
| setOperationAction(ISD::MUL, XLenVT, Expand); |
| setOperationAction(ISD::MULHS, XLenVT, Expand); |
| setOperationAction(ISD::MULHU, XLenVT, Expand); |
| setOperationAction(ISD::SDIV, XLenVT, Expand); |
| setOperationAction(ISD::UDIV, XLenVT, Expand); |
| setOperationAction(ISD::SREM, XLenVT, Expand); |
| setOperationAction(ISD::UREM, XLenVT, Expand); |
| } else { |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::MUL, MVT::i32, Custom); |
| setOperationAction(ISD::MUL, MVT::i128, Custom); |
| |
| setOperationAction(ISD::SDIV, MVT::i8, Custom); |
| setOperationAction(ISD::UDIV, MVT::i8, Custom); |
| setOperationAction(ISD::UREM, MVT::i8, Custom); |
| setOperationAction(ISD::SDIV, MVT::i16, Custom); |
| setOperationAction(ISD::UDIV, MVT::i16, Custom); |
| setOperationAction(ISD::UREM, MVT::i16, Custom); |
| setOperationAction(ISD::SDIV, MVT::i32, Custom); |
| setOperationAction(ISD::UDIV, MVT::i32, Custom); |
| setOperationAction(ISD::UREM, MVT::i32, Custom); |
| } else { |
| setOperationAction(ISD::MUL, MVT::i64, Custom); |
| } |
| } |
| |
| setOperationAction(ISD::SDIVREM, XLenVT, Expand); |
| setOperationAction(ISD::UDIVREM, XLenVT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); |
| |
| setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); |
| setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); |
| setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); |
| |
| if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || |
| Subtarget.hasStdExtZbkb()) { |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::ROTL, MVT::i32, Custom); |
| setOperationAction(ISD::ROTR, MVT::i32, Custom); |
| } |
| } else { |
| setOperationAction(ISD::ROTL, XLenVT, Expand); |
| setOperationAction(ISD::ROTR, XLenVT, Expand); |
| } |
| |
| if (Subtarget.hasStdExtZbp()) { |
| // Custom lower bswap/bitreverse so we can convert them to GREVI to enable |
| // more combining. |
| setOperationAction(ISD::BITREVERSE, XLenVT, Custom); |
| setOperationAction(ISD::BSWAP, XLenVT, Custom); |
| setOperationAction(ISD::BITREVERSE, MVT::i8, Custom); |
| // BSWAP i8 doesn't exist. |
| setOperationAction(ISD::BITREVERSE, MVT::i16, Custom); |
| setOperationAction(ISD::BSWAP, MVT::i16, Custom); |
| |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); |
| setOperationAction(ISD::BSWAP, MVT::i32, Custom); |
| } |
| } else { |
| // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll |
| // pattern match it directly in isel. |
| setOperationAction(ISD::BSWAP, XLenVT, |
| (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) |
| ? Legal |
| : Expand); |
| // Zbkb can use rev8+brev8 to implement bitreverse. |
| setOperationAction(ISD::BITREVERSE, XLenVT, |
| Subtarget.hasStdExtZbkb() ? Custom : Expand); |
| } |
| |
| if (Subtarget.hasStdExtZbb()) { |
| setOperationAction(ISD::SMIN, XLenVT, Legal); |
| setOperationAction(ISD::SMAX, XLenVT, Legal); |
| setOperationAction(ISD::UMIN, XLenVT, Legal); |
| setOperationAction(ISD::UMAX, XLenVT, Legal); |
| |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::CTTZ, MVT::i32, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); |
| setOperationAction(ISD::CTLZ, MVT::i32, Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); |
| } |
| } else { |
| setOperationAction(ISD::CTTZ, XLenVT, Expand); |
| setOperationAction(ISD::CTLZ, XLenVT, Expand); |
| setOperationAction(ISD::CTPOP, XLenVT, Expand); |
| } |
| |
| if (Subtarget.hasStdExtZbt()) { |
| setOperationAction(ISD::FSHL, XLenVT, Custom); |
| setOperationAction(ISD::FSHR, XLenVT, Custom); |
| setOperationAction(ISD::SELECT, XLenVT, Legal); |
| |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::FSHL, MVT::i32, Custom); |
| setOperationAction(ISD::FSHR, MVT::i32, Custom); |
| } |
| } else { |
| setOperationAction(ISD::SELECT, XLenVT, Custom); |
| } |
| |
| static const ISD::CondCode FPCCToExpand[] = { |
| ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, |
| ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, |
| ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; |
| |
| static const ISD::NodeType FPOpToExpand[] = { |
| ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, |
| ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; |
| |
| if (Subtarget.hasStdExtZfh()) |
| setOperationAction(ISD::BITCAST, MVT::i16, Custom); |
| |
| if (Subtarget.hasStdExtZfh()) { |
| setOperationAction(ISD::FMINNUM, MVT::f16, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); |
| setOperationAction(ISD::LRINT, MVT::f16, Legal); |
| setOperationAction(ISD::LLRINT, MVT::f16, Legal); |
| setOperationAction(ISD::LROUND, MVT::f16, Legal); |
| setOperationAction(ISD::LLROUND, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_LRINT, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_LLRINT, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_LROUND, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_LLROUND, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_FADD, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_FMA, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_FSUB, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_FMUL, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_FDIV, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FSQRT, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Legal); |
| setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Legal); |
| for (auto CC : FPCCToExpand) |
| setCondCodeAction(CC, MVT::f16, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); |
| setOperationAction(ISD::SELECT, MVT::f16, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f16, Expand); |
| |
| setOperationAction(ISD::FREM, MVT::f16, Promote); |
| setOperationAction(ISD::FCEIL, MVT::f16, Promote); |
| setOperationAction(ISD::FFLOOR, MVT::f16, Promote); |
| setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); |
| setOperationAction(ISD::FRINT, MVT::f16, Promote); |
| setOperationAction(ISD::FROUND, MVT::f16, Promote); |
| setOperationAction(ISD::FROUNDEVEN, MVT::f16, Promote); |
| setOperationAction(ISD::FTRUNC, MVT::f16, Promote); |
| setOperationAction(ISD::FPOW, MVT::f16, Promote); |
| setOperationAction(ISD::FPOWI, MVT::f16, Promote); |
| setOperationAction(ISD::FCOS, MVT::f16, Promote); |
| setOperationAction(ISD::FSIN, MVT::f16, Promote); |
| setOperationAction(ISD::FSINCOS, MVT::f16, Promote); |
| setOperationAction(ISD::FEXP, MVT::f16, Promote); |
| setOperationAction(ISD::FEXP2, MVT::f16, Promote); |
| setOperationAction(ISD::FLOG, MVT::f16, Promote); |
| setOperationAction(ISD::FLOG2, MVT::f16, Promote); |
| setOperationAction(ISD::FLOG10, MVT::f16, Promote); |
| |
| // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have |
| // complete support for all operations in LegalizeDAG. |
| |
| // We need to custom promote this. |
| if (Subtarget.is64Bit()) |
| setOperationAction(ISD::FPOWI, MVT::i32, Custom); |
| } |
| |
| if (Subtarget.hasStdExtF()) { |
| setOperationAction(ISD::FMINNUM, MVT::f32, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); |
| setOperationAction(ISD::LRINT, MVT::f32, Legal); |
| setOperationAction(ISD::LLRINT, MVT::f32, Legal); |
| setOperationAction(ISD::LROUND, MVT::f32, Legal); |
| setOperationAction(ISD::LLROUND, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_LRINT, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_LLRINT, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_LROUND, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_LLROUND, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); |
| for (auto CC : FPCCToExpand) |
| setCondCodeAction(CC, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f32, Expand); |
| for (auto Op : FPOpToExpand) |
| setOperationAction(Op, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| } |
| |
| if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) |
| setOperationAction(ISD::BITCAST, MVT::i32, Custom); |
| |
| if (Subtarget.hasStdExtD()) { |
| setOperationAction(ISD::FMINNUM, MVT::f64, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); |
| setOperationAction(ISD::LRINT, MVT::f64, Legal); |
| setOperationAction(ISD::LLRINT, MVT::f64, Legal); |
| setOperationAction(ISD::LROUND, MVT::f64, Legal); |
| setOperationAction(ISD::LLROUND, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_LRINT, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_LLRINT, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_LROUND, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_LLROUND, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); |
| for (auto CC : FPCCToExpand) |
| setCondCodeAction(CC, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT, MVT::f64, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f64, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| for (auto Op : FPOpToExpand) |
| setOperationAction(Op, MVT::f64, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| } |
| |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); |
| } |
| |
| if (Subtarget.hasStdExtF()) { |
| setOperationAction(ISD::FP_TO_UINT_SAT, XLenVT, Custom); |
| setOperationAction(ISD::FP_TO_SINT_SAT, XLenVT, Custom); |
| |
| setOperationAction(ISD::STRICT_FP_TO_UINT, XLenVT, Legal); |
| setOperationAction(ISD::STRICT_FP_TO_SINT, XLenVT, Legal); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, XLenVT, Legal); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, XLenVT, Legal); |
| |
| setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); |
| setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); |
| } |
| |
| setOperationAction(ISD::GlobalAddress, XLenVT, Custom); |
| setOperationAction(ISD::BlockAddress, XLenVT, Custom); |
| setOperationAction(ISD::ConstantPool, XLenVT, Custom); |
| setOperationAction(ISD::JumpTable, XLenVT, Custom); |
| |
| setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); |
| |
| // TODO: On M-mode only targets, the cycle[h] CSR may not be present. |
| // Unfortunately this can't be determined just from the ISA naming string. |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, |
| Subtarget.is64Bit() ? Legal : Custom); |
| |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| if (Subtarget.is64Bit()) |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); |
| |
| if (Subtarget.hasStdExtA()) { |
| setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); |
| setMinCmpXchgSizeInBits(32); |
| } else { |
| setMaxAtomicSizeInBitsSupported(0); |
| } |
| |
| setBooleanContents(ZeroOrOneBooleanContent); |
| |
| if (Subtarget.hasVInstructions()) { |
| setBooleanVectorContents(ZeroOrOneBooleanContent); |
| |
| setOperationAction(ISD::VSCALE, XLenVT, Custom); |
| |
| // RVV intrinsics may have illegal operands. |
| // We also need to custom legalize vmv.x.s. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); |
| if (Subtarget.is64Bit()) { |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); |
| } else { |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); |
| } |
| |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); |
| |
| static const unsigned IntegerVPOps[] = { |
| ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, |
| ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, |
| ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, |
| ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, |
| ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, |
| ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, |
| ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, |
| ISD::VP_MERGE, ISD::VP_SELECT}; |
| |
| static const unsigned FloatingPointVPOps[] = { |
| ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, |
| ISD::VP_FDIV, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, |
| ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, |
| ISD::VP_SELECT}; |
| |
| if (!Subtarget.is64Bit()) { |
| // We must custom-lower certain vXi64 operations on RV32 due to the vector |
| // element type being illegal. |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); |
| |
| setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); |
| setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); |
| setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); |
| setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); |
| setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); |
| setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); |
| setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); |
| setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); |
| |
| setOperationAction(ISD::VP_REDUCE_ADD, MVT::i64, Custom); |
| setOperationAction(ISD::VP_REDUCE_AND, MVT::i64, Custom); |
| setOperationAction(ISD::VP_REDUCE_OR, MVT::i64, Custom); |
| setOperationAction(ISD::VP_REDUCE_XOR, MVT::i64, Custom); |
| setOperationAction(ISD::VP_REDUCE_SMAX, MVT::i64, Custom); |
| setOperationAction(ISD::VP_REDUCE_SMIN, MVT::i64, Custom); |
| setOperationAction(ISD::VP_REDUCE_UMAX, MVT::i64, Custom); |
| setOperationAction(ISD::VP_REDUCE_UMIN, MVT::i64, Custom); |
| } |
| |
| for (MVT VT : BoolVecVTs) { |
| setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); |
| |
| // Mask VTs are custom-expanded into a series of standard nodes |
| setOperationAction(ISD::TRUNCATE, VT, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| |
| setOperationAction(ISD::SELECT, VT, Custom); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| setOperationAction(ISD::VP_MERGE, VT, Expand); |
| setOperationAction(ISD::VP_SELECT, VT, Expand); |
| |
| setOperationAction(ISD::VP_AND, VT, Custom); |
| setOperationAction(ISD::VP_OR, VT, Custom); |
| setOperationAction(ISD::VP_XOR, VT, Custom); |
| |
| setOperationAction(ISD::VECREDUCE_AND, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_OR, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); |
| |
| setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); |
| setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); |
| setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); |
| |
| // RVV has native int->float & float->int conversions where the |
| // element type sizes are within one power-of-two of each other. Any |
| // wider distances between type sizes have to be lowered as sequences |
| // which progressively narrow the gap in stages. |
| setOperationAction(ISD::SINT_TO_FP, VT, Custom); |
| setOperationAction(ISD::UINT_TO_FP, VT, Custom); |
| setOperationAction(ISD::FP_TO_SINT, VT, Custom); |
| setOperationAction(ISD::FP_TO_UINT, VT, Custom); |
| |
| // Expand all extending loads to types larger than this, and truncating |
| // stores from types larger than this. |
| for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { |
| setTruncStoreAction(OtherVT, VT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); |
| } |
| } |
| |
| for (MVT VT : IntVecVTs) { |
| if (VT.getVectorElementType() == MVT::i64 && |
| !Subtarget.hasVInstructionsI64()) |
| continue; |
| |
| setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); |
| setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); |
| |
| // Vectors implement MULHS/MULHU. |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| |
| // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. |
| if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) { |
| setOperationAction(ISD::MULHU, VT, Expand); |
| setOperationAction(ISD::MULHS, VT, Expand); |
| } |
| |
| setOperationAction(ISD::SMIN, VT, Legal); |
| setOperationAction(ISD::SMAX, VT, Legal); |
| setOperationAction(ISD::UMIN, VT, Legal); |
| setOperationAction(ISD::UMAX, VT, Legal); |
| |
| setOperationAction(ISD::ROTL, VT, Expand); |
| setOperationAction(ISD::ROTR, VT, Expand); |
| |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| setOperationAction(ISD::CTLZ, VT, Expand); |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| |
| setOperationAction(ISD::BSWAP, VT, Expand); |
| |
| // Custom-lower extensions and truncations from/to mask types. |
| setOperationAction(ISD::ANY_EXTEND, VT, Custom); |
| setOperationAction(ISD::SIGN_EXTEND, VT, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, VT, Custom); |
| |
| // RVV has native int->float & float->int conversions where the |
| // element type sizes are within one power-of-two of each other. Any |
| // wider distances between type sizes have to be lowered as sequences |
| // which progressively narrow the gap in stages. |
| setOperationAction(ISD::SINT_TO_FP, VT, Custom); |
| setOperationAction(ISD::UINT_TO_FP, VT, Custom); |
| setOperationAction(ISD::FP_TO_SINT, VT, Custom); |
| setOperationAction(ISD::FP_TO_UINT, VT, Custom); |
| |
| setOperationAction(ISD::SADDSAT, VT, Legal); |
| setOperationAction(ISD::UADDSAT, VT, Legal); |
| setOperationAction(ISD::SSUBSAT, VT, Legal); |
| setOperationAction(ISD::USUBSAT, VT, Legal); |
| |
| // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" |
| // nodes which truncate by one power of two at a time. |
| setOperationAction(ISD::TRUNCATE, VT, Custom); |
| |
| // Custom-lower insert/extract operations to simplify patterns. |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| |
| // Custom-lower reduction operations to set up the corresponding custom |
| // nodes' operands. |
| setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_AND, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_OR, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); |
| |
| for (unsigned VPOpc : IntegerVPOps) |
| setOperationAction(VPOpc, VT, Custom); |
| |
| setOperationAction(ISD::LOAD, VT, Custom); |
| setOperationAction(ISD::STORE, VT, Custom); |
| |
| setOperationAction(ISD::MLOAD, VT, Custom); |
| setOperationAction(ISD::MSTORE, VT, Custom); |
| setOperationAction(ISD::MGATHER, VT, Custom); |
| setOperationAction(ISD::MSCATTER, VT, Custom); |
| |
| setOperationAction(ISD::VP_LOAD, VT, Custom); |
| setOperationAction(ISD::VP_STORE, VT, Custom); |
| setOperationAction(ISD::VP_GATHER, VT, Custom); |
| setOperationAction(ISD::VP_SCATTER, VT, Custom); |
| |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); |
| |
| setOperationAction(ISD::SELECT, VT, Custom); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| |
| setOperationAction(ISD::STEP_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); |
| |
| for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { |
| setTruncStoreAction(VT, OtherVT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); |
| } |
| |
| // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point |
| // type that can represent the value exactly. |
| if (VT.getVectorElementType() != MVT::i64) { |
| MVT FloatEltVT = |
| VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; |
| EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); |
| if (isTypeLegal(FloatVT)) { |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); |
| } |
| } |
| } |
| |
| // Expand various CCs to best match the RVV ISA, which natively supports UNE |
| // but no other unordered comparisons, and supports all ordered comparisons |
| // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization |
| // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), |
| // and we pattern-match those back to the "original", swapping operands once |
| // more. This way we catch both operations and both "vf" and "fv" forms with |
| // fewer patterns. |
| static const ISD::CondCode VFPCCToExpand[] = { |
| ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, |
| ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, |
| ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, |
| }; |
| |
| // Sets common operation actions on RVV floating-point vector types. |
| const auto SetCommonVFPActions = [&](MVT VT) { |
| setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); |
| // RVV has native FP_ROUND & FP_EXTEND conversions where the element type |
| // sizes are within one power-of-two of each other. Therefore conversions |
| // between vXf16 and vXf64 must be lowered as sequences which convert via |
| // vXf32. |
| setOperationAction(ISD::FP_ROUND, VT, Custom); |
| setOperationAction(ISD::FP_EXTEND, VT, Custom); |
| // Custom-lower insert/extract operations to simplify patterns. |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| // Expand various condition codes (explained above). |
| for (auto CC : VFPCCToExpand) |
| setCondCodeAction(CC, VT, Expand); |
| |
| setOperationAction(ISD::FMINNUM, VT, Legal); |
| setOperationAction(ISD::FMAXNUM, VT, Legal); |
| |
| setOperationAction(ISD::FTRUNC, VT, Custom); |
| setOperationAction(ISD::FCEIL, VT, Custom); |
| setOperationAction(ISD::FFLOOR, VT, Custom); |
| |
| setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); |
| |
| setOperationAction(ISD::FCOPYSIGN, VT, Legal); |
| |
| setOperationAction(ISD::LOAD, VT, Custom); |
| setOperationAction(ISD::STORE, VT, Custom); |
| |
| setOperationAction(ISD::MLOAD, VT, Custom); |
| setOperationAction(ISD::MSTORE, VT, Custom); |
| setOperationAction(ISD::MGATHER, VT, Custom); |
| setOperationAction(ISD::MSCATTER, VT, Custom); |
| |
| setOperationAction(ISD::VP_LOAD, VT, Custom); |
| setOperationAction(ISD::VP_STORE, VT, Custom); |
| setOperationAction(ISD::VP_GATHER, VT, Custom); |
| setOperationAction(ISD::VP_SCATTER, VT, Custom); |
| |
| setOperationAction(ISD::SELECT, VT, Custom); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); |
| |
| setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); |
| |
| for (unsigned VPOpc : FloatingPointVPOps) |
| setOperationAction(VPOpc, VT, Custom); |
| }; |
| |
| // Sets common extload/truncstore actions on RVV floating-point vector |
| // types. |
| const auto SetCommonVFPExtLoadTruncStoreActions = |
| [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { |
| for (auto SmallVT : SmallerVTs) { |
| setTruncStoreAction(VT, SmallVT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); |
| } |
| }; |
| |
| if (Subtarget.hasVInstructionsF16()) |
| for (MVT VT : F16VecVTs) |
| SetCommonVFPActions(VT); |
| |
| for (MVT VT : F32VecVTs) { |
| if (Subtarget.hasVInstructionsF32()) |
| SetCommonVFPActions(VT); |
| SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); |
| } |
| |
| for (MVT VT : F64VecVTs) { |
| if (Subtarget.hasVInstructionsF64()) |
| SetCommonVFPActions(VT); |
| SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); |
| SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); |
| } |
| |
| if (Subtarget.useRVVForFixedLengthVectors()) { |
| for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { |
| if (!useRVVForFixedLengthVectorVT(VT)) |
| continue; |
| |
| // By default everything must be expanded. |
| for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) |
| setOperationAction(Op, VT, Expand); |
| for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { |
| setTruncStoreAction(VT, OtherVT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); |
| } |
| |
| // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. |
| setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); |
| |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| |
| setOperationAction(ISD::LOAD, VT, Custom); |
| setOperationAction(ISD::STORE, VT, Custom); |
| |
| setOperationAction(ISD::SETCC, VT, Custom); |
| |
| setOperationAction(ISD::SELECT, VT, Custom); |
| |
| setOperationAction(ISD::TRUNCATE, VT, Custom); |
| |
| setOperationAction(ISD::BITCAST, VT, Custom); |
| |
| setOperationAction(ISD::VECREDUCE_AND, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_OR, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); |
| |
| setOperationAction(ISD::VP_REDUCE_AND, VT, Custom); |
| setOperationAction(ISD::VP_REDUCE_OR, VT, Custom); |
| setOperationAction(ISD::VP_REDUCE_XOR, VT, Custom); |
| |
| setOperationAction(ISD::SINT_TO_FP, VT, Custom); |
| setOperationAction(ISD::UINT_TO_FP, VT, Custom); |
| setOperationAction(ISD::FP_TO_SINT, VT, Custom); |
| setOperationAction(ISD::FP_TO_UINT, VT, Custom); |
| |
| // Operations below are different for between masks and other vectors. |
| if (VT.getVectorElementType() == MVT::i1) { |
| setOperationAction(ISD::VP_AND, VT, Custom); |
| setOperationAction(ISD::VP_OR, VT, Custom); |
| setOperationAction(ISD::VP_XOR, VT, Custom); |
| setOperationAction(ISD::AND, VT, Custom); |
| setOperationAction(ISD::OR, VT, Custom); |
| setOperationAction(ISD::XOR, VT, Custom); |
| continue; |
| } |
| |
| // Use SPLAT_VECTOR to prevent type legalization from destroying the |
| // splats when type legalizing i64 scalar on RV32. |
| // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs |
| // improvements first. |
| if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { |
| setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); |
| setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); |
| } |
| |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| |
| setOperationAction(ISD::MLOAD, VT, Custom); |
| setOperationAction(ISD::MSTORE, VT, Custom); |
| setOperationAction(ISD::MGATHER, VT, Custom); |
| setOperationAction(ISD::MSCATTER, VT, Custom); |
| |
| setOperationAction(ISD::VP_LOAD, VT, Custom); |
| setOperationAction(ISD::VP_STORE, VT, Custom); |
| setOperationAction(ISD::VP_GATHER, VT, Custom); |
| setOperationAction(ISD::VP_SCATTER, VT, Custom); |
| |
| setOperationAction(ISD::ADD, VT, Custom); |
| setOperationAction(ISD::MUL, VT, Custom); |
| setOperationAction(ISD::SUB, VT, Custom); |
| setOperationAction(ISD::AND, VT, Custom); |
| setOperationAction(ISD::OR, VT, Custom); |
| setOperationAction(ISD::XOR, VT, Custom); |
| setOperationAction(ISD::SDIV, VT, Custom); |
| setOperationAction(ISD::SREM, VT, Custom); |
| setOperationAction(ISD::UDIV, VT, Custom); |
| setOperationAction(ISD::UREM, VT, Custom); |
| setOperationAction(ISD::SHL, VT, Custom); |
| setOperationAction(ISD::SRA, VT, Custom); |
| setOperationAction(ISD::SRL, VT, Custom); |
| |
| setOperationAction(ISD::SMIN, VT, Custom); |
| setOperationAction(ISD::SMAX, VT, Custom); |
| setOperationAction(ISD::UMIN, VT, Custom); |
| setOperationAction(ISD::UMAX, VT, Custom); |
| setOperationAction(ISD::ABS, VT, Custom); |
| |
| // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. |
| if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) { |
| setOperationAction(ISD::MULHS, VT, Custom); |
| setOperationAction(ISD::MULHU, VT, Custom); |
| } |
| |
| setOperationAction(ISD::SADDSAT, VT, Custom); |
| setOperationAction(ISD::UADDSAT, VT, Custom); |
| setOperationAction(ISD::SSUBSAT, VT, Custom); |
| setOperationAction(ISD::USUBSAT, VT, Custom); |
| |
| setOperationAction(ISD::VSELECT, VT, Custom); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| |
| setOperationAction(ISD::ANY_EXTEND, VT, Custom); |
| setOperationAction(ISD::SIGN_EXTEND, VT, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, VT, Custom); |
| |
| // Custom-lower reduction operations to set up the corresponding custom |
| // nodes' operands. |
| setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); |
| |
| for (unsigned VPOpc : IntegerVPOps) |
| setOperationAction(VPOpc, VT, Custom); |
| |
| // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point |
| // type that can represent the value exactly. |
| if (VT.getVectorElementType() != MVT::i64) { |
| MVT FloatEltVT = |
| VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32; |
| EVT FloatVT = |
| MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); |
| if (isTypeLegal(FloatVT)) { |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); |
| } |
| } |
| } |
| |
| for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { |
| if (!useRVVForFixedLengthVectorVT(VT)) |
| continue; |
| |
| // By default everything must be expanded. |
| for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) |
| setOperationAction(Op, VT, Expand); |
| for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); |
| setTruncStoreAction(VT, OtherVT, Expand); |
| } |
| |
| // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. |
| setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); |
| |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| |
| setOperationAction(ISD::LOAD, VT, Custom); |
| setOperationAction(ISD::STORE, VT, Custom); |
| setOperationAction(ISD::MLOAD, VT, Custom); |
| setOperationAction(ISD::MSTORE, VT, Custom); |
| setOperationAction(ISD::MGATHER, VT, Custom); |
| setOperationAction(ISD::MSCATTER, VT, Custom); |
| |
| setOperationAction(ISD::VP_LOAD, VT, Custom); |
| setOperationAction(ISD::VP_STORE, VT, Custom); |
| setOperationAction(ISD::VP_GATHER, VT, Custom); |
| setOperationAction(ISD::VP_SCATTER, VT, Custom); |
| |
| setOperationAction(ISD::FADD, VT, Custom); |
| setOperationAction(ISD::FSUB, VT, Custom); |
| setOperationAction(ISD::FMUL, VT, Custom); |
| setOperationAction(ISD::FDIV, VT, Custom); |
| setOperationAction(ISD::FNEG, VT, Custom); |
| setOperationAction(ISD::FABS, VT, Custom); |
| setOperationAction(ISD::FCOPYSIGN, VT, Custom); |
| setOperationAction(ISD::FSQRT, VT, Custom); |
| setOperationAction(ISD::FMA, VT, Custom); |
| setOperationAction(ISD::FMINNUM, VT, Custom); |
| setOperationAction(ISD::FMAXNUM, VT, Custom); |
| |
| setOperationAction(ISD::FP_ROUND, VT, Custom); |
| setOperationAction(ISD::FP_EXTEND, VT, Custom); |
| |
| setOperationAction(ISD::FTRUNC, VT, Custom); |
| setOperationAction(ISD::FCEIL, VT, Custom); |
| setOperationAction(ISD::FFLOOR, VT, Custom); |
| |
| for (auto CC : VFPCCToExpand) |
| setCondCodeAction(CC, VT, Expand); |
| |
| setOperationAction(ISD::VSELECT, VT, Custom); |
| setOperationAction(ISD::SELECT, VT, Custom); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| |
| setOperationAction(ISD::BITCAST, VT, Custom); |
| |
| setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); |
| |
| for (unsigned VPOpc : FloatingPointVPOps) |
| setOperationAction(VPOpc, VT, Custom); |
| } |
| |
| // Custom-legalize bitcasts from fixed-length vectors to scalar types. |
| setOperationAction(ISD::BITCAST, MVT::i8, Custom); |
| setOperationAction(ISD::BITCAST, MVT::i16, Custom); |
| setOperationAction(ISD::BITCAST, MVT::i32, Custom); |
| setOperationAction(ISD::BITCAST, MVT::i64, Custom); |
| if (Subtarget.hasStdExtZfh()) |
| setOperationAction(ISD::BITCAST, MVT::f16, Custom); |
| if (Subtarget.hasStdExtF()) |
| setOperationAction(ISD::BITCAST, MVT::f32, Custom); |
| if (Subtarget.hasStdExtD()) |
| setOperationAction(ISD::BITCAST, MVT::f64, Custom); |
| } |
| } |
| |
| // Function alignments. |
| const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); |
| setMinFunctionAlignment(FunctionAlignment); |
| setPrefFunctionAlignment(FunctionAlignment); |
| |
| setMinimumJumpTableEntries(5); |
| |
| // Jumps are expensive, compared to logic |
| setJumpIsExpensive(); |
| |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::SUB); |
| setTargetDAGCombine(ISD::AND); |
| setTargetDAGCombine(ISD::OR); |
| setTargetDAGCombine(ISD::XOR); |
| setTargetDAGCombine(ISD::ANY_EXTEND); |
| if (Subtarget.hasStdExtF()) { |
| setTargetDAGCombine(ISD::ZERO_EXTEND); |
| setTargetDAGCombine(ISD::FP_TO_SINT); |
| setTargetDAGCombine(ISD::FP_TO_UINT); |
| setTargetDAGCombine(ISD::FP_TO_SINT_SAT); |
| setTargetDAGCombine(ISD::FP_TO_UINT_SAT); |
| } |
| if (Subtarget.hasVInstructions()) { |
| setTargetDAGCombine(ISD::FCOPYSIGN); |
| setTargetDAGCombine(ISD::MGATHER); |
| setTargetDAGCombine(ISD::MSCATTER); |
| setTargetDAGCombine(ISD::VP_GATHER); |
| setTargetDAGCombine(ISD::VP_SCATTER); |
| setTargetDAGCombine(ISD::SRA); |
| setTargetDAGCombine(ISD::SRL); |
| setTargetDAGCombine(ISD::SHL); |
| setTargetDAGCombine(ISD::STORE); |
| } |
| |
| setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); |
| setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); |
| } |
| |
| EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, |
| LLVMContext &Context, |
| EVT VT) const { |
| if (!VT.isVector()) |
| return getPointerTy(DL); |
| if (Subtarget.hasVInstructions() && |
| (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) |
| return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { |
| return Subtarget.getXLenVT(); |
| } |
| |
| bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &I, |
| MachineFunction &MF, |
| unsigned Intrinsic) const { |
| auto &DL = I.getModule()->getDataLayout(); |
| switch (Intrinsic) { |
| default: |
| return false; |
| case Intrinsic::riscv_masked_atomicrmw_xchg_i32: |
| case Intrinsic::riscv_masked_atomicrmw_add_i32: |
| case Intrinsic::riscv_masked_atomicrmw_sub_i32: |
| case Intrinsic::riscv_masked_atomicrmw_nand_i32: |
| case Intrinsic::riscv_masked_atomicrmw_max_i32: |
| case Intrinsic::riscv_masked_atomicrmw_min_i32: |
| case Intrinsic::riscv_masked_atomicrmw_umax_i32: |
| case Intrinsic::riscv_masked_atomicrmw_umin_i32: |
| case Intrinsic::riscv_masked_cmpxchg_i32: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = Align(4); |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | |
| MachineMemOperand::MOVolatile; |
| return true; |
| case Intrinsic::riscv_masked_strided_load: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.ptrVal = I.getArgOperand(1); |
| Info.memVT = getValueType(DL, I.getType()->getScalarType()); |
| Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); |
| Info.size = MemoryLocation::UnknownSize; |
| Info.flags |= MachineMemOperand::MOLoad; |
| return true; |
| case Intrinsic::riscv_masked_strided_store: |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.ptrVal = I.getArgOperand(1); |
| Info.memVT = |
| getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); |
| Info.align = Align( |
| DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / |
| 8); |
| Info.size = MemoryLocation::UnknownSize; |
| Info.flags |= MachineMemOperand::MOStore; |
| return true; |
| } |
| } |
| |
| bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, |
| Instruction *I) const { |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| // Require a 12-bit signed offset. |
| if (!isInt<12>(AM.BaseOffs)) |
| return false; |
| |
| switch (AM.Scale) { |
| case 0: // "r+i" or just "i", depending on HasBaseReg. |
| break; |
| case 1: |
| if (!AM.HasBaseReg) // allow "r+i". |
| break; |
| return false; // disallow "r+r" or "r+r+i". |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| return isInt<12>(Imm); |
| } |
| |
| bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { |
| return isInt<12>(Imm); |
| } |
| |
| // On RV32, 64-bit integers are split into their high and low parts and held |
| // in two different registers, so the trunc is free since the low register can |
| // just be used. |
| bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { |
| if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) |
| return false; |
| unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); |
| unsigned DestBits = DstTy->getPrimitiveSizeInBits(); |
| return (SrcBits == 64 && DestBits == 32); |
| } |
| |
| bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { |
| if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || |
| !SrcVT.isInteger() || !DstVT.isInteger()) |
| return false; |
| unsigned SrcBits = SrcVT.getSizeInBits(); |
| unsigned DestBits = DstVT.getSizeInBits(); |
| return (SrcBits == 64 && DestBits == 32); |
| } |
| |
| bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| // Zexts are free if they can be combined with a load. |
| // Don't advertise i32->i64 zextload as being free for RV64. It interacts |
| // poorly with type legalization of compares preferring sext. |
| if (auto *LD = dyn_cast<LoadSDNode>(Val)) { |
| EVT MemVT = LD->getMemoryVT(); |
| if ((MemVT == MVT::i8 || MemVT == MVT::i16) && |
| (LD->getExtensionType() == ISD::NON_EXTLOAD || |
| LD->getExtensionType() == ISD::ZEXTLOAD)) |
| return true; |
| } |
| |
| return TargetLowering::isZExtFree(Val, VT2); |
| } |
| |
| bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { |
| return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; |
| } |
| |
| bool RISCVTargetLowering::isCheapToSpeculateCttz() const { |
| return Subtarget.hasStdExtZbb(); |
| } |
| |
| bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { |
| return Subtarget.hasStdExtZbb(); |
| } |
| |
| bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { |
| EVT VT = Y.getValueType(); |
| |
| // FIXME: Support vectors once we have tests. |
| if (VT.isVector()) |
| return false; |
| |
| return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() || |
| Subtarget.hasStdExtZbkb()) && |
| !isa<ConstantSDNode>(Y); |
| } |
| |
| /// Check if sinking \p I's operands to I's basic block is profitable, because |
| /// the operands can be folded into a target instruction, e.g. |
| /// splats of scalars can fold into vector instructions. |
| bool RISCVTargetLowering::shouldSinkOperands( |
| Instruction *I, SmallVectorImpl<Use *> &Ops) const { |
| using namespace llvm::PatternMatch; |
| |
| if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) |
| return false; |
| |
| auto IsSinker = [&](Instruction *I, int Operand) { |
| switch (I->getOpcode()) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| case Instruction::FMul: |
| case Instruction::FDiv: |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| return true; |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| return Operand == 1; |
| case Instruction::Call: |
| if (auto *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::fma: |
| return Operand == 0 || Operand == 1; |
| // FIXME: Our patterns can only match vx/vf instructions when the splat |
| // it on the RHS, because TableGen doesn't recognize our VP operations |
| // as commutative. |
| case Intrinsic::vp_add: |
| case Intrinsic::vp_mul: |
| case Intrinsic::vp_and: |
| case Intrinsic::vp_or: |
| case Intrinsic::vp_xor: |
| case Intrinsic::vp_fadd: |
| case Intrinsic::vp_fmul: |
| case Intrinsic::vp_shl: |
| case Intrinsic::vp_lshr: |
| case Intrinsic::vp_ashr: |
| case Intrinsic::vp_udiv: |
| case Intrinsic::vp_sdiv: |
| case Intrinsic::vp_urem: |
| case Intrinsic::vp_srem: |
| return Operand == 1; |
| // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have |
| // explicit patterns for both LHS and RHS (as 'vr' versions). |
| case Intrinsic::vp_sub: |
| case Intrinsic::vp_fsub: |
| case Intrinsic::vp_fdiv: |
| return Operand == 0 || Operand == 1; |
| default: |
| return false; |
| } |
| } |
| return false; |
| default: |
| return false; |
| } |
| }; |
| |
| for (auto OpIdx : enumerate(I->operands())) { |
| if (!IsSinker(I, OpIdx.index())) |
| continue; |
| |
| Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); |
| // Make sure we are not already sinking this operand |
| if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) |
| continue; |
| |
| // We are looking for a splat that can be sunk. |
| if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), |
| m_Undef(), m_ZeroMask()))) |
| continue; |
| |
| // All uses of the shuffle should be sunk to avoid duplicating it across gpr |
| // and vector registers |
| for (Use &U : Op->uses()) { |
| Instruction *Insn = cast<Instruction>(U.getUser()); |
| if (!IsSinker(Insn, U.getOperandNo())) |
| return false; |
| } |
| |
| Ops.push_back(&Op->getOperandUse(0)); |
| Ops.push_back(&OpIdx.value()); |
| } |
| return true; |
| } |
| |
| bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, |
| bool ForCodeSize) const { |
| // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. |
| if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) |
| return false; |
| if (VT == MVT::f32 && !Subtarget.hasStdExtF()) |
| return false; |
| if (VT == MVT::f64 && !Subtarget.hasStdExtD()) |
| return false; |
| return Imm.isZero(); |
| } |
| |
| bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { |
| return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || |
| (VT == MVT::f32 && Subtarget.hasStdExtF()) || |
| (VT == MVT::f64 && Subtarget.hasStdExtD()); |
| } |
| |
| MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, |
| CallingConv::ID CC, |
| EVT VT) const { |
| // Use f32 to pass f16 if it is legal and Zfh is not enabled. |
| // We might still end up using a GPR but that will be decided based on ABI. |
| // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. |
| if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) |
| return MVT::f32; |
| |
| return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); |
| } |
| |
| unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, |
| CallingConv::ID CC, |
| EVT VT) const { |
| // Use f32 to pass f16 if it is legal and Zfh is not enabled. |
| // We might still end up using a GPR but that will be decided based on ABI. |
| // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin. |
| if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) |
| return 1; |
| |
| return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); |
| } |
| |
| // Changes the condition code and swaps operands if necessary, so the SetCC |
| // operation matches one of the comparisons supported directly by branches |
| // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare |
| // with 1/-1. |
| static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, |
| ISD::CondCode &CC, SelectionDAG &DAG) { |
| // Convert X > -1 to X >= 0. |
| if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { |
| RHS = DAG.getConstant(0, DL, RHS.getValueType()); |
| CC = ISD::SETGE; |
| return; |
| } |
| // Convert X < 1 to 0 >= X. |
| if (CC == ISD::SETLT && isOneConstant(RHS)) { |
| RHS = LHS; |
| LHS = DAG.getConstant(0, DL, RHS.getValueType()); |
| CC = ISD::SETGE; |
| return; |
| } |
| |
| switch (CC) { |
| default: |
| break; |
| case ISD::SETGT: |
| case ISD::SETLE: |
| case ISD::SETUGT: |
| case ISD::SETULE: |
| CC = ISD::getSetCCSwappedOperands(CC); |
| std::swap(LHS, RHS); |
| break; |
| } |
| } |
| |
| RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { |
| assert(VT.isScalableVector() && "Expecting a scalable vector type"); |
| unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); |
| if (VT.getVectorElementType() == MVT::i1) |
| KnownSize *= 8; |
| |
| switch (KnownSize) { |
| default: |
| llvm_unreachable("Invalid LMUL."); |
| case 8: |
| return RISCVII::VLMUL::LMUL_F8; |
| case 16: |
| return RISCVII::VLMUL::LMUL_F4; |
| case 32: |
| return RISCVII::VLMUL::LMUL_F2; |
| case 64: |
| return RISCVII::VLMUL::LMUL_1; |
| case 128: |
| return RISCVII::VLMUL::LMUL_2; |
| case 256: |
| return RISCVII::VLMUL::LMUL_4; |
| case 512: |
| return RISCVII::VLMUL::LMUL_8; |
| } |
| } |
| |
| unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { |
| switch (LMul) { |
| default: |
| llvm_unreachable("Invalid LMUL."); |
| case RISCVII::VLMUL::LMUL_F8: |
| case RISCVII::VLMUL::LMUL_F4: |
| case RISCVII::VLMUL::LMUL_F2: |
| case RISCVII::VLMUL::LMUL_1: |
| return RISCV::VRRegClassID; |
| case RISCVII::VLMUL::LMUL_2: |
| return RISCV::VRM2RegClassID; |
| case RISCVII::VLMUL::LMUL_4: |
| return RISCV::VRM4RegClassID; |
| case RISCVII::VLMUL::LMUL_8: |
| return RISCV::VRM8RegClassID; |
| } |
| } |
| |
| unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { |
| RISCVII::VLMUL LMUL = getLMUL(VT); |
| if (LMUL == RISCVII::VLMUL::LMUL_F8 || |
| LMUL == RISCVII::VLMUL::LMUL_F4 || |
| LMUL == RISCVII::VLMUL::LMUL_F2 || |
| LMUL == RISCVII::VLMUL::LMUL_1) { |
| static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, |
| "Unexpected subreg numbering"); |
| return RISCV::sub_vrm1_0 + Index; |
| } |
| if (LMUL == RISCVII::VLMUL::LMUL_2) { |
| static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, |
| "Unexpected subreg numbering"); |
| return RISCV::sub_vrm2_0 + Index; |
| } |
| if (LMUL == RISCVII::VLMUL::LMUL_4) { |
| static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, |
| "Unexpected subreg numbering"); |
| return RISCV::sub_vrm4_0 + Index; |
| } |
| llvm_unreachable("Invalid vector type."); |
| } |
| |
| unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { |
| if (VT.getVectorElementType() == MVT::i1) |
| return RISCV::VRRegClassID; |
| return getRegClassIDForLMUL(getLMUL(VT)); |
| } |
| |
| // Attempt to decompose a subvector insert/extract between VecVT and |
| // SubVecVT via subregister indices. Returns the subregister index that |
| // can perform the subvector insert/extract with the given element index, as |
| // well as the index corresponding to any leftover subvectors that must be |
| // further inserted/extracted within the register class for SubVecVT. |
| std::pair<unsigned, unsigned> |
| RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( |
| MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, |
| const RISCVRegisterInfo *TRI) { |
| static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && |
| RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && |
| RISCV::VRM2RegClassID > RISCV::VRRegClassID), |
| "Register classes not ordered"); |
| unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); |
| unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); |
| // Try to compose a subregister index that takes us from the incoming |
| // LMUL>1 register class down to the outgoing one. At each step we half |
| // the LMUL: |
| // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 |
| // Note that this is not guaranteed to find a subregister index, such as |
| // when we are extracting from one VR type to another. |
| unsigned SubRegIdx = RISCV::NoSubRegister; |
| for (const unsigned RCID : |
| {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) |
| if (VecRegClassID > RCID && SubRegClassID <= RCID) { |
| VecVT = VecVT.getHalfNumVectorElementsVT(); |
| bool IsHi = |
| InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); |
| SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, |
| getSubregIndexByMVT(VecVT, IsHi)); |
| if (IsHi) |
| InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); |
| } |
| return {SubRegIdx, InsertExtractIdx}; |
| } |
| |
| // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar |
| // stores for those types. |
| bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { |
| return !Subtarget.useRVVForFixedLengthVectors() || |
| (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); |
| } |
| |
| bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { |
| if (ScalarTy->isPointerTy()) |
| return true; |
| |
| if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || |
| ScalarTy->isIntegerTy(32)) |
| return true; |
| |
| if (ScalarTy->isIntegerTy(64)) |
| return Subtarget.hasVInstructionsI64(); |
| |
| if (ScalarTy->isHalfTy()) |
| return Subtarget.hasVInstructionsF16(); |
| if (ScalarTy->isFloatTy()) |
| return Subtarget.hasVInstructionsF32(); |
| if (ScalarTy->isDoubleTy()) |
| return Subtarget.hasVInstructionsF64(); |
| |
| return false; |
| } |
| |
| static SDValue getVLOperand(SDValue Op) { |
| assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && |
| "Unexpected opcode"); |
| bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; |
| unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); |
| const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = |
| RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); |
| if (!II) |
| return SDValue(); |
| return Op.getOperand(II->VLOperand + 1 + HasChain); |
| } |
| |
| static bool useRVVForFixedLengthVectorVT(MVT VT, |
| const RISCVSubtarget &Subtarget) { |
| assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); |
| if (!Subtarget.useRVVForFixedLengthVectors()) |
| return false; |
| |
| // We only support a set of vector types with a consistent maximum fixed size |
| // across all supported vector element types to avoid legalization issues. |
| // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest |
| // fixed-length vector type we support is 1024 bytes. |
| if (VT.getFixedSizeInBits() > 1024 * 8) |
| return false; |
| |
| unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); |
| |
| MVT EltVT = VT.getVectorElementType(); |
| |
| // Don't use RVV for vectors we cannot scalarize if required. |
| switch (EltVT.SimpleTy) { |
| // i1 is supported but has different rules. |
| default: |
| return false; |
| case MVT::i1: |
| // Masks can only use a single register. |
| if (VT.getVectorNumElements() > MinVLen) |
| return false; |
| MinVLen /= 8; |
| break; |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| break; |
| case MVT::i64: |
| if (!Subtarget.hasVInstructionsI64()) |
| return false; |
| break; |
| case MVT::f16: |
| if (!Subtarget.hasVInstructionsF16()) |
| return false; |
| break; |
| case MVT::f32: |
| if (!Subtarget.hasVInstructionsF32()) |
| return false; |
| break; |
| case MVT::f64: |
| if (!Subtarget.hasVInstructionsF64()) |
| return false; |
| break; |
| } |
| |
| // Reject elements larger than ELEN. |
| if (EltVT.getSizeInBits() > Subtarget.getMaxELENForFixedLengthVectors()) |
| return false; |
| |
| unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); |
| // Don't use RVV for types that don't fit. |
| if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) |
| return false; |
| |
| // TODO: Perhaps an artificial restriction, but worth having whilst getting |
| // the base fixed length RVV support in place. |
| if (!VT.isPow2VectorType()) |
| return false; |
| |
| return true; |
| } |
| |
| bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { |
| return ::useRVVForFixedLengthVectorVT(VT, Subtarget); |
| } |
| |
| // Return the largest legal scalable vector type that matches VT's element type. |
| static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, |
| const RISCVSubtarget &Subtarget) { |
| // This may be called before legal types are setup. |
| assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || |
| useRVVForFixedLengthVectorVT(VT, Subtarget)) && |
| "Expected legal fixed length vector!"); |
| |
| unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); |
| unsigned MaxELen = Subtarget.getMaxELENForFixedLengthVectors(); |
| |
| MVT EltVT = VT.getVectorElementType(); |
| switch (EltVT.SimpleTy) { |
| default: |
| llvm_unreachable("unexpected element type for RVV container"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: |
| case MVT::f16: |
| case MVT::f32: |
| case MVT::f64: { |
| // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for |
| // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within |
| // each fractional LMUL we support SEW between 8 and LMUL*ELEN. |
| unsigned NumElts = |
| (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; |
| NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); |
| assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); |
| return MVT::getScalableVectorVT(EltVT, NumElts); |
| } |
| } |
| } |
| |
| static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, |
| const RISCVSubtarget &Subtarget) { |
| return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, |
| Subtarget); |
| } |
| |
| MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { |
| return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); |
| } |
| |
| // Grow V to consume an entire RVV register. |
| static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| assert(VT.isScalableVector() && |
| "Expected to convert into a scalable vector!"); |
| assert(V.getValueType().isFixedLengthVector() && |
| "Expected a fixed length vector operand!"); |
| SDLoc DL(V); |
| SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); |
| } |
| |
| // Shrink V so it's just big enough to maintain a VT's worth of data. |
| static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| assert(VT.isFixedLengthVector() && |
| "Expected to convert into a fixed length vector!"); |
| assert(V.getValueType().isScalableVector() && |
| "Expected a scalable vector operand!"); |
| SDLoc DL(V); |
| SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); |
| } |
| |
| // Gets the two common "VL" operands: an all-ones mask and the vector length. |
| // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is |
| // the vector type that it is contained in. |
| static std::pair<SDValue, SDValue> |
| getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| SDValue VL = VecVT.isFixedLengthVector() |
| ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) |
| : DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, XLenVT); |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); |
| return {Mask, VL}; |
| } |
| |
| // As above but assuming the given type is a scalable vector type. |
| static std::pair<SDValue, SDValue> |
| getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| assert(VecVT.isScalableVector() && "Expecting a scalable vector"); |
| return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); |
| } |
| |
| // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few |
| // of either is (currently) supported. This can get us into an infinite loop |
| // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR |
| // as a ..., etc. |
| // Until either (or both) of these can reliably lower any node, reporting that |
| // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks |
| // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, |
| // which is not desirable. |
| bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( |
| EVT VT, unsigned DefinedValues) const { |
| return false; |
| } |
| |
| bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { |
| // Only splats are currently supported. |
| if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) |
| return true; |
| |
| return false; |
| } |
| |
| static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| // RISCV FP-to-int conversions saturate to the destination register size, but |
| // don't produce 0 for nan. We can use a conversion instruction and fix the |
| // nan case with a compare and a select. |
| SDValue Src = Op.getOperand(0); |
| |
| EVT DstVT = Op.getValueType(); |
| EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| |
| bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; |
| unsigned Opc; |
| if (SatVT == DstVT) |
| Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; |
| else if (DstVT == MVT::i64 && SatVT == MVT::i32) |
| Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; |
| else |
| return SDValue(); |
| // FIXME: Support other SatVTs by clamping before or after the conversion. |
| |
| SDLoc DL(Op); |
| SDValue FpToInt = DAG.getNode( |
| Opc, DL, DstVT, Src, |
| DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); |
| |
| SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); |
| return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); |
| } |
| |
| // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain |
| // and back. Taking care to avoid converting values that are nan or already |
| // correct. |
| // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't |
| // have FRM dependencies modeled yet. |
| static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| assert(VT.isVector() && "Unexpected type"); |
| |
| SDLoc DL(Op); |
| |
| // Freeze the source since we are increasing the number of uses. |
| SDValue Src = DAG.getNode(ISD::FREEZE, DL, VT, Op.getOperand(0)); |
| |
| // Truncate to integer and convert back to FP. |
| MVT IntVT = VT.changeVectorElementTypeToInteger(); |
| SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src); |
| Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated); |
| |
| MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); |
| |
| if (Op.getOpcode() == ISD::FCEIL) { |
| // If the truncated value is the greater than or equal to the original |
| // value, we've computed the ceil. Otherwise, we went the wrong way and |
| // need to increase by 1. |
| // FIXME: This should use a masked operation. Handle here or in isel? |
| SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated, |
| DAG.getConstantFP(1.0, DL, VT)); |
| SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT); |
| Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); |
| } else if (Op.getOpcode() == ISD::FFLOOR) { |
| // If the truncated value is the less than or equal to the original value, |
| // we've computed the floor. Otherwise, we went the wrong way and need to |
| // decrease by 1. |
| // FIXME: This should use a masked operation. Handle here or in isel? |
| SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated, |
| DAG.getConstantFP(1.0, DL, VT)); |
| SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT); |
| Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated); |
| } |
| |
| // Restore the original sign so that -0.0 is preserved. |
| Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src); |
| |
| // Determine the largest integer that can be represented exactly. This and |
| // values larger than it don't have any fractional bits so don't need to |
| // be converted. |
| const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); |
| unsigned Precision = APFloat::semanticsPrecision(FltSem); |
| APFloat MaxVal = APFloat(FltSem); |
| MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), |
| /*IsSigned*/ false, APFloat::rmNearestTiesToEven); |
| SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); |
| |
| // If abs(Src) was larger than MaxVal or nan, keep it. |
| SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src); |
| SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT); |
| return DAG.getSelect(DL, VT, Setcc, Truncated, Src); |
| } |
| |
| static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| MVT VT = Op.getSimpleValueType(); |
| assert(VT.isFixedLengthVector() && "Unexpected vector!"); |
| |
| MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); |
| |
| SDLoc DL(Op); |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); |
| |
| unsigned Opc = |
| VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; |
| SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); |
| return convertFromScalableVector(VT, Splat, DAG, Subtarget); |
| } |
| |
| struct VIDSequence { |
| int64_t StepNumerator; |
| unsigned StepDenominator; |
| int64_t Addend; |
| }; |
| |
| // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] |
| // to the (non-zero) step S and start value X. This can be then lowered as the |
| // RVV sequence (VID * S) + X, for example. |
| // The step S is represented as an integer numerator divided by a positive |
| // denominator. Note that the implementation currently only identifies |
| // sequences in which either the numerator is +/- 1 or the denominator is 1. It |
| // cannot detect 2/3, for example. |
| // Note that this method will also match potentially unappealing index |
| // sequences, like <i32 0, i32 50939494>, however it is left to the caller to |
| // determine whether this is worth generating code for. |
| static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { |
| unsigned NumElts = Op.getNumOperands(); |
| assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); |
| if (!Op.getValueType().isInteger()) |
| return None; |
| |
| Optional<unsigned> SeqStepDenom; |
| Optional<int64_t> SeqStepNum, SeqAddend; |
| Optional<std::pair<uint64_t, unsigned>> PrevElt; |
| unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); |
| for (unsigned Idx = 0; Idx < NumElts; Idx++) { |
| // Assume undef elements match the sequence; we just have to be careful |
| // when interpolating across them. |
| if (Op.getOperand(Idx).isUndef()) |
| continue; |
| // The BUILD_VECTOR must be all constants. |
| if (!isa<ConstantSDNode>(Op.getOperand(Idx))) |
| return None; |
| |
| uint64_t Val = Op.getConstantOperandVal(Idx) & |
| maskTrailingOnes<uint64_t>(EltSizeInBits); |
| |
| if (PrevElt) { |
| // Calculate the step since the last non-undef element, and ensure |
| // it's consistent across the entire sequence. |
| unsigned IdxDiff = Idx - PrevElt->second; |
| int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); |
| |
| // A zero-value value difference means that we're somewhere in the middle |
| // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a |
| // step change before evaluating the sequence. |
| if (ValDiff == 0) |
| continue; |
| |
| int64_t Remainder = ValDiff % IdxDiff; |
| // Normalize the step if it's greater than 1. |
| if (Remainder != ValDiff) { |
| // The difference must cleanly divide the element span. |
| if (Remainder != 0) |
| return None; |
| ValDiff /= IdxDiff; |
| IdxDiff = 1; |
| } |
| |
| if (!SeqStepNum) |
| SeqStepNum = ValDiff; |
| else if (ValDiff != SeqStepNum) |
| return None; |
| |
| if (!SeqStepDenom) |
| SeqStepDenom = IdxDiff; |
| else if (IdxDiff != *SeqStepDenom) |
| return None; |
| } |
| |
| // Record this non-undef element for later. |
| if (!PrevElt || PrevElt->first != Val) |
| PrevElt = std::make_pair(Val, Idx); |
| } |
| |
| // We need to have logged a step for this to count as a legal index sequence. |
| if (!SeqStepNum || !SeqStepDenom) |
| return None; |
| |
| // Loop back through the sequence and validate elements we might have skipped |
| // while waiting for a valid step. While doing this, log any sequence addend. |
| for (unsigned Idx = 0; Idx < NumElts; Idx++) { |
| if (Op.getOperand(Idx).isUndef()) |
| continue; |
| uint64_t Val = Op.getConstantOperandVal(Idx) & |
| maskTrailingOnes<uint64_t>(EltSizeInBits); |
| uint64_t ExpectedVal = |
| (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; |
| int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); |
| if (!SeqAddend) |
| SeqAddend = Addend; |
| else if (Addend != SeqAddend) |
| return None; |
| } |
| |
| assert(SeqAddend && "Must have an addend if we have a step"); |
| |
| return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; |
| } |
| |
| static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| MVT VT = Op.getSimpleValueType(); |
| assert(VT.isFixedLengthVector() && "Unexpected vector!"); |
| |
| MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); |
| |
| SDLoc DL(Op); |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); |
| |
| MVT XLenVT = Subtarget.getXLenVT(); |
| unsigned NumElts = Op.getNumOperands(); |
| |
| if (VT.getVectorElementType() == MVT::i1) { |
| if (ISD::isBuildVectorAllZeros(Op.getNode())) { |
| SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); |
| return convertFromScalableVector(VT, VMClr, DAG, Subtarget); |
| } |
| |
| if (ISD::isBuildVectorAllOnes(Op.getNode())) { |
| SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); |
| return convertFromScalableVector(VT, VMSet, DAG, Subtarget); |
| } |
| |
| // Lower constant mask BUILD_VECTORs via an integer vector type, in |
| // scalar integer chunks whose bit-width depends on the number of mask |
| // bits and XLEN. |
| // First, determine the most appropriate scalar integer type to use. This |
| // is at most XLenVT, but may be shrunk to a smaller vector element type |
| // according to the size of the final vector - use i8 chunks rather than |
| // XLenVT if we're producing a v8i1. This results in more consistent |
| // codegen across RV32 and RV64. |
| unsigned NumViaIntegerBits = |
| std::min(std::max(NumElts, 8u), Subtarget.getXLen()); |
| NumViaIntegerBits = std::min(NumViaIntegerBits, |
| Subtarget.getMaxELENForFixedLengthVectors()); |
| if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { |
| // If we have to use more than one INSERT_VECTOR_ELT then this |
| // optimization is likely to increase code size; avoid peforming it in |
| // such a case. We can use a load from a constant pool in this case. |
| if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) |
| return SDValue(); |
| // Now we can create our integer vector type. Note that it may be larger |
| // than the resulting mask type: v4i1 would use v1i8 as its integer type. |
| MVT IntegerViaVecVT = |
| MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), |
| divideCeil(NumElts, NumViaIntegerBits)); |
| |
| uint64_t Bits = 0; |
| unsigned BitPos = 0, IntegerEltIdx = 0; |
| SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); |
| |
| for (unsigned I = 0; I < NumElts; I++, BitPos++) { |
| // Once we accumulate enough bits to fill our scalar type, insert into |
| // our vector and clear our accumulated data. |
| if (I != 0 && I % NumViaIntegerBits == 0) { |
| if (NumViaIntegerBits <= 32) |
| Bits = SignExtend64(Bits, 32); |
| SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, |
| Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); |
| Bits = 0; |
| BitPos = 0; |
| IntegerEltIdx++; |
| } |
| SDValue V = Op.getOperand(I); |
| bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); |
| Bits |= ((uint64_t)BitValue << BitPos); |
| } |
| |
| // Insert the (remaining) scalar value into position in our integer |
| // vector type. |
| if (NumViaIntegerBits <= 32) |
| Bits = SignExtend64(Bits, 32); |
| SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, |
| DAG.getConstant(IntegerEltIdx, DL, XLenVT)); |
| |
| if (NumElts < NumViaIntegerBits) { |
| // If we're producing a smaller vector than our minimum legal integer |
| // type, bitcast to the equivalent (known-legal) mask type, and extract |
| // our final mask. |
| assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); |
| Vec = DAG.getBitcast(MVT::v8i1, Vec); |
| Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, |
| DAG.getConstant(0, DL, XLenVT)); |
| } else { |
| // Else we must have produced an integer type with the same size as the |
| // mask type; bitcast for the final result. |
| assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); |
| Vec = DAG.getBitcast(VT, Vec); |
| } |
| |
| return Vec; |
| } |
| |
| // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask |
| // vector type, we have a legal equivalently-sized i8 type, so we can use |
| // that. |
| MVT WideVecVT = VT.changeVectorElementType(MVT::i8); |
| SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); |
| |
| SDValue WideVec; |
| if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { |
| // For a splat, perform a scalar truncate before creating the wider |
| // vector. |
| assert(Splat.getValueType() == XLenVT && |
| "Unexpected type for i1 splat value"); |
| Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, |
| DAG.getConstant(1, DL, XLenVT)); |
| WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); |
| } else { |
| SmallVector<SDValue, 8> Ops(Op->op_values()); |
| WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); |
| SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); |
| WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); |
| } |
| |
| return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); |
| } |
| |
| if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { |
| unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL |
| : RISCVISD::VMV_V_X_VL; |
| Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); |
| return convertFromScalableVector(VT, Splat, DAG, Subtarget); |
| } |
| |
| // Try and match index sequences, which we can lower to the vid instruction |
| // with optional modifications. An all-undef vector is matched by |
| // getSplatValue, above. |
| if (auto SimpleVID = isSimpleVIDSequence(Op)) { |
| int64_t StepNumerator = SimpleVID->StepNumerator; |
| unsigned StepDenominator = SimpleVID->StepDenominator; |
| int64_t Addend = SimpleVID->Addend; |
| |
| assert(StepNumerator != 0 && "Invalid step"); |
| bool Negate = false; |
| int64_t SplatStepVal = StepNumerator; |
| unsigned StepOpcode = ISD::MUL; |
| if (StepNumerator != 1) { |
| if (isPowerOf2_64(std::abs(StepNumerator))) { |
| Negate = StepNumerator < 0; |
| StepOpcode = ISD::SHL; |
| SplatStepVal = Log2_64(std::abs(StepNumerator)); |
| } |
| } |
| |
| // Only emit VIDs with suitably-small steps/addends. We use imm5 is a |
| // threshold since it's the immediate value many RVV instructions accept. |
| // There is no vmul.vi instruction so ensure multiply constant can fit in |
| // a single addi instruction. |
| if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || |
| (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && |
| isPowerOf2_32(StepDenominator) && |
| (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) { |
| SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); |
| // Convert right out of the scalable type so we can use standard ISD |
| // nodes for the rest of the computation. If we used scalable types with |
| // these, we'd lose the fixed-length vector info and generate worse |
| // vsetvli code. |
| VID = convertFromScalableVector(VT, VID, DAG, Subtarget); |
| if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || |
| (StepOpcode == ISD::SHL && SplatStepVal != 0)) { |
| SDValue SplatStep = DAG.getSplatVector( |
| VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); |
| VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep); |
| } |
| if (StepDenominator != 1) { |
| SDValue SplatStep = DAG.getSplatVector( |
| VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); |
| VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep); |
| } |
| if (Addend != 0 || Negate) { |
| SDValue SplatAddend = |
| DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT)); |
| VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID); |
| } |
| return VID; |
| } |
| } |
| |
| // Attempt to detect "hidden" splats, which only reveal themselves as splats |
| // when re-interpreted as a vector with a larger element type. For example, |
| // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 |
| // could be instead splat as |
| // v2i32 = build_vector i32 0x00010000, i32 0x00010000 |
| // TODO: This optimization could also work on non-constant splats, but it |
| // would require bit-manipulation instructions to construct the splat value. |
| SmallVector<SDValue> Sequence; |
| unsigned EltBitSize = VT.getScalarSizeInBits(); |
| const auto *BV = cast<BuildVectorSDNode>(Op); |
| if (VT.isInteger() && EltBitSize < 64 && |
| ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && |
| BV->getRepeatedSequence(Sequence) && |
| (Sequence.size() * EltBitSize) <= 64) { |
| unsigned SeqLen = Sequence.size(); |
| MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); |
| MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); |
| assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || |
| ViaIntVT == MVT::i64) && |
| "Unexpected sequence type"); |
| |
| unsigned EltIdx = 0; |
| uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); |
| uint64_t SplatValue = 0; |
| // Construct the amalgamated value which can be splatted as this larger |
| // vector type. |
| for (const auto &SeqV : Sequence) { |
| if (!SeqV.isUndef()) |
| SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) |
| << (EltIdx * EltBitSize)); |
| EltIdx++; |
| } |
| |
| // On RV64, sign-extend from 32 to 64 bits where possible in order to |
| // achieve better constant materializion. |
| if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) |
| SplatValue = SignExtend64(SplatValue, 32); |
| |
| // Since we can't introduce illegal i64 types at this stage, we can only |
| // perform an i64 splat on RV32 if it is its own sign-extended value. That |
| // way we can use RVV instructions to splat. |
| assert((ViaIntVT.bitsLE(XLenVT) || |
| (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && |
| "Unexpected bitcast sequence"); |
| if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { |
| SDValue ViaVL = |
| DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); |
| MVT ViaContainerVT = |
| getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); |
| SDValue Splat = |
| DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, |
| DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); |
| Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); |
| return DAG.getBitcast(VT, Splat); |
| } |
| } |
| |
| // Try and optimize BUILD_VECTORs with "dominant values" - these are values |
| // which constitute a large proportion of the elements. In such cases we can |
| // splat a vector with the dominant element and make up the shortfall with |
| // INSERT_VECTOR_ELTs. |
| // Note that this includes vectors of 2 elements by association. The |
| // upper-most element is the "dominant" one, allowing us to use a splat to |
| // "insert" the upper element, and an insert of the lower element at position |
| // 0, which improves codegen. |
| SDValue DominantValue; |
| unsigned MostCommonCount = 0; |
| DenseMap<SDValue, unsigned> ValueCounts; |
| unsigned NumUndefElts = |
| count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); |
| |
| // Track the number of scalar loads we know we'd be inserting, estimated as |
| // any non-zero floating-point constant. Other kinds of element are either |
| // already in registers or are materialized on demand. The threshold at which |
| // a vector load is more desirable than several scalar materializion and |
| // vector-insertion instructions is not known. |
| unsigned NumScalarLoads = 0; |
| |
| for (SDValue V : Op->op_values()) { |
| if (V.isUndef()) |
| continue; |
| |
| ValueCounts.insert(std::make_pair(V, 0)); |
| unsigned &Count = ValueCounts[V]; |
| |
| if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) |
| NumScalarLoads += !CFP->isExactlyValue(+0.0); |
| |
| // Is this value dominant? In case of a tie, prefer the highest element as |
| // it's cheaper to insert near the beginning of a vector than it is at the |
| // end. |
| if (++Count >= MostCommonCount) { |
| DominantValue = V; |
| MostCommonCount = Count; |
| } |
| } |
| |
| assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); |
| unsigned NumDefElts = NumElts - NumUndefElts; |
| unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; |
| |
| // Don't perform this optimization when optimizing for size, since |
| // materializing elements and inserting them tends to cause code bloat. |
| if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && |
| ((MostCommonCount > DominantValueCountThreshold) || |
| (ValueCounts.size() <= Log2_32(NumDefElts)))) { |
| // Start by splatting the most common element. |
| SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); |
| |
| DenseSet<SDValue> Processed{DominantValue}; |
| MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); |
| for (const auto &OpIdx : enumerate(Op->ops())) { |
| const SDValue &V = OpIdx.value(); |
| if (V.isUndef() || !Processed.insert(V).second) |
| continue; |
| if (ValueCounts[V] == 1) { |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, |
| DAG.getConstant(OpIdx.index(), DL, XLenVT)); |
| } else { |
| // Blend in all instances of this value using a VSELECT, using a |
| // mask where each bit signals whether that element is the one |
| // we're after. |
| SmallVector<SDValue> Ops; |
| transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { |
| return DAG.getConstant(V == V1, DL, XLenVT); |
| }); |
| Vec = DAG.getNode(ISD::VSELECT, DL, VT, |
| DAG.getBuildVector(SelMaskTy, DL, Ops), |
| DAG.getSplatBuildVector(VT, DL, V), Vec); |
| } |
| } |
| |
| return Vec; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, |
| SDValue Hi, SDValue VL, SelectionDAG &DAG) { |
| if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { |
| int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); |
| int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); |
| // If Hi constant is all the same sign bit as Lo, lower this as a custom |
| // node in order to try and match RVV vector/scalar instructions. |
| if ((LoC >> 31) == HiC) |
| return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); |
| |
| // If vl is equal to VLMax and Hi constant is equal to Lo, we could use |
| // vmv.v.x whose EEW = 32 to lower it. |
| auto *Const = dyn_cast<ConstantSDNode>(VL); |
| if (LoC == HiC && Const && Const->getSExtValue() == RISCV::VLMaxSentinel) { |
| MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); |
| // TODO: if vl <= min(VLMAX), we can also do this. But we could not |
| // access the subtarget here now. |
| auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT, Lo, VL); |
| return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); |
| } |
| } |
| |
| // Fall back to a stack store and stride x0 vector load. |
| return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL); |
| } |
| |
| // Called by type legalization to handle splat of i64 on RV32. |
| // FIXME: We can optimize this when the type has sign or zero bits in one |
| // of the halves. |
| static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, |
| SDValue VL, SelectionDAG &DAG) { |
| assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, |
| DAG.getConstant(0, DL, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, |
| DAG.getConstant(1, DL, MVT::i32)); |
| return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); |
| } |
| |
| // This function lowers a splat of a scalar operand Splat with the vector |
| // length VL. It ensures the final sequence is type legal, which is useful when |
| // lowering a splat after type legalization. |
| static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, |
| SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| if (VT.isFloatingPoint()) { |
| // If VL is 1, we could use vfmv.s.f. |
| if (isOneConstant(VL)) |
| return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, DAG.getUNDEF(VT), |
| Scalar, VL); |
| return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); |
| } |
| |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| // Simplest case is that the operand needs to be promoted to XLenVT. |
| if (Scalar.getValueType().bitsLE(XLenVT)) { |
| // If the operand is a constant, sign extend to increase our chances |
| // of being able to use a .vi instruction. ANY_EXTEND would become a |
| // a zero extend and the simm5 check in isel would fail. |
| // FIXME: Should we ignore the upper bits in isel instead? |
| unsigned ExtOpc = |
| isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; |
| Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); |
| ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); |
| // If VL is 1 and the scalar value won't benefit from immediate, we could |
| // use vmv.s.x. |
| if (isOneConstant(VL) && |
| (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) |
| return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), Scalar, |
| VL); |
| return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); |
| } |
| |
| assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && |
| "Unexpected scalar for splat lowering!"); |
| |
| if (isOneConstant(VL) && isNullConstant(Scalar)) |
| return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, DAG.getUNDEF(VT), |
| DAG.getConstant(0, DL, XLenVT), VL); |
| |
| // Otherwise use the more complicated splatting algorithm. |
| return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); |
| } |
| |
| // Is the mask a slidedown that shifts in undefs. |
| static int matchShuffleAsSlideDown(ArrayRef<int> Mask) { |
| int Size = Mask.size(); |
| |
| // Elements shifted in should be undef. |
| auto CheckUndefs = [&](int Shift) { |
| for (int i = Size - Shift; i != Size; ++i) |
| if (Mask[i] >= 0) |
| return false; |
| return true; |
| }; |
| |
| // Elements should be shifted or undef. |
| auto MatchShift = [&](int Shift) { |
| for (int i = 0; i != Size - Shift; ++i) |
| if (Mask[i] >= 0 && Mask[i] != Shift + i) |
| return false; |
| return true; |
| }; |
| |
| // Try all possible shifts. |
| for (int Shift = 1; Shift != Size; ++Shift) |
| if (CheckUndefs(Shift) && MatchShift(Shift)) |
| return Shift; |
| |
| // No match. |
| return -1; |
| } |
| |
| static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, |
| const RISCVSubtarget &Subtarget) { |
| // We need to be able to widen elements to the next larger integer type. |
| if (VT.getScalarSizeInBits() >= Subtarget.getMaxELENForFixedLengthVectors()) |
| return false; |
| |
| int Size = Mask.size(); |
| assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); |
| |
| int Srcs[] = {-1, -1}; |
| for (int i = 0; i != Size; ++i) { |
| // Ignore undef elements. |
| if (Mask[i] < 0) |
| continue; |
| |
| // Is this an even or odd element. |
| int Pol = i % 2; |
| |
| // Ensure we consistently use the same source for this element polarity. |
| int Src = Mask[i] / Size; |
| if (Srcs[Pol] < 0) |
| Srcs[Pol] = Src; |
| if (Srcs[Pol] != Src) |
| return false; |
| |
| // Make sure the element within the source is appropriate for this element |
| // in the destination. |
| int Elt = Mask[i] % Size; |
| if (Elt != i / 2) |
| return false; |
| } |
| |
| // We need to find a source for each polarity and they can't be the same. |
| if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) |
| return false; |
| |
| // Swap the sources if the second source was in the even polarity. |
| SwapSources = Srcs[0] > Srcs[1]; |
| |
| return true; |
| } |
| |
| static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| SDLoc DL(Op); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| MVT VT = Op.getSimpleValueType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); |
| |
| MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); |
| |
| SDValue TrueMask, VL; |
| std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); |
| |
| if (SVN->isSplat()) { |
| const int Lane = SVN->getSplatIndex(); |
| if (Lane >= 0) { |
| MVT SVT = VT.getVectorElementType(); |
| |
| // Turn splatted vector load into a strided load with an X0 stride. |
| SDValue V = V1; |
| // Peek through CONCAT_VECTORS as VectorCombine can concat a vector |
| // with undef. |
| // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? |
| int Offset = Lane; |
| if (V.getOpcode() == ISD::CONCAT_VECTORS) { |
| int OpElements = |
| V.getOperand(0).getSimpleValueType().getVectorNumElements(); |
| V = V.getOperand(Offset / OpElements); |
| Offset %= OpElements; |
| } |
| |
| // We need to ensure the load isn't atomic or volatile. |
| if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { |
| auto *Ld = cast<LoadSDNode>(V); |
| Offset *= SVT.getStoreSize(); |
| SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), |
| TypeSize::Fixed(Offset), DL); |
| |
| // If this is SEW=64 on RV32, use a strided load with a stride of x0. |
| if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { |
| SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); |
| SDValue IntID = |
| DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); |
| SDValue Ops[] = {Ld->getChain(), |
| IntID, |
| DAG.getUNDEF(ContainerVT), |
| NewAddr, |
| DAG.getRegister(RISCV::X0, XLenVT), |
| VL}; |
| SDValue NewLoad = DAG.getMemIntrinsicNode( |
| ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, |
| DAG.getMachineFunction().getMachineMemOperand( |
| Ld->getMemOperand(), Offset, SVT.getStoreSize())); |
| DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); |
| return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); |
| } |
| |
| // Otherwise use a scalar load and splat. This will give the best |
| // opportunity to fold a splat into the operation. ISel can turn it into |
| // the x0 strided load if we aren't able to fold away the select. |
| if (SVT.isFloatingPoint()) |
| V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, |
| Ld->getPointerInfo().getWithOffset(Offset), |
| Ld->getOriginalAlign(), |
| Ld->getMemOperand()->getFlags()); |
| else |
| V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, |
| Ld->getPointerInfo().getWithOffset(Offset), SVT, |
| Ld->getOriginalAlign(), |
| Ld->getMemOperand()->getFlags()); |
| DAG.makeEquivalentMemoryOrdering(Ld, V); |
| |
| unsigned Opc = |
| VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; |
| SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); |
| return convertFromScalableVector(VT, Splat, DAG, Subtarget); |
| } |
| |
| V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); |
| assert(Lane < (int)NumElts && "Unexpected lane!"); |
| SDValue Gather = |
| DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, |
| DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); |
| return convertFromScalableVector(VT, Gather, DAG, Subtarget); |
| } |
| } |
| |
| ArrayRef<int> Mask = SVN->getMask(); |
| |
| // Try to match as a slidedown. |
| int SlideAmt = matchShuffleAsSlideDown(Mask); |
| if (SlideAmt >= 0) { |
| // TODO: Should we reduce the VL to account for the upper undef elements? |
| // Requires additional vsetvlis, but might be faster to execute. |
| V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); |
| SDValue SlideDown = |
| DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, |
| DAG.getUNDEF(ContainerVT), V1, |
| DAG.getConstant(SlideAmt, DL, XLenVT), |
| TrueMask, VL); |
| return convertFromScalableVector(VT, SlideDown, DAG, Subtarget); |
| } |
| |
| // Detect an interleave shuffle and lower to |
| // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) |
| bool SwapSources; |
| if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { |
| // Swap sources if needed. |
| if (SwapSources) |
| std::swap(V1, V2); |
| |
| // Extract the lower half of the vectors. |
| MVT HalfVT = VT.getHalfNumVectorElementsVT(); |
| V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, |
| DAG.getConstant(0, DL, XLenVT)); |
| V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, |
| DAG.getConstant(0, DL, XLenVT)); |
| |
| // Double the element width and halve the number of elements in an int type. |
| unsigned EltBits = VT.getScalarSizeInBits(); |
| MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); |
| MVT WideIntVT = |
| MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); |
| // Convert this to a scalable vector. We need to base this on the |
| // destination size to ensure there's always a type with a smaller LMUL. |
| MVT WideIntContainerVT = |
| getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); |
| |
| // Convert sources to scalable vectors with the same element count as the |
| // larger type. |
| MVT HalfContainerVT = MVT::getVectorVT( |
| VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); |
| V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); |
| V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); |
| |
| // Cast sources to integer. |
| MVT IntEltVT = MVT::getIntegerVT(EltBits); |
| MVT IntHalfVT = |
| MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); |
| V1 = DAG.getBitcast(IntHalfVT, V1); |
| V2 = DAG.getBitcast(IntHalfVT, V2); |
| |
| // Freeze V2 since we use it twice and we need to be sure that the add and |
| // multiply see the same value. |
| V2 = DAG.getNode(ISD::FREEZE, DL, IntHalfVT, V2); |
| |
| // Recreate TrueMask using the widened type's element count. |
| MVT MaskVT = |
| MVT::getVectorVT(MVT::i1, HalfContainerVT.getVectorElementCount()); |
| TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); |
| |
| // Widen V1 and V2 with 0s and add one copy of V2 to V1. |
| SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, |
| V2, TrueMask, VL); |
| // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. |
| SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, |
| DAG.getAllOnesConstant(DL, XLenVT)); |
| SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, |
| V2, Multiplier, TrueMask, VL); |
| // Add the new copies to our previous addition giving us 2^eltbits copies of |
| // V2. This is equivalent to shifting V2 left by eltbits. This should |
| // combine with the vwmulu.vv above to form vwmaccu.vv. |
| Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, |
| TrueMask, VL); |
| // Cast back to ContainerVT. We need to re-create a new ContainerVT in case |
| // WideIntContainerVT is a larger fractional LMUL than implied by the fixed |
| // vector VT. |
| ContainerVT = |
| MVT::getVectorVT(VT.getVectorElementType(), |
| WideIntContainerVT.getVectorElementCount() * 2); |
| Add = DAG.getBitcast(ContainerVT, Add); |
| return convertFromScalableVector(VT, Add, DAG, Subtarget); |
| } |
| |
| // Detect shuffles which can be re-expressed as vector selects; these are |
| // shuffles in which each element in the destination is taken from an element |
| // at the corresponding index in either source vectors. |
| bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { |
| int MaskIndex = MaskIdx.value(); |
| return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; |
| }); |
| |
| assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); |
| |
| SmallVector<SDValue> MaskVals; |
| // As a backup, shuffles can be lowered via a vrgather instruction, possibly |
| // merged with a second vrgather. |
| SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; |
| |
| // By default we preserve the original operand order, and use a mask to |
| // select LHS as true and RHS as false. However, since RVV vector selects may |
| // feature splats but only on the LHS, we may choose to invert our mask and |
| // instead select between RHS and LHS. |
| bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); |
| bool InvertMask = IsSelect == SwapOps; |
| |
| // Keep a track of which non-undef indices are used by each LHS/RHS shuffle |
| // half. |
| DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; |
| |
| // Now construct the mask that will be used by the vselect or blended |
| // vrgather operation. For vrgathers, construct the appropriate indices into |
| // each vector. |
| for (int MaskIndex : Mask) { |
| bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; |
| MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); |
| if (!IsSelect) { |
| bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; |
| GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 |
| ? DAG.getConstant(MaskIndex, DL, XLenVT) |
| : DAG.getUNDEF(XLenVT)); |
| GatherIndicesRHS.push_back( |
| IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) |
| : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); |
| if (IsLHSOrUndefIndex && MaskIndex >= 0) |
| ++LHSIndexCounts[MaskIndex]; |
| if (!IsLHSOrUndefIndex) |
| ++RHSIndexCounts[MaskIndex - NumElts]; |
| } |
| } |
| |
| if (SwapOps) { |
| std::swap(V1, V2); |
| std::swap(GatherIndicesLHS, GatherIndicesRHS); |
| } |
| |
| assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); |
| SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); |
| |
| if (IsSelect) |
| return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); |
| |
| if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { |
| // On such a large vector we're unable to use i8 as the index type. |
| // FIXME: We could promote the index to i16 and use vrgatherei16, but that |
| // may involve vector splitting if we're already at LMUL=8, or our |
| // user-supplied maximum fixed-length LMUL. |
| return SDValue(); |
| } |
| |
| unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; |
| unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; |
| MVT IndexVT = VT.changeTypeToInteger(); |
| // Since we can't introduce illegal index types at this stage, use i16 and |
| // vrgatherei16 if the corresponding index type for plain vrgather is greater |
| // than XLenVT. |
| if (IndexVT.getScalarType().bitsGT(XLenVT)) { |
| GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; |
| IndexVT = IndexVT.changeVectorElementType(MVT::i16); |
| } |
| |
| MVT IndexContainerVT = |
| ContainerVT.changeVectorElementType(IndexVT.getScalarType()); |
| |
| SDValue Gather; |
| // TODO: This doesn't trigger for i64 vectors on RV32, since there we |
| // encounter a bitcasted BUILD_VECTOR with low/high i32 values. |
| if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { |
| Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); |
| } else { |
| V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); |
| // If only one index is used, we can use a "splat" vrgather. |
| // TODO: We can splat the most-common index and fix-up any stragglers, if |
| // that's beneficial. |
| if (LHSIndexCounts.size() == 1) { |
| int SplatIndex = LHSIndexCounts.begin()->getFirst(); |
| Gather = |
| DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, |
| DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); |
| } else { |
| SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); |
| LHSIndices = |
| convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); |
| |
| Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, |
| TrueMask, VL); |
| } |
| } |
| |
| // If a second vector operand is used by this shuffle, blend it in with an |
| // additional vrgather. |
| if (!V2.isUndef()) { |
| V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); |
| // If only one index is used, we can use a "splat" vrgather. |
| // TODO: We can splat the most-common index and fix-up any stragglers, if |
| // that's beneficial. |
| if (RHSIndexCounts.size() == 1) { |
| int SplatIndex = RHSIndexCounts.begin()->getFirst(); |
| V2 = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, |
| DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask, VL); |
| } else { |
| SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); |
| RHSIndices = |
| convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); |
| V2 = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, |
| VL); |
| } |
| |
| MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); |
| SelectMask = |
| convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); |
| |
| Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, |
| Gather, VL); |
| } |
| |
| return convertFromScalableVector(VT, Gather, DAG, Subtarget); |
| } |
| |
| static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, |
| SDLoc DL, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| if (VT.isScalableVector()) |
| return DAG.getFPExtendOrRound(Op, DL, VT); |
| assert(VT.isFixedLengthVector() && |
| "Unexpected value type for RVV FP extend/round lowering"); |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); |
| unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) |
| ? RISCVISD::FP_EXTEND_VL |
| : RISCVISD::FP_ROUND_VL; |
| return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); |
| } |
| |
| // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting |
| // the exponent. |
| static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getSimpleValueType(); |
| unsigned EltSize = VT.getScalarSizeInBits(); |
| SDValue Src = Op.getOperand(0); |
| SDLoc DL(Op); |
| |
| // We need a FP type that can represent the value. |
| // TODO: Use f16 for i8 when possible? |
| MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32; |
| MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); |
| |
| // Legal types should have been checked in the RISCVTargetLowering |
| // constructor. |
| // TODO: Splitting may make sense in some cases. |
| assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && |
| "Expected legal float type!"); |
| |
| // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. |
| // The trailing zero count is equal to log2 of this single bit value. |
| if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { |
| SDValue Neg = |
| DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src); |
| Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); |
| } |
| |
| // We have a legal FP type, convert to it. |
| SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); |
| // Bitcast to integer and shift the exponent to the LSB. |
| EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); |
| SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); |
| unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; |
| SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, |
| DAG.getConstant(ShiftAmt, DL, IntVT)); |
| // Truncate back to original type to allow vnsrl. |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift); |
| // The exponent contains log2 of the value in biased form. |
| unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; |
| |
| // For trailing zeros, we just need to subtract the bias. |
| if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) |
| return DAG.getNode(ISD::SUB, DL, VT, Trunc, |
| DAG.getConstant(ExponentBias, DL, VT)); |
| |
| // For leading zeros, we need to remove the bias and convert from log2 to |
| // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). |
| unsigned Adjust = ExponentBias + (EltSize - 1); |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc); |
| } |
| |
| // While RVV has alignment restrictions, we should always be able to load as a |
| // legal equivalently-sized byte-typed vector instead. This method is |
| // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If |
| // the load is already correctly-aligned, it returns SDValue(). |
| SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto *Load = cast<LoadSDNode>(Op); |
| assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); |
| |
| if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| Load->getMemoryVT(), |
| *Load->getMemOperand())) |
| return SDValue(); |
| |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| unsigned EltSizeBits = VT.getScalarSizeInBits(); |
| assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && |
| "Unexpected unaligned RVV load type"); |
| MVT NewVT = |
| MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); |
| assert(NewVT.isValid() && |
| "Expecting equally-sized RVV vector types to be legal"); |
| SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), |
| Load->getPointerInfo(), Load->getOriginalAlign(), |
| Load->getMemOperand()->getFlags()); |
| return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); |
| } |
| |
| // While RVV has alignment restrictions, we should always be able to store as a |
| // legal equivalently-sized byte-typed vector instead. This method is |
| // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It |
| // returns SDValue() if the store is already correctly aligned. |
| SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto *Store = cast<StoreSDNode>(Op); |
| assert(Store && Store->getValue().getValueType().isVector() && |
| "Expected vector store"); |
| |
| if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| Store->getMemoryVT(), |
| *Store->getMemOperand())) |
| return SDValue(); |
| |
| SDLoc DL(Op); |
| SDValue StoredVal = Store->getValue(); |
| MVT VT = StoredVal.getSimpleValueType(); |
| unsigned EltSizeBits = VT.getScalarSizeInBits(); |
| assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && |
| "Unexpected unaligned RVV store type"); |
| MVT NewVT = |
| MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); |
| assert(NewVT.isValid() && |
| "Expecting equally-sized RVV vector types to be legal"); |
| StoredVal = DAG.getBitcast(NewVT, StoredVal); |
| return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), |
| Store->getPointerInfo(), Store->getOriginalAlign(), |
| Store->getMemOperand()->getFlags()); |
| } |
| |
| SDValue RISCVTargetLowering::LowerOperation(SDValue Op, |
| SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: |
| report_fatal_error("unimplemented operand"); |
| case ISD::GlobalAddress: |
| return lowerGlobalAddress(Op, DAG); |
| case ISD::BlockAddress: |
| return lowerBlockAddress(Op, DAG); |
| case ISD::ConstantPool: |
| return lowerConstantPool(Op, DAG); |
| case ISD::JumpTable: |
| return lowerJumpTable(Op, DAG); |
| case ISD::GlobalTLSAddress: |
| return lowerGlobalTLSAddress(Op, DAG); |
| case ISD::SELECT: |
| return lowerSELECT(Op, DAG); |
| case ISD::BRCOND: |
| return lowerBRCOND(Op, DAG); |
| case ISD::VASTART: |
| return lowerVASTART(Op, DAG); |
| case ISD::FRAMEADDR: |
| return lowerFRAMEADDR(Op, DAG); |
| case ISD::RETURNADDR: |
| return lowerRETURNADDR(Op, DAG); |
| case ISD::SHL_PARTS: |
| return lowerShiftLeftParts(Op, DAG); |
| case ISD::SRA_PARTS: |
| return lowerShiftRightParts(Op, DAG, true); |
| case ISD::SRL_PARTS: |
| return lowerShiftRightParts(Op, DAG, false); |
| case ISD::BITCAST: { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| SDValue Op0 = Op.getOperand(0); |
| EVT Op0VT = Op0.getValueType(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| if (VT.isFixedLengthVector()) { |
| // We can handle fixed length vector bitcasts with a simple replacement |
| // in isel. |
| if (Op0VT.isFixedLengthVector()) |
| return Op; |
| // When bitcasting from scalar to fixed-length vector, insert the scalar |
| // into a one-element vector of the result type, and perform a vector |
| // bitcast. |
| if (!Op0VT.isVector()) { |
| EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); |
| if (!isTypeLegal(BVT)) |
| return SDValue(); |
| return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, |
| DAG.getUNDEF(BVT), Op0, |
| DAG.getConstant(0, DL, XLenVT))); |
| } |
| return SDValue(); |
| } |
| // Custom-legalize bitcasts from fixed-length vector types to scalar types |
| // thus: bitcast the vector to a one-element vector type whose element type |
| // is the same as the result type, and extract the first element. |
| if (!VT.isVector() && Op0VT.isFixedLengthVector()) { |
| EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); |
| if (!isTypeLegal(BVT)) |
| return SDValue(); |
| SDValue BVec = DAG.getBitcast(BVT, Op0); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, |
| DAG.getConstant(0, DL, XLenVT)); |
| } |
| if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { |
| SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); |
| SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); |
| return FPConv; |
| } |
| if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && |
| Subtarget.hasStdExtF()) { |
| SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); |
| SDValue FPConv = |
| DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); |
| return FPConv; |
| } |
| return SDValue(); |
| } |
| case ISD::INTRINSIC_WO_CHAIN: |
| return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::INTRINSIC_W_CHAIN: |
| return LowerINTRINSIC_W_CHAIN(Op, DAG); |
| case ISD::INTRINSIC_VOID: |
| return LowerINTRINSIC_VOID(Op, DAG); |
| case ISD::BSWAP: |
| case ISD::BITREVERSE: { |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc DL(Op); |
| if (Subtarget.hasStdExtZbp()) { |
| // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. |
| // Start with the maximum immediate value which is the bitwidth - 1. |
| unsigned Imm = VT.getSizeInBits() - 1; |
| // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. |
| if (Op.getOpcode() == ISD::BSWAP) |
| Imm &= ~0x7U; |
| return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), |
| DAG.getConstant(Imm, DL, VT)); |
| } |
| assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); |
| assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); |
| // Expand bitreverse to a bswap(rev8) followed by brev8. |
| SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); |
| // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized |
| // as brev8 by an isel pattern. |
| return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap, |
| DAG.getConstant(7, DL, VT)); |
| } |
| case ISD::FSHL: |
| case ISD::FSHR: { |
| MVT VT = Op.getSimpleValueType(); |
| assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); |
| SDLoc DL(Op); |
| // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only |
| // use log(XLen) bits. Mask the shift amount accordingly to prevent |
| // accidentally setting the extra bit. |
| unsigned ShAmtWidth = Subtarget.getXLen() - 1; |
| SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), |
| DAG.getConstant(ShAmtWidth, DL, VT)); |
| // fshl and fshr concatenate their operands in the same order. fsr and fsl |
| // instruction use different orders. fshl will return its first operand for |
| // shift of zero, fshr will return its second operand. fsl and fsr both |
| // return rs1 so the ISD nodes need to have different operand orders. |
| // Shift amount is in rs2. |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| unsigned Opc = RISCVISD::FSL; |
| if (Op.getOpcode() == ISD::FSHR) { |
| std::swap(Op0, Op1); |
| Opc = RISCVISD::FSR; |
| } |
| return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt); |
| } |
| case ISD::TRUNCATE: { |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| // Only custom-lower vector truncates |
| if (!VT.isVector()) |
| return Op; |
| |
| // Truncates to mask types are handled differently |
| if (VT.getVectorElementType() == MVT::i1) |
| return lowerVectorMaskTrunc(Op, DAG); |
| |
| // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary |
| // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which |
| // truncate by one power of two at a time. |
| MVT DstEltVT = VT.getVectorElementType(); |
| |
| SDValue Src = Op.getOperand(0); |
| MVT SrcVT = Src.getSimpleValueType(); |
| MVT SrcEltVT = SrcVT.getVectorElementType(); |
| |
| assert(DstEltVT.bitsLT(SrcEltVT) && |
| isPowerOf2_64(DstEltVT.getSizeInBits()) && |
| isPowerOf2_64(SrcEltVT.getSizeInBits()) && |
| "Unexpected vector truncate lowering"); |
| |
| MVT ContainerVT = SrcVT; |
| if (SrcVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(SrcVT); |
| Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); |
| } |
| |
| SDValue Result = Src; |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = |
| getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); |
| LLVMContext &Context = *DAG.getContext(); |
| const ElementCount Count = ContainerVT.getVectorElementCount(); |
| do { |
| SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); |
| EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); |
| Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, |
| Mask, VL); |
| } while (SrcEltVT != DstEltVT); |
| |
| if (SrcVT.isFixedLengthVector()) |
| Result = convertFromScalableVector(VT, Result, DAG, Subtarget); |
| |
| return Result; |
| } |
| case ISD::ANY_EXTEND: |
| case ISD::ZERO_EXTEND: |
| if (Op.getOperand(0).getValueType().isVector() && |
| Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) |
| return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); |
| return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); |
| case ISD::SIGN_EXTEND: |
| if (Op.getOperand(0).getValueType().isVector() && |
| Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) |
| return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); |
| return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); |
| case ISD::SPLAT_VECTOR_PARTS: |
| return lowerSPLAT_VECTOR_PARTS(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: |
| return lowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: |
| return lowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::VSCALE: { |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc DL(Op); |
| SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); |
| // We define our scalable vector types for lmul=1 to use a 64 bit known |
| // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate |
| // vscale as VLENB / 8. |
| static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); |
| if (Subtarget.getMinVLen() < RISCV::RVVBitsPerBlock) |
| report_fatal_error("Support for VLEN==32 is incomplete."); |
| if (isa<ConstantSDNode>(Op.getOperand(0))) { |
| // We assume VLENB is a multiple of 8. We manually choose the best shift |
| // here because SimplifyDemandedBits isn't always able to simplify it. |
| uint64_t Val = Op.getConstantOperandVal(0); |
| if (isPowerOf2_64(Val)) { |
| uint64_t Log2 = Log2_64(Val); |
| if (Log2 < 3) |
| return DAG.getNode(ISD::SRL, DL, VT, VLENB, |
| DAG.getConstant(3 - Log2, DL, VT)); |
| if (Log2 > 3) |
| return DAG.getNode(ISD::SHL, DL, VT, VLENB, |
| DAG.getConstant(Log2 - 3, DL, VT)); |
| return VLENB; |
| } |
| // If the multiplier is a multiple of 8, scale it down to avoid needing |
| // to shift the VLENB value. |
| if ((Val % 8) == 0) |
| return DAG.getNode(ISD::MUL, DL, VT, VLENB, |
| DAG.getConstant(Val / 8, DL, VT)); |
| } |
| |
| SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, |
| DAG.getConstant(3, DL, VT)); |
| return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); |
| } |
| case ISD::FPOWI: { |
| // Custom promote f16 powi with illegal i32 integer type on RV64. Once |
| // promoted this will be legalized into a libcall by LegalizeIntegerTypes. |
| if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && |
| Op.getOperand(1).getValueType() == MVT::i32) { |
| SDLoc DL(Op); |
| SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); |
| SDValue Powi = |
| DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); |
| return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| return SDValue(); |
| } |
| case ISD::FP_EXTEND: { |
| // RVV can only do fp_extend to types double the size as the source. We |
| // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going |
| // via f32. |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue Src = Op.getOperand(0); |
| MVT SrcVT = Src.getSimpleValueType(); |
| |
| // Prepare any fixed-length vector operands. |
| MVT ContainerVT = VT; |
| if (SrcVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VT); |
| MVT SrcContainerVT = |
| ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); |
| Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); |
| } |
| |
| if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || |
| SrcVT.getVectorElementType() != MVT::f16) { |
| // For scalable vectors, we only need to close the gap between |
| // vXf16->vXf64. |
| if (!VT.isFixedLengthVector()) |
| return Op; |
| // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. |
| Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); |
| return convertFromScalableVector(VT, Src, DAG, Subtarget); |
| } |
| |
| MVT InterVT = VT.changeVectorElementType(MVT::f32); |
| MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); |
| SDValue IntermediateExtend = getRVVFPExtendOrRound( |
| Src, InterVT, InterContainerVT, DL, DAG, Subtarget); |
| |
| SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, |
| DL, DAG, Subtarget); |
| if (VT.isFixedLengthVector()) |
| return convertFromScalableVector(VT, Extend, DAG, Subtarget); |
| return Extend; |
| } |
| case ISD::FP_ROUND: { |
| // RVV can only do fp_round to types half the size as the source. We |
| // custom-lower f64->f16 rounds via RVV's round-to-odd float |
| // conversion instruction. |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue Src = Op.getOperand(0); |
| MVT SrcVT = Src.getSimpleValueType(); |
| |
| // Prepare any fixed-length vector operands. |
| MVT ContainerVT = VT; |
| if (VT.isFixedLengthVector()) { |
| MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); |
| ContainerVT = |
| SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); |
| Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); |
| } |
| |
| if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || |
| SrcVT.getVectorElementType() != MVT::f64) { |
| // For scalable vectors, we only need to close the gap between |
| // vXf64<->vXf16. |
| if (!VT.isFixedLengthVector()) |
| return Op; |
| // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. |
| Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); |
| return convertFromScalableVector(VT, Src, DAG, Subtarget); |
| } |
| |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); |
| |
| MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); |
| SDValue IntermediateRound = |
| DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); |
| SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, |
| DL, DAG, Subtarget); |
| |
| if (VT.isFixedLengthVector()) |
| return convertFromScalableVector(VT, Round, DAG, Subtarget); |
| return Round; |
| } |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: { |
| // RVV can only do fp<->int conversions to types half/double the size as |
| // the source. We custom-lower any conversions that do two hops into |
| // sequences. |
| MVT VT = Op.getSimpleValueType(); |
| if (!VT.isVector()) |
| return Op; |
| SDLoc DL(Op); |
| SDValue Src = Op.getOperand(0); |
| MVT EltVT = VT.getVectorElementType(); |
| MVT SrcVT = Src.getSimpleValueType(); |
| MVT SrcEltVT = SrcVT.getVectorElementType(); |
| unsigned EltSize = EltVT.getSizeInBits(); |
| unsigned SrcEltSize = SrcEltVT.getSizeInBits(); |
| assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && |
| "Unexpected vector element types"); |
| |
| bool IsInt2FP = SrcEltVT.isInteger(); |
| // Widening conversions |
| if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { |
| if (IsInt2FP) { |
| // Do a regular integer sign/zero extension then convert to float. |
| MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), |
| VT.getVectorElementCount()); |
| unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP |
| ? ISD::ZERO_EXTEND |
| : ISD::SIGN_EXTEND; |
| SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); |
| return DAG.getNode(Op.getOpcode(), DL, VT, Ext); |
| } |
| // FP2Int |
| assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); |
| // Do one doubling fp_extend then complete the operation by converting |
| // to int. |
| MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); |
| SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); |
| return DAG.getNode(Op.getOpcode(), DL, VT, FExt); |
| } |
| |
| // Narrowing conversions |
| if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { |
| if (IsInt2FP) { |
| // One narrowing int_to_fp, then an fp_round. |
| assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); |
| MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); |
| SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); |
| return DAG.getFPExtendOrRound(Int2FP, DL, VT); |
| } |
| // FP2Int |
| // One narrowing fp_to_int, then truncate the integer. If the float isn't |
| // representable by the integer, the result is poison. |
| MVT IVecVT = |
| MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), |
| VT.getVectorElementCount()); |
| SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); |
| } |
| |
| // Scalable vectors can exit here. Patterns will handle equally-sized |
| // conversions halving/doubling ones. |
| if (!VT.isFixedLengthVector()) |
| return Op; |
| |
| // For fixed-length vectors we lower to a custom "VL" node. |
| unsigned RVVOpc = 0; |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("Impossible opcode"); |
| case ISD::FP_TO_SINT: |
| RVVOpc = RISCVISD::FP_TO_SINT_VL; |
| break; |
| case ISD::FP_TO_UINT: |
| RVVOpc = RISCVISD::FP_TO_UINT_VL; |
| break; |
| case ISD::SINT_TO_FP: |
| RVVOpc = RISCVISD::SINT_TO_FP_VL; |
| break; |
| case ISD::UINT_TO_FP: |
| RVVOpc = RISCVISD::UINT_TO_FP_VL; |
| break; |
| } |
| |
| MVT ContainerVT, SrcContainerVT; |
| // Derive the reference container type from the larger vector type. |
| if (SrcEltSize > EltSize) { |
| SrcContainerVT = getContainerForFixedLengthVector(SrcVT); |
| ContainerVT = |
| SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); |
| } else { |
| ContainerVT = getContainerForFixedLengthVector(VT); |
| SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); |
| } |
| |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); |
| |
| Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); |
| Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); |
| return convertFromScalableVector(VT, Src, DAG, Subtarget); |
| } |
| case ISD::FP_TO_SINT_SAT: |
| case ISD::FP_TO_UINT_SAT: |
| return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); |
| case ISD::FTRUNC: |
| case ISD::FCEIL: |
| case ISD::FFLOOR: |
| return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG); |
| case ISD::VECREDUCE_ADD: |
| case ISD::VECREDUCE_UMAX: |
| case ISD::VECREDUCE_SMAX: |
| case ISD::VECREDUCE_UMIN: |
| case ISD::VECREDUCE_SMIN: |
| return lowerVECREDUCE(Op, DAG); |
| case ISD::VECREDUCE_AND: |
| case ISD::VECREDUCE_OR: |
| case ISD::VECREDUCE_XOR: |
| if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) |
| return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); |
| return lowerVECREDUCE(Op, DAG); |
| case ISD::VECREDUCE_FADD: |
| case ISD::VECREDUCE_SEQ_FADD: |
| case ISD::VECREDUCE_FMIN: |
| case ISD::VECREDUCE_FMAX: |
| return lowerFPVECREDUCE(Op, DAG); |
| case ISD::VP_REDUCE_ADD: |
| case ISD::VP_REDUCE_UMAX: |
| case ISD::VP_REDUCE_SMAX: |
| case ISD::VP_REDUCE_UMIN: |
| case ISD::VP_REDUCE_SMIN: |
| case ISD::VP_REDUCE_FADD: |
| case ISD::VP_REDUCE_SEQ_FADD: |
| case ISD::VP_REDUCE_FMIN: |
| case ISD::VP_REDUCE_FMAX: |
| return lowerVPREDUCE(Op, DAG); |
| case ISD::VP_REDUCE_AND: |
| case ISD::VP_REDUCE_OR: |
| case ISD::VP_REDUCE_XOR: |
| if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) |
| return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); |
| return lowerVPREDUCE(Op, DAG); |
| case ISD::INSERT_SUBVECTOR: |
| return lowerINSERT_SUBVECTOR(Op, DAG); |
| case ISD::EXTRACT_SUBVECTOR: |
| return lowerEXTRACT_SUBVECTOR(Op, DAG); |
| case ISD::STEP_VECTOR: |
| return lowerSTEP_VECTOR(Op, DAG); |
| case ISD::VECTOR_REVERSE: |
| return lowerVECTOR_REVERSE(Op, DAG); |
| case ISD::BUILD_VECTOR: |
| return lowerBUILD_VECTOR(Op, DAG, Subtarget); |
| case ISD::SPLAT_VECTOR: |
| if (Op.getValueType().getVectorElementType() == MVT::i1) |
| return lowerVectorMaskSplat(Op, DAG); |
| return lowerSPLAT_VECTOR(Op, DAG, Subtarget); |
| case ISD::VECTOR_SHUFFLE: |
| return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); |
| case ISD::CONCAT_VECTORS: { |
| // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is |
| // better than going through the stack, as the default expansion does. |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| unsigned NumOpElts = |
| Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); |
| SDValue Vec = DAG.getUNDEF(VT); |
| for (const auto &OpIdx : enumerate(Op->ops())) { |
| SDValue SubVec = OpIdx.value(); |
| // Don't insert undef subvectors. |
| if (SubVec.isUndef()) |
| continue; |
| Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, |
| DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); |
| } |
| return Vec; |
| } |
| case ISD::LOAD: |
| if (auto V = expandUnalignedRVVLoad(Op, DAG)) |
| return V; |
| if (Op.getValueType().isFixedLengthVector()) |
| return lowerFixedLengthVectorLoadToRVV(Op, DAG); |
| return Op; |
| case ISD::STORE: |
| if (auto V = expandUnalignedRVVStore(Op, DAG)) |
| return V; |
| if (Op.getOperand(1).getValueType().isFixedLengthVector()) |
| return lowerFixedLengthVectorStoreToRVV(Op, DAG); |
| return Op; |
| case ISD::MLOAD: |
| case ISD::VP_LOAD: |
| return lowerMaskedLoad(Op, DAG); |
| case ISD::MSTORE: |
| case ISD::VP_STORE: |
| return lowerMaskedStore(Op, DAG); |
| case ISD::SETCC: |
| return lowerFixedLengthVectorSetccToRVV(Op, DAG); |
| case ISD::ADD: |
| return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); |
| case ISD::SUB: |
| return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); |
| case ISD::MUL: |
| return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); |
| case ISD::MULHS: |
| return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); |
| case ISD::MULHU: |
| return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); |
| case ISD::AND: |
| return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, |
| RISCVISD::AND_VL); |
| case ISD::OR: |
| return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, |
| RISCVISD::OR_VL); |
| case ISD::XOR: |
| return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, |
| RISCVISD::XOR_VL); |
| case ISD::SDIV: |
| return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); |
| case ISD::SREM: |
| return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); |
| case ISD::UDIV: |
| return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); |
| case ISD::UREM: |
| return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| if (Op.getSimpleValueType().isFixedLengthVector()) |
| return lowerFixedLengthVectorShiftToRVV(Op, DAG); |
| // This can be called for an i32 shift amount that needs to be promoted. |
| assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| return SDValue(); |
| case ISD::SADDSAT: |
| return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL); |
| case ISD::UADDSAT: |
| return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL); |
| case ISD::SSUBSAT: |
| return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL); |
| case ISD::USUBSAT: |
| return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL); |
| case ISD::FADD: |
| return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); |
| case ISD::FSUB: |
| return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); |
| case ISD::FMUL: |
| return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); |
| case ISD::FDIV: |
| return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); |
| case ISD::FNEG: |
| return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); |
| case ISD::FABS: |
| return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); |
| case ISD::FSQRT: |
| return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); |
| case ISD::FMA: |
| return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); |
| case ISD::SMIN: |
| return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); |
| case ISD::SMAX: |
| return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); |
| case ISD::UMIN: |
| return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); |
| case ISD::UMAX: |
| return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); |
| case ISD::FMINNUM: |
| return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); |
| case ISD::FMAXNUM: |
| return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); |
| case ISD::ABS: |
| return lowerABS(Op, DAG); |
| case ISD::CTLZ_ZERO_UNDEF: |
| case ISD::CTTZ_ZERO_UNDEF: |
| return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); |
| case ISD::VSELECT: |
| return lowerFixedLengthVectorSelectToRVV(Op, DAG); |
| case ISD::FCOPYSIGN: |
| return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); |
| case ISD::MGATHER: |
| case ISD::VP_GATHER: |
| return lowerMaskedGather(Op, DAG); |
| case ISD::MSCATTER: |
| case ISD::VP_SCATTER: |
| return lowerMaskedScatter(Op, DAG); |
| case ISD::FLT_ROUNDS_: |
| return lowerGET_ROUNDING(Op, DAG); |
| case ISD::SET_ROUNDING: |
| return lowerSET_ROUNDING(Op, DAG); |
| case ISD::VP_SELECT: |
| return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); |
| case ISD::VP_MERGE: |
| return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); |
| case ISD::VP_ADD: |
| return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); |
| case ISD::VP_SUB: |
| return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); |
| case ISD::VP_MUL: |
| return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); |
| case ISD::VP_SDIV: |
| return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); |
| case ISD::VP_UDIV: |
| return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); |
| case ISD::VP_SREM: |
| return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); |
| case ISD::VP_UREM: |
| return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); |
| case ISD::VP_AND: |
| return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); |
| case ISD::VP_OR: |
| return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); |
| case ISD::VP_XOR: |
| return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); |
| case ISD::VP_ASHR: |
| return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); |
| case ISD::VP_LSHR: |
| return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); |
| case ISD::VP_SHL: |
| return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); |
| case ISD::VP_FADD: |
| return lowerVPOp(Op, DAG, RISCVISD::FADD_VL); |
| case ISD::VP_FSUB: |
| return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL); |
| case ISD::VP_FMUL: |
| return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL); |
| case ISD::VP_FDIV: |
| return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL); |
| } |
| } |
| |
| static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, |
| SelectionDAG &DAG, unsigned Flags) { |
| return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); |
| } |
| |
| static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, |
| SelectionDAG &DAG, unsigned Flags) { |
| return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), |
| Flags); |
| } |
| |
| static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, |
| SelectionDAG &DAG, unsigned Flags) { |
| return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), |
| N->getOffset(), Flags); |
| } |
| |
| static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, |
| SelectionDAG &DAG, unsigned Flags) { |
| return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); |
| } |
| |
| template <class NodeTy> |
| SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, |
| bool IsLocal) const { |
| SDLoc DL(N); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| |
| if (isPositionIndependent()) { |
| SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); |
| if (IsLocal) |
| // Use PC-relative addressing to access the symbol. This generates the |
| // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) |
| // %pcrel_lo(auipc)). |
| return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); |
| |
| // Use PC-relative addressing to access the GOT for this symbol, then load |
| // the address from the GOT. This generates the pattern (PseudoLA sym), |
| // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). |
| return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); |
| } |
| |
| switch (getTargetMachine().getCodeModel()) { |
| default: |
| report_fatal_error("Unsupported code model for lowering"); |
| case CodeModel::Small: { |
| // Generate a sequence for accessing addresses within the first 2 GiB of |
| // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). |
| SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); |
| SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); |
| SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); |
| return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); |
| } |
| case CodeModel::Medium: { |
| // Generate a sequence for accessing addresses within any 2GiB range within |
| // the address space. This generates the pattern (PseudoLLA sym), which |
| // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). |
| SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); |
| return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); |
| } |
| } |
| } |
| |
| SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT Ty = Op.getValueType(); |
| GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); |
| int64_t Offset = N->getOffset(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| const GlobalValue *GV = N->getGlobal(); |
| bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); |
| SDValue Addr = getAddr(N, DAG, IsLocal); |
| |
| // In order to maximise the opportunity for common subexpression elimination, |
| // emit a separate ADD node for the global address offset instead of folding |
| // it in the global address node. Later peephole optimisations may choose to |
| // fold it back in when profitable. |
| if (Offset != 0) |
| return DAG.getNode(ISD::ADD, DL, Ty, Addr, |
| DAG.getConstant(Offset, DL, XLenVT)); |
| return Addr; |
| } |
| |
| SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); |
| |
| return getAddr(N, DAG); |
| } |
| |
| SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, |
| SelectionDAG &DAG) const { |
| ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); |
| |
| return getAddr(N, DAG); |
| } |
| |
| SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, |
| SelectionDAG &DAG) const { |
| JumpTableSDNode *N = cast<JumpTableSDNode>(Op); |
| |
| return getAddr(N, DAG); |
| } |
| |
| SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, |
| SelectionDAG &DAG, |
| bool UseGOT) const { |
| SDLoc DL(N); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| const GlobalValue *GV = N->getGlobal(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| if (UseGOT) { |
| // Use PC-relative addressing to access the GOT for this TLS symbol, then |
| // load the address from the GOT and add the thread pointer. This generates |
| // the pattern (PseudoLA_TLS_IE sym), which expands to |
| // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). |
| SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); |
| SDValue Load = |
| SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); |
| |
| // Add the thread pointer. |
| SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); |
| return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); |
| } |
| |
| // Generate a sequence for accessing the address relative to the thread |
| // pointer, with the appropriate adjustment for the thread pointer offset. |
| // This generates the pattern |
| // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) |
| SDValue AddrHi = |
| DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); |
| SDValue AddrAdd = |
| DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); |
| SDValue AddrLo = |
| DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); |
| |
| SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); |
| SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); |
| SDValue MNAdd = SDValue( |
| DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), |
| 0); |
| return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); |
| } |
| |
| SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, |
| SelectionDAG &DAG) const { |
| SDLoc DL(N); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); |
| const GlobalValue *GV = N->getGlobal(); |
| |
| // Use a PC-relative addressing mode to access the global dynamic GOT address. |
| // This generates the pattern (PseudoLA_TLS_GD sym), which expands to |
| // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). |
| SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); |
| SDValue Load = |
| SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); |
| |
| // Prepare argument list to generate call. |
| ArgListTy Args; |
| ArgListEntry Entry; |
| Entry.Node = Load; |
| Entry.Ty = CallTy; |
| Args.push_back(Entry); |
| |
| // Setup call to __tls_get_addr. |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(DL) |
| .setChain(DAG.getEntryNode()) |
| .setLibCallee(CallingConv::C, CallTy, |
| DAG.getExternalSymbol("__tls_get_addr", Ty), |
| std::move(Args)); |
| |
| return LowerCallTo(CLI).first; |
| } |
| |
| SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT Ty = Op.getValueType(); |
| GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); |
| int64_t Offset = N->getOffset(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); |
| |
| if (DAG.getMachineFunction().getFunction().getCallingConv() == |
| CallingConv::GHC) |
| report_fatal_error("In GHC calling convention TLS is not supported"); |
| |
| SDValue Addr; |
| switch (Model) { |
| case TLSModel::LocalExec: |
| Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); |
| break; |
| case TLSModel::InitialExec: |
| Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); |
| break; |
| case TLSModel::LocalDynamic: |
| case TLSModel::GeneralDynamic: |
| Addr = getDynamicTLSAddr(N, DAG); |
| break; |
| } |
| |
| // In order to maximise the opportunity for common subexpression elimination, |
| // emit a separate ADD node for the global address offset instead of folding |
| // it in the global address node. Later peephole optimisations may choose to |
| // fold it back in when profitable. |
| if (Offset != 0) |
| return DAG.getNode(ISD::ADD, DL, Ty, Addr, |
| DAG.getConstant(Offset, DL, XLenVT)); |
| return Addr; |
| } |
| |
| SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { |
| SDValue CondV = Op.getOperand(0); |
| SDValue TrueV = Op.getOperand(1); |
| SDValue FalseV = Op.getOperand(2); |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| // Lower vector SELECTs to VSELECTs by splatting the condition. |
| if (VT.isVector()) { |
| MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); |
| SDValue CondSplat = VT.isScalableVector() |
| ? DAG.getSplatVector(SplatCondVT, DL, CondV) |
| : DAG.getSplatBuildVector(SplatCondVT, DL, CondV); |
| return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); |
| } |
| |
| // If the result type is XLenVT and CondV is the output of a SETCC node |
| // which also operated on XLenVT inputs, then merge the SETCC node into the |
| // lowered RISCVISD::SELECT_CC to take advantage of the integer |
| // compare+branch instructions. i.e.: |
| // (select (setcc lhs, rhs, cc), truev, falsev) |
| // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) |
| if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC && |
| CondV.getOperand(0).getSimpleValueType() == XLenVT) { |
| SDValue LHS = CondV.getOperand(0); |
| SDValue RHS = CondV.getOperand(1); |
| const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2)); |
| ISD::CondCode CCVal = CC->get(); |
| |
| // Special case for a select of 2 constants that have a diffence of 1. |
| // Normally this is done by DAGCombine, but if the select is introduced by |
| // type legalization or op legalization, we miss it. Restricting to SETLT |
| // case for now because that is what signed saturating add/sub need. |
| // FIXME: We don't need the condition to be SETLT or even a SETCC, |
| // but we would probably want to swap the true/false values if the condition |
| // is SETGE/SETLE to avoid an XORI. |
| if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && |
| CCVal == ISD::SETLT) { |
| const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); |
| const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); |
| if (TrueVal - 1 == FalseVal) |
| return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); |
| if (TrueVal + 1 == FalseVal) |
| return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); |
| } |
| |
| translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); |
| |
| SDValue TargetCC = DAG.getCondCode(CCVal); |
| SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; |
| return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); |
| } |
| |
| // Otherwise: |
| // (select condv, truev, falsev) |
| // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) |
| SDValue Zero = DAG.getConstant(0, DL, XLenVT); |
| SDValue SetNE = DAG.getCondCode(ISD::SETNE); |
| |
| SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; |
| |
| return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); |
| } |
| |
| SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { |
| SDValue CondV = Op.getOperand(1); |
| SDLoc DL(Op); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| if (CondV.getOpcode() == ISD::SETCC && |
| CondV.getOperand(0).getValueType() == XLenVT) { |
| SDValue LHS = CondV.getOperand(0); |
| SDValue RHS = CondV.getOperand(1); |
| ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); |
| |
| translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); |
| |
| SDValue TargetCC = DAG.getCondCode(CCVal); |
| return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), |
| LHS, RHS, TargetCC, Op.getOperand(2)); |
| } |
| |
| return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), |
| CondV, DAG.getConstant(0, DL, XLenVT), |
| DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); |
| } |
| |
| SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| SDLoc DL(Op); |
| SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), |
| getPointerTy(MF.getDataLayout())); |
| |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| Register FrameReg = RI.getFrameRegister(MF); |
| int XLenInBytes = Subtarget.getXLen() / 8; |
| |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| while (Depth--) { |
| int Offset = -(XLenInBytes * 2); |
| SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, |
| DAG.getIntPtrConstant(Offset, DL)); |
| FrameAddr = |
| DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); |
| } |
| return FrameAddr; |
| } |
| |
| SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setReturnAddressIsTaken(true); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| int XLenInBytes = Subtarget.getXLen() / 8; |
| |
| if (verifyReturnAddressArgumentIsConstant(Op, DAG)) |
| return SDValue(); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| if (Depth) { |
| int Off = -XLenInBytes; |
| SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); |
| SDValue Offset = DAG.getConstant(Off, DL, VT); |
| return DAG.getLoad(VT, DL, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), |
| MachinePointerInfo()); |
| } |
| |
| // Return the value of the return address register, marking it an implicit |
| // live-in. |
| Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); |
| } |
| |
| SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Shamt = Op.getOperand(2); |
| EVT VT = Lo.getValueType(); |
| |
| // if Shamt-XLEN < 0: // Shamt < XLEN |
| // Lo = Lo << Shamt |
| // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) |
| // else: |
| // Lo = 0 |
| // Hi = Lo << (Shamt-XLEN) |
| |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue One = DAG.getConstant(1, DL, VT); |
| SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); |
| SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); |
| SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); |
| SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); |
| |
| SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); |
| SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); |
| SDValue ShiftRightLo = |
| DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); |
| SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); |
| SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); |
| SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); |
| |
| SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); |
| |
| Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); |
| Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); |
| |
| SDValue Parts[2] = {Lo, Hi}; |
| return DAG.getMergeValues(Parts, DL); |
| } |
| |
| SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, |
| bool IsSRA) const { |
| SDLoc DL(Op); |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Shamt = Op.getOperand(2); |
| EVT VT = Lo.getValueType(); |
| |
| // SRA expansion: |
| // if Shamt-XLEN < 0: // Shamt < XLEN |
| // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) |
| // Hi = Hi >>s Shamt |
| // else: |
| // Lo = Hi >>s (Shamt-XLEN); |
| // Hi = Hi >>s (XLEN-1) |
| // |
| // SRL expansion: |
| // if Shamt-XLEN < 0: // Shamt < XLEN |
| // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) |
| // Hi = Hi >>u Shamt |
| // else: |
| // Lo = Hi >>u (Shamt-XLEN); |
| // Hi = 0; |
| |
| unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; |
| |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue One = DAG.getConstant(1, DL, VT); |
| SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); |
| SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); |
| SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); |
| SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); |
| |
| SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); |
| SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); |
| SDValue ShiftLeftHi = |
| DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); |
| SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); |
| SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); |
| SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); |
| SDValue HiFalse = |
| IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; |
| |
| SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); |
| |
| Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); |
| Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); |
| |
| SDValue Parts[2] = {Lo, Hi}; |
| return DAG.getMergeValues(Parts, DL); |
| } |
| |
| // Lower splats of i1 types to SETCC. For each mask vector type, we have a |
| // legal equivalently-sized i8 type, so we can use that as a go-between. |
| SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue SplatVal = Op.getOperand(0); |
| // All-zeros or all-ones splats are handled specially. |
| if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { |
| SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; |
| return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); |
| } |
| if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { |
| SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; |
| return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); |
| } |
| MVT XLenVT = Subtarget.getXLenVT(); |
| assert(SplatVal.getValueType() == XLenVT && |
| "Unexpected type for i1 splat value"); |
| MVT InterVT = VT.changeVectorElementType(MVT::i8); |
| SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, |
| DAG.getConstant(1, DL, XLenVT)); |
| SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); |
| SDValue Zero = DAG.getConstant(0, DL, InterVT); |
| return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); |
| } |
| |
| // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is |
| // illegal (currently only vXi64 RV32). |
| // FIXME: We could also catch non-constant sign-extended i32 values and lower |
| // them to SPLAT_VECTOR_I64 |
| SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VecVT = Op.getSimpleValueType(); |
| assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && |
| "Unexpected SPLAT_VECTOR_PARTS lowering"); |
| |
| assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| |
| if (VecVT.isFixedLengthVector()) { |
| MVT ContainerVT = getContainerForFixedLengthVector(VecVT); |
| SDLoc DL(Op); |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = |
| getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); |
| |
| SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); |
| return convertFromScalableVector(VecVT, Res, DAG, Subtarget); |
| } |
| |
| if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { |
| int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); |
| int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); |
| // If Hi constant is all the same sign bit as Lo, lower this as a custom |
| // node in order to try and match RVV vector/scalar instructions. |
| if ((LoC >> 31) == HiC) |
| return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); |
| } |
| |
| // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. |
| if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && |
| isa<ConstantSDNode>(Hi.getOperand(1)) && |
| Hi.getConstantOperandVal(1) == 31) |
| return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); |
| |
| // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. |
| return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi, |
| DAG.getTargetConstant(RISCV::VLMaxSentinel, DL, MVT::i64)); |
| } |
| |
| // Custom-lower extensions from mask vectors by using a vselect either with 1 |
| // for zero/any-extension or -1 for sign-extension: |
| // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) |
| // Note that any-extension is lowered identically to zero-extension. |
| SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, |
| int64_t ExtTrueVal) const { |
| SDLoc DL(Op); |
| MVT VecVT = Op.getSimpleValueType(); |
| SDValue Src = Op.getOperand(0); |
| // Only custom-lower extensions from mask types |
| assert(Src.getValueType().isVector() && |
| Src.getValueType().getVectorElementType() == MVT::i1); |
| |
| MVT XLenVT = Subtarget.getXLenVT(); |
| SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); |
| SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); |
| |
| if (VecVT.isScalableVector()) { |
| // Be careful not to introduce illegal scalar types at this stage, and be |
| // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is |
| // illegal and must be expanded. Since we know that the constants are |
| // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. |
| bool IsRV32E64 = |
| !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; |
| |
| if (!IsRV32E64) { |
| SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); |
| SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); |
| } else { |
| SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); |
| SplatTrueVal = |
| DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); |
| } |
| |
| return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); |
| } |
| |
| MVT ContainerVT = getContainerForFixedLengthVector(VecVT); |
| MVT I1ContainerVT = |
| MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| |
| SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); |
| |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); |
| |
| SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); |
| SplatTrueVal = |
| DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); |
| SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, |
| SplatTrueVal, SplatZero, VL); |
| |
| return convertFromScalableVector(VecVT, Select, DAG, Subtarget); |
| } |
| |
| SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( |
| SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { |
| MVT ExtVT = Op.getSimpleValueType(); |
| // Only custom-lower extensions from fixed-length vector types. |
| if (!ExtVT.isFixedLengthVector()) |
| return Op; |
| MVT VT = Op.getOperand(0).getSimpleValueType(); |
| // Grab the canonical container type for the extended type. Infer the smaller |
| // type from that to ensure the same number of vector elements, as we know |
| // the LMUL will be sufficient to hold the smaller type. |
| MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); |
| // Get the extended container type manually to ensure the same number of |
| // vector elements between source and dest. |
| MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), |
| ContainerExtVT.getVectorElementCount()); |
| |
| SDValue Op1 = |
| convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); |
| |
| SDLoc DL(Op); |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); |
| |
| SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); |
| |
| return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); |
| } |
| |
| // Custom-lower truncations from vectors to mask vectors by using a mask and a |
| // setcc operation: |
| // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) |
| SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT MaskVT = Op.getValueType(); |
| // Only expect to custom-lower truncations to mask types |
| assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && |
| "Unexpected type for vector mask lowering"); |
| SDValue Src = Op.getOperand(0); |
| MVT VecVT = Src.getSimpleValueType(); |
| |
| // If this is a fixed vector, we need to convert it to a scalable vector. |
| MVT ContainerVT = VecVT; |
| if (VecVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VecVT); |
| Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); |
| } |
| |
| SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); |
| SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); |
| |
| SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); |
| SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); |
| |
| if (VecVT.isScalableVector()) { |
| SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); |
| return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); |
| } |
| |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); |
| |
| MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); |
| SDValue Trunc = |
| DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); |
| Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, |
| DAG.getCondCode(ISD::SETNE), Mask, VL); |
| return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); |
| } |
| |
| // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the |
| // first position of a vector, and that vector is slid up to the insert index. |
| // By limiting the active vector length to index+1 and merging with the |
| // original vector (with an undisturbed tail policy for elements >= VL), we |
| // achieve the desired result of leaving all elements untouched except the one |
| // at VL-1, which is replaced with the desired value. |
| SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VecVT = Op.getSimpleValueType(); |
| SDValue Vec = Op.getOperand(0); |
| SDValue Val = Op.getOperand(1); |
| SDValue Idx = Op.getOperand(2); |
| |
| if (VecVT.getVectorElementType() == MVT::i1) { |
| // FIXME: For now we just promote to an i8 vector and insert into that, |
| // but this is probably not optimal. |
| MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); |
| Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); |
| return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); |
| } |
| |
| MVT ContainerVT = VecVT; |
| // If the operand is a fixed-length vector, convert to a scalable one. |
| if (VecVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VecVT); |
| Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); |
| } |
| |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| SDValue Zero = DAG.getConstant(0, DL, XLenVT); |
| bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; |
| // Even i64-element vectors on RV32 can be lowered without scalar |
| // legalization if the most-significant 32 bits of the value are not affected |
| // by the sign-extension of the lower 32 bits. |
| // TODO: We could also catch sign extensions of a 32-bit value. |
| if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { |
| const auto *CVal = cast<ConstantSDNode>(Val); |
| if (isInt<32>(CVal->getSExtValue())) { |
| IsLegalInsert = true; |
| Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); |
| } |
| } |
| |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); |
| |
| SDValue ValInVec; |
| |
| if (IsLegalInsert) { |
| unsigned Opc = |
| VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; |
| if (isNullConstant(Idx)) { |
| Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); |
| if (!VecVT.isFixedLengthVector()) |
| return Vec; |
| return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); |
| } |
| ValInVec = |
| DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); |
| } else { |
| // On RV32, i64-element vectors must be specially handled to place the |
| // value at element 0, by using two vslide1up instructions in sequence on |
| // the i32 split lo/hi value. Use an equivalently-sized i32 vector for |
| // this. |
| SDValue One = DAG.getConstant(1, DL, XLenVT); |
| SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); |
| SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); |
| MVT I32ContainerVT = |
| MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); |
| SDValue I32Mask = |
| getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; |
| // Limit the active VL to two. |
| SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); |
| // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied |
| // undef doesn't obey the earlyclobber constraint. Just splat a zero value. |
| ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, |
| InsertI64VL); |
| // First slide in the hi value, then the lo in underneath it. |
| ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, |
| ValHi, I32Mask, InsertI64VL); |
| ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, |
| ValLo, I32Mask, InsertI64VL); |
| // Bitcast back to the right container type. |
| ValInVec = DAG.getBitcast(ContainerVT, ValInVec); |
| } |
| |
| // Now that the value is in a vector, slide it into position. |
| SDValue InsertVL = |
| DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); |
| SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, |
| ValInVec, Idx, Mask, InsertVL); |
| if (!VecVT.isFixedLengthVector()) |
| return Slideup; |
| return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); |
| } |
| |
| // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then |
| // extract the first element: (extractelt (slidedown vec, idx), 0). For integer |
| // types this is done using VMV_X_S to allow us to glean information about the |
| // sign bits of the result. |
| SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Idx = Op.getOperand(1); |
| SDValue Vec = Op.getOperand(0); |
| EVT EltVT = Op.getValueType(); |
| MVT VecVT = Vec.getSimpleValueType(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| if (VecVT.getVectorElementType() == MVT::i1) { |
| if (VecVT.isFixedLengthVector()) { |
| unsigned NumElts = VecVT.getVectorNumElements(); |
| if (NumElts >= 8) { |
| MVT WideEltVT; |
| unsigned WidenVecLen; |
| SDValue ExtractElementIdx; |
| SDValue ExtractBitIdx; |
| unsigned MaxEEW = Subtarget.getMaxELENForFixedLengthVectors(); |
| MVT LargestEltVT = MVT::getIntegerVT( |
| std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); |
| if (NumElts <= LargestEltVT.getSizeInBits()) { |
| assert(isPowerOf2_32(NumElts) && |
| "the number of elements should be power of 2"); |
| WideEltVT = MVT::getIntegerVT(NumElts); |
| WidenVecLen = 1; |
| ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); |
| ExtractBitIdx = Idx; |
| } else { |
| WideEltVT = LargestEltVT; |
| WidenVecLen = NumElts / WideEltVT.getSizeInBits(); |
| // extract element index = index / element width |
| ExtractElementIdx = DAG.getNode( |
| ISD::SRL, DL, XLenVT, Idx, |
| DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); |
| // mask bit index = index % element width |
| ExtractBitIdx = DAG.getNode( |
| ISD::AND, DL, XLenVT, Idx, |
| DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); |
| } |
| MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); |
| Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); |
| SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, |
| Vec, ExtractElementIdx); |
| // Extract the bit from GPR. |
| SDValue ShiftRight = |
| DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); |
| return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, |
| DAG.getConstant(1, DL, XLenVT)); |
| } |
| } |
| // Otherwise, promote to an i8 vector and extract from that. |
| MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); |
| Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); |
| } |
| |
| // If this is a fixed vector, we need to convert it to a scalable vector. |
| MVT ContainerVT = VecVT; |
| if (VecVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VecVT); |
| Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); |
| } |
| |
| // If the index is 0, the vector is already in the right position. |
| if (!isNullConstant(Idx)) { |
| // Use a VL of 1 to avoid processing more elements than we need. |
| SDValue VL = DAG.getConstant(1, DL, XLenVT); |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); |
| Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, |
| DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); |
| } |
| |
| if (!EltVT.isInteger()) { |
| // Floating-point extracts are handled in TableGen. |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, |
| DAG.getConstant(0, DL, XLenVT)); |
| } |
| |
| SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); |
| return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); |
| } |
| |
| // Some RVV intrinsics may claim that they want an integer operand to be |
| // promoted or expanded. |
| static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && |
| "Unexpected opcode"); |
| |
| if (!Subtarget.hasVInstructions()) |
| return SDValue(); |
| |
| bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; |
| unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); |
| SDLoc DL(Op); |
| |
| const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = |
| RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); |
| if (!II || !II->hasSplatOperand()) |
| return SDValue(); |
| |
| unsigned SplatOp = II->SplatOperand + 1 + HasChain; |
| assert(SplatOp < Op.getNumOperands()); |
| |
| SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); |
| SDValue &ScalarOp = Operands[SplatOp]; |
| MVT OpVT = ScalarOp.getSimpleValueType(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| // If this isn't a scalar, or its type is XLenVT we're done. |
| if (!OpVT.isScalarInteger() || OpVT == XLenVT) |
| return SDValue(); |
| |
| // Simplest case is that the operand needs to be promoted to XLenVT. |
| if (OpVT.bitsLT(XLenVT)) { |
| // If the operand is a constant, sign extend to increase our chances |
| // of being able to use a .vi instruction. ANY_EXTEND would become a |
| // a zero extend and the simm5 check in isel would fail. |
| // FIXME: Should we ignore the upper bits in isel instead? |
| unsigned ExtOpc = |
| isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; |
| ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); |
| return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); |
| } |
| |
| // Use the previous operand to get the vXi64 VT. The result might be a mask |
| // VT for compares. Using the previous operand assumes that the previous |
| // operand will never have a smaller element size than a scalar operand and |
| // that a widening operation never uses SEW=64. |
| // NOTE: If this fails the below assert, we can probably just find the |
| // element count from any operand or result and use it to construct the VT. |
| assert(II->SplatOperand > 0 && "Unexpected splat operand!"); |
| MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); |
| |
| // The more complex case is when the scalar is larger than XLenVT. |
| assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && |
| VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); |
| |
| // If this is a sign-extended 32-bit constant, we can truncate it and rely |
| // on the instruction to sign-extend since SEW>XLEN. |
| if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { |
| if (isInt<32>(CVal->getSExtValue())) { |
| ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); |
| return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); |
| } |
| } |
| |
| // We need to convert the scalar to a splat vector. |
| // FIXME: Can we implicitly truncate the scalar if it is known to |
| // be sign extended? |
| SDValue VL = getVLOperand(Op); |
| assert(VL.getValueType() == XLenVT); |
| ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); |
| return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); |
| } |
| |
| SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned IntNo = Op.getConstantOperandVal(0); |
| SDLoc DL(Op); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| switch (IntNo) { |
| default: |
| break; // Don't custom lower most intrinsics. |
| case Intrinsic::thread_pointer: { |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| return DAG.getRegister(RISCV::X4, PtrVT); |
| } |
| case Intrinsic::riscv_orc_b: |
| case Intrinsic::riscv_brev8: { |
| // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8. |
| unsigned Opc = |
| IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC; |
| return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), |
| DAG.getConstant(7, DL, XLenVT)); |
| } |
| case Intrinsic::riscv_grev: |
| case Intrinsic::riscv_gorc: { |
| unsigned Opc = |
| IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; |
| return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); |
| } |
| case Intrinsic::riscv_zip: |
| case Intrinsic::riscv_unzip: { |
| // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip. |
| // For i32 the immdiate is 15. For i64 the immediate is 31. |
| unsigned Opc = |
| IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL; |
| unsigned BitWidth = Op.getValueSizeInBits(); |
| assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width"); |
| return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), |
| DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT)); |
| } |
| case Intrinsic::riscv_shfl: |
| case Intrinsic::riscv_unshfl: { |
| unsigned Opc = |
| IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; |
| return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); |
| } |
| case Intrinsic::riscv_bcompress: |
| case Intrinsic::riscv_bdecompress: { |
| unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS |
| : RISCVISD::BDECOMPRESS; |
| return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); |
| } |
| case Intrinsic::riscv_bfp: |
| return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1), |
| Op.getOperand(2)); |
| case Intrinsic::riscv_fsl: |
| return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1), |
| Op.getOperand(2), Op.getOperand(3)); |
| case Intrinsic::riscv_fsr: |
| return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1), |
| Op.getOperand(2), Op.getOperand(3)); |
| case Intrinsic::riscv_vmv_x_s: |
| assert(Op.getValueType() == XLenVT && "Unexpected VT!"); |
| return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), |
| Op.getOperand(1)); |
| case Intrinsic::riscv_vmv_v_x: |
| return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), |
| Op.getSimpleValueType(), DL, DAG, Subtarget); |
| case Intrinsic::riscv_vfmv_v_f: |
| return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| case Intrinsic::riscv_vmv_s_x: { |
| SDValue Scalar = Op.getOperand(2); |
| |
| if (Scalar.getValueType().bitsLE(XLenVT)) { |
| Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); |
| return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), |
| Op.getOperand(1), Scalar, Op.getOperand(3)); |
| } |
| |
| assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); |
| |
| // This is an i64 value that lives in two scalar registers. We have to |
| // insert this in a convoluted way. First we build vXi64 splat containing |
| // the/ two values that we assemble using some bit math. Next we'll use |
| // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask |
| // to merge element 0 from our splat into the source vector. |
| // FIXME: This is probably not the best way to do this, but it is |
| // consistent with INSERT_VECTOR_ELT lowering so it is a good starting |
| // point. |
| // sw lo, (a0) |
| // sw hi, 4(a0) |
| // vlse vX, (a0) |
| // |
| // vid.v vVid |
| // vmseq.vx mMask, vVid, 0 |
| // vmerge.vvm vDest, vSrc, vVal, mMask |
| MVT VT = Op.getSimpleValueType(); |
| SDValue Vec = Op.getOperand(1); |
| SDValue VL = getVLOperand(Op); |
| |
| SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); |
| SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, |
| DAG.getConstant(0, DL, MVT::i32), VL); |
| |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); |
| SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); |
| SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); |
| SDValue SelectCond = |
| DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, |
| DAG.getCondCode(ISD::SETEQ), Mask, VL); |
| return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, |
| Vec, VL); |
| } |
| case Intrinsic::riscv_vslide1up: |
| case Intrinsic::riscv_vslide1down: |
| case Intrinsic::riscv_vslide1up_mask: |
| case Intrinsic::riscv_vslide1down_mask: { |
| // We need to special case these when the scalar is larger than XLen. |
| unsigned NumOps = Op.getNumOperands(); |
| bool IsMasked = NumOps == 7; |
| unsigned OpOffset = IsMasked ? 1 : 0; |
| SDValue Scalar = Op.getOperand(2 + OpOffset); |
| if (Scalar.getValueType().bitsLE(XLenVT)) |
| break; |
| |
| // Splatting a sign extended constant is fine. |
| if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) |
| if (isInt<32>(CVal->getSExtValue())) |
| break; |
| |
| MVT VT = Op.getSimpleValueType(); |
| assert(VT.getVectorElementType() == MVT::i64 && |
| Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); |
| |
| // Convert the vector source to the equivalent nxvXi32 vector. |
| MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); |
| SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); |
| |
| SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, |
| DAG.getConstant(0, DL, XLenVT)); |
| SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, |
| DAG.getConstant(1, DL, XLenVT)); |
| |
| // Double the VL since we halved SEW. |
| SDValue VL = getVLOperand(Op); |
| SDValue I32VL = |
| DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); |
| |
| MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); |
| SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); |
| |
| // Shift the two scalar parts in using SEW=32 slide1up/slide1down |
| // instructions. |
| if (IntNo == Intrinsic::riscv_vslide1up || |
| IntNo == Intrinsic::riscv_vslide1up_mask) { |
| Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, |
| I32Mask, I32VL); |
| Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, |
| I32Mask, I32VL); |
| } else { |
| Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, |
| I32Mask, I32VL); |
| Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, |
| I32Mask, I32VL); |
| } |
| |
| // Convert back to nxvXi64. |
| Vec = DAG.getBitcast(VT, Vec); |
| |
| if (!IsMasked) |
| return Vec; |
| |
| // Apply mask after the operation. |
| SDValue Mask = Op.getOperand(NumOps - 3); |
| SDValue MaskedOff = Op.getOperand(1); |
| return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); |
| } |
| } |
| |
| return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); |
| } |
| |
| SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned IntNo = Op.getConstantOperandVal(1); |
| switch (IntNo) { |
| default: |
| break; |
| case Intrinsic::riscv_masked_strided_load: { |
| SDLoc DL(Op); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| // If the mask is known to be all ones, optimize to an unmasked intrinsic; |
| // the selection of the masked intrinsics doesn't do this for us. |
| SDValue Mask = Op.getOperand(5); |
| bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); |
| |
| MVT VT = Op->getSimpleValueType(0); |
| MVT ContainerVT = getContainerForFixedLengthVector(VT); |
| |
| SDValue PassThru = Op.getOperand(2); |
| if (!IsUnmasked) { |
| MVT MaskVT = |
| MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); |
| PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); |
| } |
| |
| SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); |
| |
| SDValue IntID = DAG.getTargetConstant( |
| IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, |
| XLenVT); |
| |
| auto *Load = cast<MemIntrinsicSDNode>(Op); |
| SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; |
| if (IsUnmasked) |
| Ops.push_back(DAG.getUNDEF(ContainerVT)); |
| else |
| Ops.push_back(PassThru); |
| Ops.push_back(Op.getOperand(3)); // Ptr |
| Ops.push_back(Op.getOperand(4)); // Stride |
| if (!IsUnmasked) |
| Ops.push_back(Mask); |
| Ops.push_back(VL); |
| if (!IsUnmasked) { |
| SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); |
| Ops.push_back(Policy); |
| } |
| |
| SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); |
| SDValue Result = |
| DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, |
| Load->getMemoryVT(), Load->getMemOperand()); |
| SDValue Chain = Result.getValue(1); |
| Result = convertFromScalableVector(VT, Result, DAG, Subtarget); |
| return DAG.getMergeValues({Result, Chain}, DL); |
| } |
| } |
| |
| return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); |
| } |
| |
| SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned IntNo = Op.getConstantOperandVal(1); |
| switch (IntNo) { |
| default: |
| break; |
| case Intrinsic::riscv_masked_strided_store: { |
| SDLoc DL(Op); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| // If the mask is known to be all ones, optimize to an unmasked intrinsic; |
| // the selection of the masked intrinsics doesn't do this for us. |
| SDValue Mask = Op.getOperand(5); |
| bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); |
| |
| SDValue Val = Op.getOperand(2); |
| MVT VT = Val.getSimpleValueType(); |
| MVT ContainerVT = getContainerForFixedLengthVector(VT); |
| |
| Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); |
| if (!IsUnmasked) { |
| MVT MaskVT = |
| MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); |
| } |
| |
| SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); |
| |
| SDValue IntID = DAG.getTargetConstant( |
| IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, |
| XLenVT); |
| |
| auto *Store = cast<MemIntrinsicSDNode>(Op); |
| SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; |
| Ops.push_back(Val); |
| Ops.push_back(Op.getOperand(3)); // Ptr |
| Ops.push_back(Op.getOperand(4)); // Stride |
| if (!IsUnmasked) |
| Ops.push_back(Mask); |
| Ops.push_back(VL); |
| |
| return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), |
| Ops, Store->getMemoryVT(), |
| Store->getMemOperand()); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static MVT getLMUL1VT(MVT VT) { |
| assert(VT.getVectorElementType().getSizeInBits() <= 64 && |
| "Unexpected vector MVT"); |
| return MVT::getScalableVectorVT( |
| VT.getVectorElementType(), |
| RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); |
| } |
| |
| static unsigned getRVVReductionOp(unsigned ISDOpcode) { |
| switch (ISDOpcode) { |
| default: |
| llvm_unreachable("Unhandled reduction"); |
| case ISD::VECREDUCE_ADD: |
| return RISCVISD::VECREDUCE_ADD_VL; |
| case ISD::VECREDUCE_UMAX: |
| return RISCVISD::VECREDUCE_UMAX_VL; |
| case ISD::VECREDUCE_SMAX: |
| return RISCVISD::VECREDUCE_SMAX_VL; |
| case ISD::VECREDUCE_UMIN: |
| return RISCVISD::VECREDUCE_UMIN_VL; |
| case ISD::VECREDUCE_SMIN: |
| return RISCVISD::VECREDUCE_SMIN_VL; |
| case ISD::VECREDUCE_AND: |
| return RISCVISD::VECREDUCE_AND_VL; |
| case ISD::VECREDUCE_OR: |
| return RISCVISD::VECREDUCE_OR_VL; |
| case ISD::VECREDUCE_XOR: |
| return RISCVISD::VECREDUCE_XOR_VL; |
| } |
| } |
| |
| SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, |
| SelectionDAG &DAG, |
| bool IsVP) const { |
| SDLoc DL(Op); |
| SDValue Vec = Op.getOperand(IsVP ? 1 : 0); |
| MVT VecVT = Vec.getSimpleValueType(); |
| assert((Op.getOpcode() == ISD::VECREDUCE_AND || |
| Op.getOpcode() == ISD::VECREDUCE_OR || |
| Op.getOpcode() == ISD::VECREDUCE_XOR || |
| Op.getOpcode() == ISD::VP_REDUCE_AND || |
| Op.getOpcode() == ISD::VP_REDUCE_OR || |
| Op.getOpcode() == ISD::VP_REDUCE_XOR) && |
| "Unexpected reduction lowering"); |
| |
| MVT XLenVT = Subtarget.getXLenVT(); |
| assert(Op.getValueType() == XLenVT && |
| "Expected reduction output to be legalized to XLenVT"); |
| |
| MVT ContainerVT = VecVT; |
| if (VecVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VecVT); |
| Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); |
| } |
| |
| SDValue Mask, VL; |
| if (IsVP) { |
| Mask = Op.getOperand(2); |
| VL = Op.getOperand(3); |
| } else { |
| std::tie(Mask, VL) = |
| getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); |
| } |
| |
| unsigned BaseOpc; |
| ISD::CondCode CC; |
| SDValue Zero = DAG.getConstant(0, DL, XLenVT); |
| |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("Unhandled reduction"); |
| case ISD::VECREDUCE_AND: |
| case ISD::VP_REDUCE_AND: { |
| // vcpop ~x == 0 |
| SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); |
| Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); |
| Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); |
| CC = ISD::SETEQ; |
| BaseOpc = ISD::AND; |
| break; |
| } |
| case ISD::VECREDUCE_OR: |
| case ISD::VP_REDUCE_OR: |
| // vcpop x != 0 |
| Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); |
| CC = ISD::SETNE; |
| BaseOpc = ISD::OR; |
| break; |
| case ISD::VECREDUCE_XOR: |
| case ISD::VP_REDUCE_XOR: { |
| // ((vcpop x) & 1) != 0 |
| SDValue One = DAG.getConstant(1, DL, XLenVT); |
| Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); |
| Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); |
| CC = ISD::SETNE; |
| BaseOpc = ISD::XOR; |
| break; |
| } |
| } |
| |
| SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); |
| |
| if (!IsVP) |
| return SetCC; |
| |
| // Now include the start value in the operation. |
| // Note that we must return the start value when no elements are operated |
| // upon. The vcpop instructions we've emitted in each case above will return |
| // 0 for an inactive vector, and so we've already received the neutral value: |
| // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we |
| // can simply include the start value. |
| return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); |
| } |
| |
| SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Vec = Op.getOperand(0); |
| EVT VecEVT = Vec.getValueType(); |
| |
| unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); |
| |
| // Due to ordering in legalize types we may have a vector type that needs to |
| // be split. Do that manually so we can get down to a legal type. |
| while (getTypeAction(*DAG.getContext(), VecEVT) == |
| TargetLowering::TypeSplitVector) { |
| SDValue Lo, Hi; |
| std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); |
| VecEVT = Lo.getValueType(); |
| Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); |
| } |
| |
| // TODO: The type may need to be widened rather than split. Or widened before |
| // it can be split. |
| if (!isTypeLegal(VecEVT)) |
| return SDValue(); |
| |
| MVT VecVT = VecEVT.getSimpleVT(); |
| MVT VecEltVT = VecVT.getVectorElementType(); |
| unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); |
| |
| MVT ContainerVT = VecVT; |
| if (VecVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VecVT); |
| Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); |
| } |
| |
| MVT M1VT = getLMUL1VT(ContainerVT); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); |
| |
| SDValue NeutralElem = |
| DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); |
| SDValue IdentitySplat = lowerScalarSplat( |
| NeutralElem, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); |
| SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec, |
| IdentitySplat, Mask, VL); |
| SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, |
| DAG.getConstant(0, DL, XLenVT)); |
| return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); |
| } |
| |
| // Given a reduction op, this function returns the matching reduction opcode, |
| // the vector SDValue and the scalar SDValue required to lower this to a |
| // RISCVISD node. |
| static std::tuple<unsigned, SDValue, SDValue> |
| getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { |
| SDLoc DL(Op); |
| auto Flags = Op->getFlags(); |
| unsigned Opcode = Op.getOpcode(); |
| unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); |
| switch (Opcode) { |
| default: |
| llvm_unreachable("Unhandled reduction"); |
| case ISD::VECREDUCE_FADD: { |
| // Use positive zero if we can. It is cheaper to materialize. |
| SDValue Zero = |
| DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); |
| return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); |
| } |
| case ISD::VECREDUCE_SEQ_FADD: |
| return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), |
| Op.getOperand(0)); |
| case ISD::VECREDUCE_FMIN: |
| return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), |
| DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); |
| case ISD::VECREDUCE_FMAX: |
| return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), |
| DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); |
| } |
| } |
| |
| SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VecEltVT = Op.getSimpleValueType(); |
| |
| unsigned RVVOpcode; |
| SDValue VectorVal, ScalarVal; |
| std::tie(RVVOpcode, VectorVal, ScalarVal) = |
| getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); |
| MVT VecVT = VectorVal.getSimpleValueType(); |
| |
| MVT ContainerVT = VecVT; |
| if (VecVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VecVT); |
| VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); |
| } |
| |
| MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); |
| |
| SDValue ScalarSplat = lowerScalarSplat( |
| ScalarVal, DAG.getConstant(1, DL, XLenVT), M1VT, DL, DAG, Subtarget); |
| SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), |
| VectorVal, ScalarSplat, Mask, VL); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, |
| DAG.getConstant(0, DL, XLenVT)); |
| } |
| |
| static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { |
| switch (ISDOpcode) { |
| default: |
| llvm_unreachable("Unhandled reduction"); |
| case ISD::VP_REDUCE_ADD: |
| return RISCVISD::VECREDUCE_ADD_VL; |
| case ISD::VP_REDUCE_UMAX: |
| return RISCVISD::VECREDUCE_UMAX_VL; |
| case ISD::VP_REDUCE_SMAX: |
| return RISCVISD::VECREDUCE_SMAX_VL; |
| case ISD::VP_REDUCE_UMIN: |
| return RISCVISD::VECREDUCE_UMIN_VL; |
| case ISD::VP_REDUCE_SMIN: |
| return RISCVISD::VECREDUCE_SMIN_VL; |
| case ISD::VP_REDUCE_AND: |
| return RISCVISD::VECREDUCE_AND_VL; |
| case ISD::VP_REDUCE_OR: |
| return RISCVISD::VECREDUCE_OR_VL; |
| case ISD::VP_REDUCE_XOR: |
| return RISCVISD::VECREDUCE_XOR_VL; |
| case ISD::VP_REDUCE_FADD: |
| return RISCVISD::VECREDUCE_FADD_VL; |
| case ISD::VP_REDUCE_SEQ_FADD: |
| return RISCVISD::VECREDUCE_SEQ_FADD_VL; |
| case ISD::VP_REDUCE_FMAX: |
| return RISCVISD::VECREDUCE_FMAX_VL; |
| case ISD::VP_REDUCE_FMIN: |
| return RISCVISD::VECREDUCE_FMIN_VL; |
| } |
| } |
| |
| SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Vec = Op.getOperand(1); |
| EVT VecEVT = Vec.getValueType(); |
| |
| // TODO: The type may need to be widened rather than split. Or widened before |
| // it can be split. |
| if (!isTypeLegal(VecEVT)) |
| return SDValue(); |
| |
| MVT VecVT = VecEVT.getSimpleVT(); |
| MVT VecEltVT = VecVT.getVectorElementType(); |
| unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); |
| |
| MVT ContainerVT = VecVT; |
| if (VecVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VecVT); |
| Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); |
| } |
| |
| SDValue VL = Op.getOperand(3); |
| SDValue Mask = Op.getOperand(2); |
| |
| MVT M1VT = getLMUL1VT(ContainerVT); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT; |
| |
| SDValue StartSplat = |
| lowerScalarSplat(Op.getOperand(0), DAG.getConstant(1, DL, XLenVT), M1VT, |
| DL, DAG, Subtarget); |
| SDValue Reduction = |
| DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL); |
| SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, |
| DAG.getConstant(0, DL, XLenVT)); |
| if (!VecVT.isInteger()) |
| return Elt0; |
| return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); |
| } |
| |
| SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Vec = Op.getOperand(0); |
| SDValue SubVec = Op.getOperand(1); |
| MVT VecVT = Vec.getSimpleValueType(); |
| MVT SubVecVT = SubVec.getSimpleValueType(); |
| |
| SDLoc DL(Op); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| unsigned OrigIdx = Op.getConstantOperandVal(2); |
| const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| |
| // We don't have the ability to slide mask vectors up indexed by their i1 |
| // elements; the smallest we can do is i8. Often we are able to bitcast to |
| // equivalent i8 vectors. Note that when inserting a fixed-length vector |
| // into a scalable one, we might not necessarily have enough scalable |
| // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. |
| if (SubVecVT.getVectorElementType() == MVT::i1 && |
| (OrigIdx != 0 || !Vec.isUndef())) { |
| if (VecVT.getVectorMinNumElements() >= 8 && |
| SubVecVT.getVectorMinNumElements() >= 8) { |
| assert(OrigIdx % 8 == 0 && "Invalid index"); |
| assert(VecVT.getVectorMinNumElements() % 8 == 0 && |
| SubVecVT.getVectorMinNumElements() % 8 == 0 && |
| "Unexpected mask vector lowering"); |
| OrigIdx /= 8; |
| SubVecVT = |
| MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, |
| SubVecVT.isScalableVector()); |
| VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, |
| VecVT.isScalableVector()); |
| Vec = DAG.getBitcast(VecVT, Vec); |
| SubVec = DAG.getBitcast(SubVecVT, SubVec); |
| } else { |
| // We can't slide this mask vector up indexed by its i1 elements. |
| // This poses a problem when we wish to insert a scalable vector which |
| // can't be re-expressed as a larger type. Just choose the slow path and |
| // extend to a larger type, then truncate back down. |
| MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); |
| MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); |
| Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); |
| SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); |
| Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, |
| Op.getOperand(2)); |
| SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); |
| return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); |
| } |
| } |
| |
| // If the subvector vector is a fixed-length type, we cannot use subregister |
| // manipulation to simplify the codegen; we don't know which register of a |
| // LMUL group contains the specific subvector as we only know the minimum |
| // register size. Therefore we must slide the vector group up the full |
| // amount. |
| if (SubVecVT.isFixedLengthVector()) { |
| if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) |
| return Op; |
| MVT ContainerVT = VecVT; |
| if (VecVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VecVT); |
| Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); |
| } |
| SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, |
| DAG.getUNDEF(ContainerVT), SubVec, |
| DAG.getConstant(0, DL, XLenVT)); |
| if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { |
| SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); |
| return DAG.getBitcast(Op.getValueType(), SubVec); |
| } |
| SDValue Mask = |
| getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; |
| // Set the vector length to only the number of elements we care about. Note |
| // that for slideup this includes the offset. |
| SDValue VL = |
| DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); |
| SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); |
| SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, |
| SubVec, SlideupAmt, Mask, VL); |
| if (VecVT.isFixedLengthVector()) |
| Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); |
| return DAG.getBitcast(Op.getValueType(), Slideup); |
| } |
| |
| unsigned SubRegIdx, RemIdx; |
| std::tie(SubRegIdx, RemIdx) = |
| RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( |
| VecVT, SubVecVT, OrigIdx, TRI); |
| |
| RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); |
| bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || |
| SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || |
| SubVecLMUL == RISCVII::VLMUL::LMUL_F8; |
| |
| // 1. If the Idx has been completely eliminated and this subvector's size is |
| // a vector register or a multiple thereof, or the surrounding elements are |
| // undef, then this is a subvector insert which naturally aligns to a vector |
| // register. These can easily be handled using subregister manipulation. |
| // 2. If the subvector is smaller than a vector register, then the insertion |
| // must preserve the undisturbed elements of the register. We do this by |
| // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type |
| // (which resolves to a subregister copy), performing a VSLIDEUP to place the |
| // subvector within the vector register, and an INSERT_SUBVECTOR of that |
| // LMUL=1 type back into the larger vector (resolving to another subregister |
| // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type |
| // to avoid allocating a large register group to hold our subvector. |
| if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) |
| return Op; |
| |
| // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements |
| // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy |
| // (in our case undisturbed). This means we can set up a subvector insertion |
| // where OFFSET is the insertion offset, and the VL is the OFFSET plus the |
| // size of the subvector. |
| MVT InterSubVT = VecVT; |
| SDValue AlignedExtract = Vec; |
| unsigned AlignedIdx = OrigIdx - RemIdx; |
| if (VecVT.bitsGT(getLMUL1VT(VecVT))) { |
| InterSubVT = getLMUL1VT(VecVT); |
| // Extract a subvector equal to the nearest full vector register type. This |
| // should resolve to a EXTRACT_SUBREG instruction. |
| AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, |
| DAG.getConstant(AlignedIdx, DL, XLenVT)); |
| } |
| |
| SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); |
| // For scalable vectors this must be further multiplied by vscale. |
| SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); |
| |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); |
| |
| // Construct the vector length corresponding to RemIdx + length(SubVecVT). |
| VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); |
| VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); |
| VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); |
| |
| SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, |
| DAG.getUNDEF(InterSubVT), SubVec, |
| DAG.getConstant(0, DL, XLenVT)); |
| |
| SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, |
| AlignedExtract, SubVec, SlideupAmt, Mask, VL); |
| |
| // If required, insert this subvector back into the correct vector register. |
| // This should resolve to an INSERT_SUBREG instruction. |
| if (VecVT.bitsGT(InterSubVT)) |
| Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, |
| DAG.getConstant(AlignedIdx, DL, XLenVT)); |
| |
| // We might have bitcast from a mask type: cast back to the original type if |
| // required. |
| return DAG.getBitcast(Op.getSimpleValueType(), Slideup); |
| } |
| |
| SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Vec = Op.getOperand(0); |
| MVT SubVecVT = Op.getSimpleValueType(); |
| MVT VecVT = Vec.getSimpleValueType(); |
| |
| SDLoc DL(Op); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| unsigned OrigIdx = Op.getConstantOperandVal(1); |
| const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| |
| // We don't have the ability to slide mask vectors down indexed by their i1 |
| // elements; the smallest we can do is i8. Often we are able to bitcast to |
| // equivalent i8 vectors. Note that when extracting a fixed-length vector |
| // from a scalable one, we might not necessarily have enough scalable |
| // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. |
| if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { |
| if (VecVT.getVectorMinNumElements() >= 8 && |
| SubVecVT.getVectorMinNumElements() >= 8) { |
| assert(OrigIdx % 8 == 0 && "Invalid index"); |
| assert(VecVT.getVectorMinNumElements() % 8 == 0 && |
| SubVecVT.getVectorMinNumElements() % 8 == 0 && |
| "Unexpected mask vector lowering"); |
| OrigIdx /= 8; |
| SubVecVT = |
| MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, |
| SubVecVT.isScalableVector()); |
| VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, |
| VecVT.isScalableVector()); |
| Vec = DAG.getBitcast(VecVT, Vec); |
| } else { |
| // We can't slide this mask vector down, indexed by its i1 elements. |
| // This poses a problem when we wish to extract a scalable vector which |
| // can't be re-expressed as a larger type. Just choose the slow path and |
| // extend to a larger type, then truncate back down. |
| // TODO: We could probably improve this when extracting certain fixed |
| // from fixed, where we can extract as i8 and shift the correct element |
| // right to reach the desired subvector? |
| MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); |
| MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); |
| Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); |
| Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, |
| Op.getOperand(1)); |
| SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); |
| return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); |
| } |
| } |
| |
| // If the subvector vector is a fixed-length type, we cannot use subregister |
| // manipulation to simplify the codegen; we don't know which register of a |
| // LMUL group contains the specific subvector as we only know the minimum |
| // register size. Therefore we must slide the vector group down the full |
| // amount. |
| if (SubVecVT.isFixedLengthVector()) { |
| // With an index of 0 this is a cast-like subvector, which can be performed |
| // with subregister operations. |
| if (OrigIdx == 0) |
| return Op; |
| MVT ContainerVT = VecVT; |
| if (VecVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VecVT); |
| Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); |
| } |
| SDValue Mask = |
| getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; |
| // Set the vector length to only the number of elements we care about. This |
| // avoids sliding down elements we're going to discard straight away. |
| SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); |
| SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); |
| SDValue Slidedown = |
| DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, |
| DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); |
| // Now we can use a cast-like subvector extract to get the result. |
| Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, |
| DAG.getConstant(0, DL, XLenVT)); |
| return DAG.getBitcast(Op.getValueType(), Slidedown); |
| } |
| |
| unsigned SubRegIdx, RemIdx; |
| std::tie(SubRegIdx, RemIdx) = |
| RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( |
| VecVT, SubVecVT, OrigIdx, TRI); |
| |
| // If the Idx has been completely eliminated then this is a subvector extract |
| // which naturally aligns to a vector register. These can easily be handled |
| // using subregister manipulation. |
| if (RemIdx == 0) |
| return Op; |
| |
| // Else we must shift our vector register directly to extract the subvector. |
| // Do this using VSLIDEDOWN. |
| |
| // If the vector type is an LMUL-group type, extract a subvector equal to the |
| // nearest full vector register type. This should resolve to a EXTRACT_SUBREG |
| // instruction. |
| MVT InterSubVT = VecVT; |
| if (VecVT.bitsGT(getLMUL1VT(VecVT))) { |
| InterSubVT = getLMUL1VT(VecVT); |
| Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, |
| DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); |
| } |
| |
| // Slide this vector register down by the desired number of elements in order |
| // to place the desired subvector starting at element 0. |
| SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); |
| // For scalable vectors this must be further multiplied by vscale. |
| SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); |
| |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); |
| SDValue Slidedown = |
| DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, |
| DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); |
| |
| // Now the vector is in the right position, extract our final subvector. This |
| // should resolve to a COPY. |
| Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, |
| DAG.getConstant(0, DL, XLenVT)); |
| |
| // We might have bitcast from a mask type: cast back to the original type if |
| // required. |
| return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); |
| } |
| |
| // Lower step_vector to the vid instruction. Any non-identity step value must |
| // be accounted for my manual expansion. |
| SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); |
| SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); |
| uint64_t StepValImm = Op.getConstantOperandVal(0); |
| if (StepValImm != 1) { |
| if (isPowerOf2_64(StepValImm)) { |
| SDValue StepVal = |
| DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, |
| DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); |
| StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); |
| } else { |
| SDValue StepVal = lowerScalarSplat( |
| DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT, |
| DL, DAG, Subtarget); |
| StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); |
| } |
| } |
| return StepVec; |
| } |
| |
| // Implement vector_reverse using vrgather.vv with indices determined by |
| // subtracting the id of each element from (VLMAX-1). This will convert |
| // the indices like so: |
| // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). |
| // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. |
| SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VecVT = Op.getSimpleValueType(); |
| unsigned EltSize = VecVT.getScalarSizeInBits(); |
| unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); |
| |
| unsigned MaxVLMAX = 0; |
| unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); |
| if (VectorBitsMax != 0) |
| MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; |
| |
| unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; |
| MVT IntVT = VecVT.changeVectorElementTypeToInteger(); |
| |
| // If this is SEW=8 and VLMAX is unknown or more than 256, we need |
| // to use vrgatherei16.vv. |
| // TODO: It's also possible to use vrgatherei16.vv for other types to |
| // decrease register width for the index calculation. |
| if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { |
| // If this is LMUL=8, we have to split before can use vrgatherei16.vv. |
| // Reverse each half, then reassemble them in reverse order. |
| // NOTE: It's also possible that after splitting that VLMAX no longer |
| // requires vrgatherei16.vv. |
| if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { |
| SDValue Lo, Hi; |
| std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); |
| EVT LoVT, HiVT; |
| std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); |
| Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); |
| Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); |
| // Reassemble the low and high pieces reversed. |
| // FIXME: This is a CONCAT_VECTORS. |
| SDValue Res = |
| DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, |
| DAG.getIntPtrConstant(0, DL)); |
| return DAG.getNode( |
| ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, |
| DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); |
| } |
| |
| // Just promote the int type to i16 which will double the LMUL. |
| IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); |
| GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; |
| } |
| |
| MVT XLenVT = Subtarget.getXLenVT(); |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); |
| |
| // Calculate VLMAX-1 for the desired SEW. |
| unsigned MinElts = VecVT.getVectorMinNumElements(); |
| SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, |
| DAG.getConstant(MinElts, DL, XLenVT)); |
| SDValue VLMinus1 = |
| DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); |
| |
| // Splat VLMAX-1 taking care to handle SEW==64 on RV32. |
| bool IsRV32E64 = |
| !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; |
| SDValue SplatVL; |
| if (!IsRV32E64) |
| SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); |
| else |
| SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); |
| |
| SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); |
| SDValue Indices = |
| DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); |
| |
| return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); |
| } |
| |
| SDValue |
| RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| auto *Load = cast<LoadSDNode>(Op); |
| |
| assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| Load->getMemoryVT(), |
| *Load->getMemOperand()) && |
| "Expecting a correctly-aligned load"); |
| |
| MVT VT = Op.getSimpleValueType(); |
| MVT ContainerVT = getContainerForFixedLengthVector(VT); |
| |
| SDValue VL = |
| DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); |
| |
| SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); |
| SDValue NewLoad = DAG.getMemIntrinsicNode( |
| RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, |
| Load->getMemoryVT(), Load->getMemOperand()); |
| |
| SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); |
| return DAG.getMergeValues({Result, Load->getChain()}, DL); |
| } |
| |
| SDValue |
| RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| auto *Store = cast<StoreSDNode>(Op); |
| |
| assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| Store->getMemoryVT(), |
| *Store->getMemOperand()) && |
| "Expecting a correctly-aligned store"); |
| |
| SDValue StoreVal = Store->getValue(); |
| MVT VT = StoreVal.getSimpleValueType(); |
| |
| // If the size less than a byte, we need to pad with zeros to make a byte. |
| if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { |
| VT = MVT::v8i1; |
| StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, |
| DAG.getConstant(0, DL, VT), StoreVal, |
| DAG.getIntPtrConstant(0, DL)); |
| } |
| |
| MVT ContainerVT = getContainerForFixedLengthVector(VT); |
| |
| SDValue VL = |
| DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); |
| |
| SDValue NewValue = |
| convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); |
| return DAG.getMemIntrinsicNode( |
| RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), |
| {Store->getChain(), NewValue, Store->getBasePtr(), VL}, |
| Store->getMemoryVT(), Store->getMemOperand()); |
| } |
| |
| SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| |
| const auto *MemSD = cast<MemSDNode>(Op); |
| EVT MemVT = MemSD->getMemoryVT(); |
| MachineMemOperand *MMO = MemSD->getMemOperand(); |
| SDValue Chain = MemSD->getChain(); |
| SDValue BasePtr = MemSD->getBasePtr(); |
| |
| SDValue Mask, PassThru, VL; |
| if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { |
| Mask = VPLoad->getMask(); |
| PassThru = DAG.getUNDEF(VT); |
| VL = VPLoad->getVectorLength(); |
| } else { |
| const auto *MLoad = cast<MaskedLoadSDNode>(Op); |
| Mask = MLoad->getMask(); |
| PassThru = MLoad->getPassThru(); |
| } |
| |
| bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); |
| |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| MVT ContainerVT = VT; |
| if (VT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VT); |
| PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); |
| if (!IsUnmasked) { |
| MVT MaskVT = |
| MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); |
| } |
| } |
| |
| if (!VL) |
| VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; |
| |
| unsigned IntID = |
| IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; |
| SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; |
| if (IsUnmasked) |
| Ops.push_back(DAG.getUNDEF(ContainerVT)); |
| else |
| Ops.push_back(PassThru); |
| Ops.push_back(BasePtr); |
| if (!IsUnmasked) |
| Ops.push_back(Mask); |
| Ops.push_back(VL); |
| if (!IsUnmasked) |
| Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); |
| |
| SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); |
| |
| SDValue Result = |
| DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); |
| Chain = Result.getValue(1); |
| |
| if (VT.isFixedLengthVector()) |
| Result = convertFromScalableVector(VT, Result, DAG, Subtarget); |
| |
| return DAG.getMergeValues({Result, Chain}, DL); |
| } |
| |
| SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| |
| const auto *MemSD = cast<MemSDNode>(Op); |
| EVT MemVT = MemSD->getMemoryVT(); |
| MachineMemOperand *MMO = MemSD->getMemOperand(); |
| SDValue Chain = MemSD->getChain(); |
| SDValue BasePtr = MemSD->getBasePtr(); |
| SDValue Val, Mask, VL; |
| |
| if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { |
| Val = VPStore->getValue(); |
| Mask = VPStore->getMask(); |
| VL = VPStore->getVectorLength(); |
| } else { |
| const auto *MStore = cast<MaskedStoreSDNode>(Op); |
| Val = MStore->getValue(); |
| Mask = MStore->getMask(); |
| } |
| |
| bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); |
| |
| MVT VT = Val.getSimpleValueType(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| MVT ContainerVT = VT; |
| if (VT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VT); |
| |
| Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); |
| if (!IsUnmasked) { |
| MVT MaskVT = |
| MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); |
| } |
| } |
| |
| if (!VL) |
| VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; |
| |
| unsigned IntID = |
| IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; |
| SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; |
| Ops.push_back(Val); |
| Ops.push_back(BasePtr); |
| if (!IsUnmasked) |
| Ops.push_back(Mask); |
| Ops.push_back(VL); |
| |
| return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, |
| DAG.getVTList(MVT::Other), Ops, MemVT, MMO); |
| } |
| |
| SDValue |
| RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, |
| SelectionDAG &DAG) const { |
| MVT InVT = Op.getOperand(0).getSimpleValueType(); |
| MVT ContainerVT = getContainerForFixedLengthVector(InVT); |
| |
| MVT VT = Op.getSimpleValueType(); |
| |
| SDValue Op1 = |
| convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); |
| SDValue Op2 = |
| convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); |
| |
| SDLoc DL(Op); |
| SDValue VL = |
| DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); |
| |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); |
| |
| SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, |
| Op.getOperand(2), Mask, VL); |
| |
| return convertFromScalableVector(VT, Cmp, DAG, Subtarget); |
| } |
| |
| SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( |
| SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { |
| MVT VT = Op.getSimpleValueType(); |
| |
| if (VT.getVectorElementType() == MVT::i1) |
| return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); |
| |
| return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); |
| } |
| |
| SDValue |
| RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned Opc; |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Unexpected opcode!"); |
| case ISD::SHL: Opc = RISCVISD::SHL_VL; break; |
| case ISD::SRA: Opc = RISCVISD::SRA_VL; break; |
| case ISD::SRL: Opc = RISCVISD::SRL_VL; break; |
| } |
| |
| return lowerToScalableOp(Op, DAG, Opc); |
| } |
| |
| // Lower vector ABS to smax(X, sub(0, X)). |
| SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue X = Op.getOperand(0); |
| |
| assert(VT.isFixedLengthVector() && "Unexpected type"); |
| |
| MVT ContainerVT = getContainerForFixedLengthVector(VT); |
| X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); |
| |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); |
| |
| SDValue SplatZero = |
| DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, |
| DAG.getConstant(0, DL, Subtarget.getXLenVT())); |
| SDValue NegX = |
| DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); |
| SDValue Max = |
| DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); |
| |
| return convertFromScalableVector(VT, Max, DAG, Subtarget); |
| } |
| |
| SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( |
| SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue Mag = Op.getOperand(0); |
| SDValue Sign = Op.getOperand(1); |
| assert(Mag.getValueType() == Sign.getValueType() && |
| "Can only handle COPYSIGN with matching types."); |
| |
| MVT ContainerVT = getContainerForFixedLengthVector(VT); |
| Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); |
| Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); |
| |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); |
| |
| SDValue CopySign = |
| DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); |
| |
| return convertFromScalableVector(VT, CopySign, DAG, Subtarget); |
| } |
| |
| SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( |
| SDValue Op, SelectionDAG &DAG) const { |
| MVT VT = Op.getSimpleValueType(); |
| MVT ContainerVT = getContainerForFixedLengthVector(VT); |
| |
| MVT I1ContainerVT = |
| MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| |
| SDValue CC = |
| convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); |
| SDValue Op1 = |
| convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); |
| SDValue Op2 = |
| convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); |
| |
| SDLoc DL(Op); |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); |
| |
| SDValue Select = |
| DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); |
| |
| return convertFromScalableVector(VT, Select, DAG, Subtarget); |
| } |
| |
| SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, |
| unsigned NewOpc, |
| bool HasMask) const { |
| MVT VT = Op.getSimpleValueType(); |
| MVT ContainerVT = getContainerForFixedLengthVector(VT); |
| |
| // Create list of operands by converting existing ones to scalable types. |
| SmallVector<SDValue, 6> Ops; |
| for (const SDValue &V : Op->op_values()) { |
| assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); |
| |
| // Pass through non-vector operands. |
| if (!V.getValueType().isVector()) { |
| Ops.push_back(V); |
| continue; |
| } |
| |
| // "cast" fixed length vector to a scalable vector. |
| assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && |
| "Only fixed length vectors are supported!"); |
| Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); |
| } |
| |
| SDLoc DL(Op); |
| SDValue Mask, VL; |
| std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); |
| if (HasMask) |
| Ops.push_back(Mask); |
| Ops.push_back(VL); |
| |
| SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); |
| return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); |
| } |
| |
| // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: |
| // * Operands of each node are assumed to be in the same order. |
| // * The EVL operand is promoted from i32 to i64 on RV64. |
| // * Fixed-length vectors are converted to their scalable-vector container |
| // types. |
| SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, |
| unsigned RISCVISDOpc) const { |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SmallVector<SDValue, 4> Ops; |
| |
| for (const auto &OpIdx : enumerate(Op->ops())) { |
| SDValue V = OpIdx.value(); |
| assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); |
| // Pass through operands which aren't fixed-length vectors. |
| if (!V.getValueType().isFixedLengthVector()) { |
| Ops.push_back(V); |
| continue; |
| } |
| // "cast" fixed length vector to a scalable vector. |
| MVT OpVT = V.getSimpleValueType(); |
| MVT ContainerVT = getContainerForFixedLengthVector(OpVT); |
| assert(useRVVForFixedLengthVectorVT(OpVT) && |
| "Only fixed length vectors are supported!"); |
| Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); |
| } |
| |
| if (!VT.isFixedLengthVector()) |
| return DAG.getNode(RISCVISDOpc, DL, VT, Ops); |
| |
| MVT ContainerVT = getContainerForFixedLengthVector(VT); |
| |
| SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); |
| |
| return convertFromScalableVector(VT, VPOp, DAG, Subtarget); |
| } |
| |
| SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, |
| unsigned MaskOpc, |
| unsigned VecOpc) const { |
| MVT VT = Op.getSimpleValueType(); |
| if (VT.getVectorElementType() != MVT::i1) |
| return lowerVPOp(Op, DAG, VecOpc); |
| |
| // It is safe to drop mask parameter as masked-off elements are undef. |
| SDValue Op1 = Op->getOperand(0); |
| SDValue Op2 = Op->getOperand(1); |
| SDValue VL = Op->getOperand(3); |
| |
| MVT ContainerVT = VT; |
| const bool IsFixed = VT.isFixedLengthVector(); |
| if (IsFixed) { |
| ContainerVT = getContainerForFixedLengthVector(VT); |
| Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); |
| Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); |
| } |
| |
| SDLoc DL(Op); |
| SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); |
| if (!IsFixed) |
| return Val; |
| return convertFromScalableVector(VT, Val, DAG, Subtarget); |
| } |
| |
| // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be |
| // matched to a RVV indexed load. The RVV indexed load instructions only |
| // support the "unsigned unscaled" addressing mode; indices are implicitly |
| // zero-extended or truncated to XLEN and are treated as byte offsets. Any |
| // signed or scaled indexing is extended to the XLEN value type and scaled |
| // accordingly. |
| SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT VT = Op.getSimpleValueType(); |
| |
| const auto *MemSD = cast<MemSDNode>(Op.getNode()); |
| EVT MemVT = MemSD->getMemoryVT(); |
| MachineMemOperand *MMO = MemSD->getMemOperand(); |
| SDValue Chain = MemSD->getChain(); |
| SDValue BasePtr = MemSD->getBasePtr(); |
| |
| ISD::LoadExtType LoadExtType; |
| SDValue Index, Mask, PassThru, VL; |
| |
| if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { |
| Index = VPGN->getIndex(); |
| Mask = VPGN->getMask(); |
| PassThru = DAG.getUNDEF(VT); |
| VL = VPGN->getVectorLength(); |
| // VP doesn't support extending loads. |
| LoadExtType = ISD::NON_EXTLOAD; |
| } else { |
| // Else it must be a MGATHER. |
| auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); |
| Index = MGN->getIndex(); |
| Mask = MGN->getMask(); |
| PassThru = MGN->getPassThru(); |
| LoadExtType = MGN->getExtensionType(); |
| } |
| |
| MVT IndexVT = Index.getSimpleValueType(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && |
| "Unexpected VTs!"); |
| assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); |
| // Targets have to explicitly opt-in for extending vector loads. |
| assert(LoadExtType == ISD::NON_EXTLOAD && |
| "Unexpected extending MGATHER/VP_GATHER"); |
| (void)LoadExtType; |
| |
| // If the mask is known to be all ones, optimize to an unmasked intrinsic; |
| // the selection of the masked intrinsics doesn't do this for us. |
| bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); |
| |
| MVT ContainerVT = VT; |
| if (VT.isFixedLengthVector()) { |
| // We need to use the larger of the result and index type to determine the |
| // scalable type to use so we don't increase LMUL for any operand/result. |
| if (VT.bitsGE(IndexVT)) { |
| ContainerVT = getContainerForFixedLengthVector(VT); |
| IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), |
| ContainerVT.getVectorElementCount()); |
| } else { |
| IndexVT = getContainerForFixedLengthVector(IndexVT); |
| ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), |
| IndexVT.getVectorElementCount()); |
| } |
| |
| Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); |
| |
| if (!IsUnmasked) { |
| MVT MaskVT = |
| MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); |
| PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); |
| } |
| } |
| |
| if (!VL) |
| VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; |
| |
| if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { |
| IndexVT = IndexVT.changeVectorElementType(XLenVT); |
| SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), |
| VL); |
| Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, |
| TrueMask, VL); |
| } |
| |
| unsigned IntID = |
| IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; |
| SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; |
| if (IsUnmasked) |
| Ops.push_back(DAG.getUNDEF(ContainerVT)); |
| else |
| Ops.push_back(PassThru); |
| Ops.push_back(BasePtr); |
| Ops.push_back(Index); |
| if (!IsUnmasked) |
| Ops.push_back(Mask); |
| Ops.push_back(VL); |
| if (!IsUnmasked) |
| Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); |
| |
| SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); |
| SDValue Result = |
| DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); |
| Chain = Result.getValue(1); |
| |
| if (VT.isFixedLengthVector()) |
| Result = convertFromScalableVector(VT, Result, DAG, Subtarget); |
| |
| return DAG.getMergeValues({Result, Chain}, DL); |
| } |
| |
| // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be |
| // matched to a RVV indexed store. The RVV indexed store instructions only |
| // support the "unsigned unscaled" addressing mode; indices are implicitly |
| // zero-extended or truncated to XLEN and are treated as byte offsets. Any |
| // signed or scaled indexing is extended to the XLEN value type and scaled |
| // accordingly. |
| SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| const auto *MemSD = cast<MemSDNode>(Op.getNode()); |
| EVT MemVT = MemSD->getMemoryVT(); |
| MachineMemOperand *MMO = MemSD->getMemOperand(); |
| SDValue Chain = MemSD->getChain(); |
| SDValue BasePtr = MemSD->getBasePtr(); |
| |
| bool IsTruncatingStore = false; |
| SDValue Index, Mask, Val, VL; |
| |
| if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { |
| Index = VPSN->getIndex(); |
| Mask = VPSN->getMask(); |
| Val = VPSN->getValue(); |
| VL = VPSN->getVectorLength(); |
| // VP doesn't support truncating stores. |
| IsTruncatingStore = false; |
| } else { |
| // Else it must be a MSCATTER. |
| auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); |
| Index = MSN->getIndex(); |
| Mask = MSN->getMask(); |
| Val = MSN->getValue(); |
| IsTruncatingStore = MSN->isTruncatingStore(); |
| } |
| |
| MVT VT = Val.getSimpleValueType(); |
| MVT IndexVT = Index.getSimpleValueType(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && |
| "Unexpected VTs!"); |
| assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); |
| // Targets have to explicitly opt-in for extending vector loads and |
| // truncating vector stores. |
| assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); |
| (void)IsTruncatingStore; |
| |
| // If the mask is known to be all ones, optimize to an unmasked intrinsic; |
| // the selection of the masked intrinsics doesn't do this for us. |
| bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); |
| |
| MVT ContainerVT = VT; |
| if (VT.isFixedLengthVector()) { |
| // We need to use the larger of the value and index type to determine the |
| // scalable type to use so we don't increase LMUL for any operand/result. |
| if (VT.bitsGE(IndexVT)) { |
| ContainerVT = getContainerForFixedLengthVector(VT); |
| IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), |
| ContainerVT.getVectorElementCount()); |
| } else { |
| IndexVT = getContainerForFixedLengthVector(IndexVT); |
| ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), |
| IndexVT.getVectorElementCount()); |
| } |
| |
| Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); |
| Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); |
| |
| if (!IsUnmasked) { |
| MVT MaskVT = |
| MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); |
| } |
| } |
| |
| if (!VL) |
| VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; |
| |
| if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { |
| IndexVT = IndexVT.changeVectorElementType(XLenVT); |
| SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), |
| VL); |
| Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, |
| TrueMask, VL); |
| } |
| |
| unsigned IntID = |
| IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; |
| SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; |
| Ops.push_back(Val); |
| Ops.push_back(BasePtr); |
| Ops.push_back(Index); |
| if (!IsUnmasked) |
| Ops.push_back(Mask); |
| Ops.push_back(VL); |
| |
| return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, |
| DAG.getVTList(MVT::Other), Ops, MemVT, MMO); |
| } |
| |
| SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, |
| SelectionDAG &DAG) const { |
| const MVT XLenVT = Subtarget.getXLenVT(); |
| SDLoc DL(Op); |
| SDValue Chain = Op->getOperand(0); |
| SDValue SysRegNo = DAG.getTargetConstant( |
| RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); |
| SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); |
| SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); |
| |
| // Encoding used for rounding mode in RISCV differs from that used in |
| // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a |
| // table, which consists of a sequence of 4-bit fields, each representing |
| // corresponding FLT_ROUNDS mode. |
| static const int Table = |
| (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | |
| (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | |
| (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | |
| (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | |
| (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); |
| |
| SDValue Shift = |
| DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); |
| SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, |
| DAG.getConstant(Table, DL, XLenVT), Shift); |
| SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, |
| DAG.getConstant(7, DL, XLenVT)); |
| |
| return DAG.getMergeValues({Masked, Chain}, DL); |
| } |
| |
| SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, |
| SelectionDAG &DAG) const { |
| const MVT XLenVT = Subtarget.getXLenVT(); |
| SDLoc DL(Op); |
| SDValue Chain = Op->getOperand(0); |
| SDValue RMValue = Op->getOperand(1); |
| SDValue SysRegNo = DAG.getTargetConstant( |
| RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); |
| |
| // Encoding used for rounding mode in RISCV differs from that used in |
| // FLT_ROUNDS. To convert it the C rounding mode is used as an index in |
| // a table, which consists of a sequence of 4-bit fields, each representing |
| // corresponding RISCV mode. |
| static const unsigned Table = |
| (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | |
| (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | |
| (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | |
| (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | |
| (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); |
| |
| SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, |
| DAG.getConstant(2, DL, XLenVT)); |
| SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, |
| DAG.getConstant(Table, DL, XLenVT), Shift); |
| RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, |
| DAG.getConstant(0x7, DL, XLenVT)); |
| return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, |
| RMValue); |
| } |
| |
| static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) { |
| switch (IntNo) { |
| default: |
| llvm_unreachable("Unexpected Intrinsic"); |
| case Intrinsic::riscv_grev: |
| return RISCVISD::GREVW; |
| case Intrinsic::riscv_gorc: |
| return RISCVISD::GORCW; |
| case Intrinsic::riscv_bcompress: |
| return RISCVISD::BCOMPRESSW; |
| case Intrinsic::riscv_bdecompress: |
| return RISCVISD::BDECOMPRESSW; |
| case Intrinsic::riscv_bfp: |
| return RISCVISD::BFPW; |
| case Intrinsic::riscv_fsl: |
| return RISCVISD::FSLW; |
| case Intrinsic::riscv_fsr: |
| return RISCVISD::FSRW; |
| } |
| } |
| |
| // Converts the given intrinsic to a i64 operation with any extension. |
| static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG, |
| unsigned IntNo) { |
| SDLoc DL(N); |
| RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo); |
| SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue NewOp2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); |
| SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp1, NewOp2); |
| // ReplaceNodeResults requires we maintain the same type for the return value. |
| return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); |
| } |
| |
| // Returns the opcode of the target-specific SDNode that implements the 32-bit |
| // form of the given Opcode. |
| static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { |
| switch (Opcode) { |
| default: |
| llvm_unreachable("Unexpected opcode"); |
| case ISD::SHL: |
| return RISCVISD::SLLW; |
| case ISD::SRA: |
| return RISCVISD::SRAW; |
| case ISD::SRL: |
| return RISCVISD::SRLW; |
| case ISD::SDIV: |
| return RISCVISD::DIVW; |
| case ISD::UDIV: |
| return RISCVISD::DIVUW; |
| case ISD::UREM: |
| return RISCVISD::REMUW; |
| case ISD::ROTL: |
| return RISCVISD::ROLW; |
| case ISD::ROTR: |
| return RISCVISD::RORW; |
| case RISCVISD::GREV: |
| return RISCVISD::GREVW; |
| case RISCVISD::GORC: |
| return RISCVISD::GORCW; |
| } |
| } |
| |
| // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG |
| // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would |
| // otherwise be promoted to i64, making it difficult to select the |
| // SLLW/DIVUW/.../*W later one because the fact the operation was originally of |
| // type i8/i16/i32 is lost. |
| static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, |
| unsigned ExtOpc = ISD::ANY_EXTEND) { |
| SDLoc DL(N); |
| RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); |
| SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); |
| SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); |
| SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); |
| // ReplaceNodeResults requires we maintain the same type for the return value. |
| return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); |
| } |
| |
| // Converts the given 32-bit operation to a i64 operation with signed extension |
| // semantic to reduce the signed extension instructions. |
| static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { |
| SDLoc DL(N); |
| SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); |
| SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); |
| SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, |
| DAG.getValueType(MVT::i32)); |
| return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); |
| } |
| |
| void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| SDLoc DL(N); |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Don't know how to custom type legalize this operation!"); |
| case ISD::STRICT_FP_TO_SINT: |
| case ISD::STRICT_FP_TO_UINT: |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: { |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| bool IsStrict = N->isStrictFPOpcode(); |
| bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || |
| N->getOpcode() == ISD::STRICT_FP_TO_SINT; |
| SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); |
| if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != |
| TargetLowering::TypeSoftenFloat) { |
| if (!isTypeLegal(Op0.getValueType())) |
| return; |
| if (IsStrict) { |
| unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 |
| : RISCVISD::STRICT_FCVT_WU_RV64; |
| SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); |
| SDValue Res = DAG.getNode( |
| Opc, DL, VTs, N->getOperand(0), Op0, |
| DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); |
| Results.push_back(Res.getValue(1)); |
| return; |
| } |
| unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; |
| SDValue Res = |
| DAG.getNode(Opc, DL, MVT::i64, Op0, |
| DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); |
| return; |
| } |
| // If the FP type needs to be softened, emit a library call using the 'si' |
| // version. If we left it to default legalization we'd end up with 'di'. If |
| // the FP type doesn't need to be softened just let generic type |
| // legalization promote the result type. |
| RTLIB::Libcall LC; |
| if (IsSigned) |
| LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); |
| else |
| LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); |
| MakeLibCallOptions CallOptions; |
| EVT OpVT = Op0.getValueType(); |
| CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); |
| SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); |
| SDValue Result; |
| std::tie(Result, Chain) = |
| makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); |
| Results.push_back(Result); |
| if (IsStrict) |
| Results.push_back(Chain); |
| break; |
| } |
| case ISD::READCYCLECOUNTER: { |
| assert(!Subtarget.is64Bit() && |
| "READCYCLECOUNTER only has custom type legalization on riscv32"); |
| |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); |
| SDValue RCW = |
| DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); |
| |
| Results.push_back( |
| DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); |
| Results.push_back(RCW.getValue(2)); |
| break; |
| } |
| case ISD::MUL: { |
| unsigned Size = N->getSimpleValueType(0).getSizeInBits(); |
| unsigned XLen = Subtarget.getXLen(); |
| // This multiply needs to be expanded, try to use MULHSU+MUL if possible. |
| if (Size > XLen) { |
| assert(Size == (XLen * 2) && "Unexpected custom legalisation"); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| APInt HighMask = APInt::getHighBitsSet(Size, XLen); |
| |
| bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); |
| bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); |
| // We need exactly one side to be unsigned. |
| if (LHSIsU == RHSIsU) |
| return; |
| |
| auto MakeMULPair = [&](SDValue S, SDValue U) { |
| MVT XLenVT = Subtarget.getXLenVT(); |
| S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); |
| U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); |
| SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); |
| SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); |
| return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); |
| }; |
| |
| bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; |
| bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; |
| |
| // The other operand should be signed, but still prefer MULH when |
| // possible. |
| if (RHSIsU && LHSIsS && !RHSIsS) |
| Results.push_back(MakeMULPair(LHS, RHS)); |
| else if (LHSIsU && RHSIsS && !LHSIsS) |
| Results.push_back(MakeMULPair(RHS, LHS)); |
| |
| return; |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case ISD::ADD: |
| case ISD::SUB: |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| if (N->getOperand(1).getOpcode() != ISD::Constant) { |
| Results.push_back(customLegalizeToWOp(N, DAG)); |
| break; |
| } |
| |
| // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is |
| // similar to customLegalizeToWOpWithSExt, but we must zero_extend the |
| // shift amount. |
| if (N->getOpcode() == ISD::SHL) { |
| SDLoc DL(N); |
| SDValue NewOp0 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); |
| SDValue NewOp1 = |
| DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); |
| SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, |
| DAG.getValueType(MVT::i32)); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); |
| } |
| |
| break; |
| case ISD::ROTL: |
| case ISD::ROTR: |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| Results.push_back(customLegalizeToWOp(N, DAG)); |
| break; |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: { |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| |
| SDValue NewOp0 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); |
| bool IsCTZ = |
| N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; |
| unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; |
| SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); |
| return; |
| } |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::UREM: { |
| MVT VT = N->getSimpleValueType(0); |
| assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && |
| Subtarget.is64Bit() && Subtarget.hasStdExtM() && |
| "Unexpected custom legalisation"); |
| // Don't promote division/remainder by constant since we should expand those |
| // to multiply by magic constant. |
| // FIXME: What if the expansion is disabled for minsize. |
| if (N->getOperand(1).getOpcode() == ISD::Constant) |
| return; |
| |
| // If the input is i32, use ANY_EXTEND since the W instructions don't read |
| // the upper 32 bits. For other types we need to sign or zero extend |
| // based on the opcode. |
| unsigned ExtOpc = ISD::ANY_EXTEND; |
| if (VT != MVT::i32) |
| ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND |
| : ISD::ZERO_EXTEND; |
| |
| Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); |
| break; |
| } |
| case ISD::UADDO: |
| case ISD::USUBO: { |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| bool IsAdd = N->getOpcode() == ISD::UADDO; |
| // Create an ADDW or SUBW. |
| SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); |
| SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue Res = |
| DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); |
| Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, |
| DAG.getValueType(MVT::i32)); |
| |
| // Sign extend the LHS and perform an unsigned compare with the ADDW result. |
| // Since the inputs are sign extended from i32, this is equivalent to |
| // comparing the lower 32 bits. |
| LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); |
| SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, |
| IsAdd ? ISD::SETULT : ISD::SETUGT); |
| |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); |
| Results.push_back(Overflow); |
| return; |
| } |
| case ISD::UADDSAT: |
| case ISD::USUBSAT: { |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| if (Subtarget.hasStdExtZbb()) { |
| // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using |
| // sign extend allows overflow of the lower 32 bits to be detected on |
| // the promoted size. |
| SDValue LHS = |
| DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); |
| SDValue RHS = |
| DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); |
| return; |
| } |
| |
| // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom |
| // promotion for UADDO/USUBO. |
| Results.push_back(expandAddSubSat(N, DAG)); |
| return; |
| } |
| case ISD::BITCAST: { |
| EVT VT = N->getValueType(0); |
| assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); |
| SDValue Op0 = N->getOperand(0); |
| EVT Op0VT = Op0.getValueType(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { |
| SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); |
| } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && |
| Subtarget.hasStdExtF()) { |
| SDValue FPConv = |
| DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); |
| } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && |
| isTypeLegal(Op0VT)) { |
| // Custom-legalize bitcasts from fixed-length vector types to illegal |
| // scalar types in order to improve codegen. Bitcast the vector to a |
| // one-element vector type whose element type is the same as the result |
| // type, and extract the first element. |
| EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); |
| if (isTypeLegal(BVT)) { |
| SDValue BVec = DAG.getBitcast(BVT, Op0); |
| Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, |
| DAG.getConstant(0, DL, XLenVT))); |
| } |
| } |
| break; |
| } |
| case RISCVISD::GREV: |
| case RISCVISD::GORC: { |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); |
| // This is similar to customLegalizeToWOp, except that we pass the second |
| // operand (a TargetConstant) straight through: it is already of type |
| // XLenVT. |
| RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); |
| SDValue NewOp0 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); |
| SDValue NewOp1 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); |
| // ReplaceNodeResults requires we maintain the same type for the return |
| // value. |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); |
| break; |
| } |
| case RISCVISD::SHFL: { |
| // There is no SHFLIW instruction, but we can just promote the operation. |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); |
| SDValue NewOp0 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); |
| SDValue NewOp1 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); |
| // ReplaceNodeResults requires we maintain the same type for the return |
| // value. |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); |
| break; |
| } |
| case ISD::BSWAP: |
| case ISD::BITREVERSE: { |
| MVT VT = N->getSimpleValueType(0); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| assert((VT == MVT::i8 || VT == MVT::i16 || |
| (VT == MVT::i32 && Subtarget.is64Bit())) && |
| Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); |
| SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); |
| unsigned Imm = VT.getSizeInBits() - 1; |
| // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. |
| if (N->getOpcode() == ISD::BSWAP) |
| Imm &= ~0x7U; |
| unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV; |
| SDValue GREVI = |
| DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT)); |
| // ReplaceNodeResults requires we maintain the same type for the return |
| // value. |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI)); |
| break; |
| } |
| case ISD::FSHL: |
| case ISD::FSHR: { |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); |
| SDValue NewOp0 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); |
| SDValue NewOp1 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue NewShAmt = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); |
| // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. |
| // Mask the shift amount to 5 bits to prevent accidentally setting bit 5. |
| NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt, |
| DAG.getConstant(0x1f, DL, MVT::i64)); |
| // fshl and fshr concatenate their operands in the same order. fsrw and fslw |
| // instruction use different orders. fshl will return its first operand for |
| // shift of zero, fshr will return its second operand. fsl and fsr both |
| // return rs1 so the ISD nodes need to have different operand orders. |
| // Shift amount is in rs2. |
| unsigned Opc = RISCVISD::FSLW; |
| if (N->getOpcode() == ISD::FSHR) { |
| std::swap(NewOp0, NewOp1); |
| Opc = RISCVISD::FSRW; |
| } |
| SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); |
| break; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: { |
| // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element |
| // type is illegal (currently only vXi64 RV32). |
| // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are |
| // transferred to the destination register. We issue two of these from the |
| // upper- and lower- halves of the SEW-bit vector element, slid down to the |
| // first element. |
| SDValue Vec = N->getOperand(0); |
| SDValue Idx = N->getOperand(1); |
| |
| // The vector type hasn't been legalized yet so we can't issue target |
| // specific nodes if it needs legalization. |
| // FIXME: We would manually legalize if it's important. |
| if (!isTypeLegal(Vec.getValueType())) |
| return; |
| |
| MVT VecVT = Vec.getSimpleValueType(); |
| |
| assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && |
| VecVT.getVectorElementType() == MVT::i64 && |
| "Unexpected EXTRACT_VECTOR_ELT legalization"); |
| |
| // If this is a fixed vector, we need to convert it to a scalable vector. |
| MVT ContainerVT = VecVT; |
| if (VecVT.isFixedLengthVector()) { |
| ContainerVT = getContainerForFixedLengthVector(VecVT); |
| Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); |
| } |
| |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| // Use a VL of 1 to avoid processing more elements than we need. |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); |
| SDValue VL = DAG.getConstant(1, DL, XLenVT); |
| SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); |
| |
| // Unless the index is known to be 0, we must slide the vector down to get |
| // the desired element into index 0. |
| if (!isNullConstant(Idx)) { |
| Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, |
| DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); |
| } |
| |
| // Extract the lower XLEN bits of the correct vector element. |
| SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); |
| |
| // To extract the upper XLEN bits of the vector element, shift the first |
| // element right by 32 bits and re-extract the lower XLEN bits. |
| SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, |
| DAG.getConstant(32, DL, XLenVT), VL); |
| SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, |
| ThirtyTwoV, Mask, VL); |
| |
| SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); |
| |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); |
| break; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| switch (IntNo) { |
| default: |
| llvm_unreachable( |
| "Don't know how to custom type legalize this intrinsic!"); |
| case Intrinsic::riscv_grev: |
| case Intrinsic::riscv_gorc: |
| case Intrinsic::riscv_bcompress: |
| case Intrinsic::riscv_bdecompress: |
| case Intrinsic::riscv_bfp: { |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo)); |
| break; |
| } |
| case Intrinsic::riscv_fsl: |
| case Intrinsic::riscv_fsr: { |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| SDValue NewOp1 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue NewOp2 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); |
| SDValue NewOp3 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)); |
| unsigned Opc = getRISCVWOpcodeByIntr(IntNo); |
| SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2, NewOp3); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); |
| break; |
| } |
| case Intrinsic::riscv_orc_b: { |
| // Lower to the GORCI encoding for orc.b with the operand extended. |
| SDValue NewOp = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| // If Zbp is enabled, use GORCIW which will sign extend the result. |
| unsigned Opc = |
| Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; |
| SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, |
| DAG.getConstant(7, DL, MVT::i64)); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); |
| return; |
| } |
| case Intrinsic::riscv_shfl: |
| case Intrinsic::riscv_unshfl: { |
| assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| "Unexpected custom legalisation"); |
| SDValue NewOp1 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); |
| SDValue NewOp2 = |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); |
| unsigned Opc = |
| IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; |
| // There is no (UN)SHFLIW. If the control word is a constant, we can use |
| // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half |
| // will be shuffled the same way as the lower 32 bit half, but the two |
| // halves won't cross. |
| if (isa<ConstantSDNode>(NewOp2)) { |
| NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, |
| DAG.getConstant(0xf, DL, MVT::i64)); |
| Opc = |
| IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; |
| } |
| SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); |
| break; |
| } |
| case Intrinsic::riscv_vmv_x_s: { |
| EVT VT = N->getValueType(0); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| if (VT.bitsLT(XLenVT)) { |
| // Simple case just extract using vmv.x.s and truncate. |
| SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, |
| Subtarget.getXLenVT(), N->getOperand(1)); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); |
| return; |
| } |
| |
| assert(VT == MVT::i64 && !Subtarget.is64Bit() && |
| "Unexpected custom legalization"); |
| |
| // We need to do the move in two steps. |
| SDValue Vec = N->getOperand(1); |
| MVT VecVT = Vec.getSimpleValueType(); |
| |
| // First extract the lower XLEN bits of the element. |
| SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); |
| |
| // To extract the upper XLEN bits of the vector element, shift the first |
| // element right by 32 bits and re-extract the lower XLEN bits. |
| SDValue VL = DAG.getConstant(1, DL, XLenVT); |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); |
| SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); |
| SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, |
| DAG.getConstant(32, DL, XLenVT), VL); |
| SDValue LShr32 = |
| DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); |
| SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); |
| |
| Results.push_back( |
| DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); |
| break; |
| } |
| } |
| break; |
| } |
| case ISD::VECREDUCE_ADD: |
| case ISD::VECREDUCE_AND: |
| case ISD::VECREDUCE_OR: |
| case ISD::VECREDUCE_XOR: |
| case ISD::VECREDUCE_SMAX: |
| case ISD::VECREDUCE_UMAX: |
| case ISD::VECREDUCE_SMIN: |
| case ISD::VECREDUCE_UMIN: |
| if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) |
| Results.push_back(V); |
| break; |
| case ISD::VP_REDUCE_ADD: |
| case ISD::VP_REDUCE_AND: |
| case ISD::VP_REDUCE_OR: |
| case ISD::VP_REDUCE_XOR: |
| case ISD::VP_REDUCE_SMAX: |
| case ISD::VP_REDUCE_UMAX: |
| case ISD::VP_REDUCE_SMIN: |
| case ISD::VP_REDUCE_UMIN: |
| if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) |
| Results.push_back(V); |
| break; |
| case ISD::FLT_ROUNDS_: { |
| SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); |
| SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); |
| Results.push_back(Res.getValue(0)); |
| Results.push_back(Res.getValue(1)); |
| break; |
| } |
| } |
| } |
| |
| // A structure to hold one of the bit-manipulation patterns below. Together, a |
| // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: |
| // (or (and (shl x, 1), 0xAAAAAAAA), |
| // (and (srl x, 1), 0x55555555)) |
| struct RISCVBitmanipPat { |
| SDValue Op; |
| unsigned ShAmt; |
| bool IsSHL; |
| |
| bool formsPairWith(const RISCVBitmanipPat &Other) const { |
| return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; |
| } |
| }; |
| |
| // Matches patterns of the form |
| // (and (shl x, C2), (C1 << C2)) |
| // (and (srl x, C2), C1) |
| // (shl (and x, C1), C2) |
| // (srl (and x, (C1 << C2)), C2) |
| // Where C2 is a power of 2 and C1 has at least that many leading zeroes. |
| // The expected masks for each shift amount are specified in BitmanipMasks where |
| // BitmanipMasks[log2(C2)] specifies the expected C1 value. |
| // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether |
| // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible |
| // XLen is 64. |
| static Optional<RISCVBitmanipPat> |
| matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { |
| assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && |
| "Unexpected number of masks"); |
| Optional<uint64_t> Mask; |
| // Optionally consume a mask around the shift operation. |
| if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { |
| Mask = Op.getConstantOperandVal(1); |
| Op = Op.getOperand(0); |
| } |
| if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) |
| return None; |
| bool IsSHL = Op.getOpcode() == ISD::SHL; |
| |
| if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| return None; |
| uint64_t ShAmt = Op.getConstantOperandVal(1); |
| |
| unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; |
| if (ShAmt >= Width || !isPowerOf2_64(ShAmt)) |
| return None; |
| // If we don't have enough masks for 64 bit, then we must be trying to |
| // match SHFL so we're only allowed to shift 1/4 of the width. |
| if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) |
| return None; |
| |
| SDValue Src = Op.getOperand(0); |
| |
| // The expected mask is shifted left when the AND is found around SHL |
| // patterns. |
| // ((x >> 1) & 0x55555555) |
| // ((x << 1) & 0xAAAAAAAA) |
| bool SHLExpMask = IsSHL; |
| |
| if (!Mask) { |
| // Sometimes LLVM keeps the mask as an operand of the shift, typically when |
| // the mask is all ones: consume that now. |
| if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { |
| Mask = Src.getConstantOperandVal(1); |
| Src = Src.getOperand(0); |
| // The expected mask is now in fact shifted left for SRL, so reverse the |
| // decision. |
| // ((x & 0xAAAAAAAA) >> 1) |
| // ((x & 0x55555555) << 1) |
| SHLExpMask = !SHLExpMask; |
| } else { |
| // Use a default shifted mask of all-ones if there's no AND, truncated |
| // down to the expected width. This simplifies the logic later on. |
| Mask = maskTrailingOnes<uint64_t>(Width); |
| *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); |
| } |
| } |
| |
| unsigned MaskIdx = Log2_32(ShAmt); |
| uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); |
| |
| if (SHLExpMask) |
| ExpMask <<= ShAmt; |
| |
| if (Mask != ExpMask) |
| return None; |
| |
| return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; |
| } |
| |
| // Matches any of the following bit-manipulation patterns: |
| // (and (shl x, 1), (0x55555555 << 1)) |
| // (and (srl x, 1), 0x55555555) |
| // (shl (and x, 0x55555555), 1) |
| // (srl (and x, (0x55555555 << 1)), 1) |
| // where the shift amount and mask may vary thus: |
| // [1] = 0x55555555 / 0xAAAAAAAA |
| // [2] = 0x33333333 / 0xCCCCCCCC |
| // [4] = 0x0F0F0F0F / 0xF0F0F0F0 |
| // [8] = 0x00FF00FF / 0xFF00FF00 |
| // [16] = 0x0000FFFF / 0xFFFFFFFF |
| // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) |
| static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { |
| // These are the unshifted masks which we use to match bit-manipulation |
| // patterns. They may be shifted left in certain circumstances. |
| static const uint64_t BitmanipMasks[] = { |
| 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, |
| 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; |
| |
| return matchRISCVBitmanipPat(Op, BitmanipMasks); |
| } |
| |
| // Match the following pattern as a GREVI(W) operation |
| // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) |
| static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); |
| EVT VT = Op.getValueType(); |
| |
| if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { |
| auto LHS = matchGREVIPat(Op.getOperand(0)); |
| auto RHS = matchGREVIPat(Op.getOperand(1)); |
| if (LHS && RHS && LHS->formsPairWith(*RHS)) { |
| SDLoc DL(Op); |
| return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, |
| DAG.getConstant(LHS->ShAmt, DL, VT)); |
| } |
| } |
| return SDValue(); |
| } |
| |
| // Matches any the following pattern as a GORCI(W) operation |
| // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 |
| // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 |
| // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) |
| // Note that with the variant of 3., |
| // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) |
| // the inner pattern will first be matched as GREVI and then the outer |
| // pattern will be matched to GORC via the first rule above. |
| // 4. (or (rotl/rotr x, bitwidth/2), x) |
| static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); |
| EVT VT = Op.getValueType(); |
| |
| if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { |
| SDLoc DL(Op); |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| |
| auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { |
| if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && |
| isa<ConstantSDNode>(Reverse.getOperand(1)) && |
| isPowerOf2_32(Reverse.getConstantOperandVal(1))) |
| return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); |
| // We can also form GORCI from ROTL/ROTR by half the bitwidth. |
| if ((Reverse.getOpcode() == ISD::ROTL || |
| Reverse.getOpcode() == ISD::ROTR) && |
| Reverse.getOperand(0) == X && |
| isa<ConstantSDNode>(Reverse.getOperand(1))) { |
| uint64_t RotAmt = Reverse.getConstantOperandVal(1); |
| if (RotAmt == (VT.getSizeInBits() / 2)) |
| return DAG.getNode(RISCVISD::GORC, DL, VT, X, |
| DAG.getConstant(RotAmt, DL, VT)); |
| } |
| return SDValue(); |
| }; |
| |
| // Check for either commutable permutation of (or (GREVI x, shamt), x) |
| if (SDValue V = MatchOROfReverse(Op0, Op1)) |
| return V; |
| if (SDValue V = MatchOROfReverse(Op1, Op0)) |
| return V; |
| |
| // OR is commutable so canonicalize its OR operand to the left |
| if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) |
| std::swap(Op0, Op1); |
| if (Op0.getOpcode() != ISD::OR) |
| return SDValue(); |
| SDValue OrOp0 = Op0.getOperand(0); |
| SDValue OrOp1 = Op0.getOperand(1); |
| auto LHS = matchGREVIPat(OrOp0); |
| // OR is commutable so swap the operands and try again: x might have been |
| // on the left |
| if (!LHS) { |
| std::swap(OrOp0, OrOp1); |
| LHS = matchGREVIPat(OrOp0); |
| } |
| auto RHS = matchGREVIPat(Op1); |
| if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { |
| return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, |
| DAG.getConstant(LHS->ShAmt, DL, VT)); |
| } |
| } |
| return SDValue(); |
| } |
| |
| // Matches any of the following bit-manipulation patterns: |
| // (and (shl x, 1), (0x22222222 << 1)) |
| // (and (srl x, 1), 0x22222222) |
| // (shl (and x, 0x22222222), 1) |
| // (srl (and x, (0x22222222 << 1)), 1) |
| // where the shift amount and mask may vary thus: |
| // [1] = 0x22222222 / 0x44444444 |
| // [2] = 0x0C0C0C0C / 0x3C3C3C3C |
| // [4] = 0x00F000F0 / 0x0F000F00 |
| // [8] = 0x0000FF00 / 0x00FF0000 |
| // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) |
| static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { |
| // These are the unshifted masks which we use to match bit-manipulation |
| // patterns. They may be shifted left in certain circumstances. |
| static const uint64_t BitmanipMasks[] = { |
| 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, |
| 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; |
| |
| return matchRISCVBitmanipPat(Op, BitmanipMasks); |
| } |
| |
| // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) |
| static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); |
| EVT VT = Op.getValueType(); |
| |
| if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) |
| return SDValue(); |
| |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| |
| // Or is commutable so canonicalize the second OR to the LHS. |
| if (Op0.getOpcode() != ISD::OR) |
| std::swap(Op0, Op1); |
| if (Op0.getOpcode() != ISD::OR) |
| return SDValue(); |
| |
| // We found an inner OR, so our operands are the operands of the inner OR |
| // and the other operand of the outer OR. |
| SDValue A = Op0.getOperand(0); |
| SDValue B = Op0.getOperand(1); |
| SDValue C = Op1; |
| |
| auto Match1 = matchSHFLPat(A); |
| auto Match2 = matchSHFLPat(B); |
| |
| // If neither matched, we failed. |
| if (!Match1 && !Match2) |
| return SDValue(); |
| |
| // We had at least one match. if one failed, try the remaining C operand. |
| if (!Match1) { |
| std::swap(A, C); |
| Match1 = matchSHFLPat(A); |
| if (!Match1) |
| return SDValue(); |
| } else if (!Match2) { |
| std::swap(B, C); |
| Match2 = matchSHFLPat(B); |
| if (!Match2) |
| return SDValue(); |
| } |
| assert(Match1 && Match2); |
| |
| // Make sure our matches pair up. |
| if (!Match1->formsPairWith(*Match2)) |
| return SDValue(); |
| |
| // All the remains is to make sure C is an AND with the same input, that masks |
| // out the bits that are being shuffled. |
| if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || |
| C.getOperand(0) != Match1->Op) |
| return SDValue(); |
| |
| uint64_t Mask = C.getConstantOperandVal(1); |
| |
| static const uint64_t BitmanipMasks[] = { |
| 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, |
| 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, |
| }; |
| |
| unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; |
| unsigned MaskIdx = Log2_32(Match1->ShAmt); |
| uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); |
| |
| if (Mask != ExpMask) |
| return SDValue(); |
| |
| SDLoc DL(Op); |
| return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, |
| DAG.getConstant(Match1->ShAmt, DL, VT)); |
| } |
| |
| // Optimize (add (shl x, c0), (shl y, c1)) -> |
| // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. |
| static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| // Perform this optimization only in the zba extension. |
| if (!Subtarget.hasStdExtZba()) |
| return SDValue(); |
| |
| // Skip for vector types and larger types. |
| EVT VT = N->getValueType(0); |
| if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) |
| return SDValue(); |
| |
| // The two operand nodes must be SHL and have no other use. |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || |
| !N0->hasOneUse() || !N1->hasOneUse()) |
| return SDValue(); |
| |
| // Check c0 and c1. |
| auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); |
| auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); |
| if (!N0C || !N1C) |
| return SDValue(); |
| int64_t C0 = N0C->getSExtValue(); |
| int64_t C1 = N1C->getSExtValue(); |
| if (C0 <= 0 || C1 <= 0) |
| return SDValue(); |
| |
| // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. |
| int64_t Bits = std::min(C0, C1); |
| int64_t Diff = std::abs(C0 - C1); |
| if (Diff != 1 && Diff != 2 && Diff != 3) |
| return SDValue(); |
| |
| // Build nodes. |
| SDLoc DL(N); |
| SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); |
| SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); |
| SDValue NA0 = |
| DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); |
| SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); |
| return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); |
| } |
| |
| // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is |
| // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. |
| // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does |
| // not undo itself, but they are redundant. |
| static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { |
| SDValue Src = N->getOperand(0); |
| |
| if (Src.getOpcode() != N->getOpcode()) |
| return SDValue(); |
| |
| if (!isa<ConstantSDNode>(N->getOperand(1)) || |
| !isa<ConstantSDNode>(Src.getOperand(1))) |
| return SDValue(); |
| |
| unsigned ShAmt1 = N->getConstantOperandVal(1); |
| unsigned ShAmt2 = Src.getConstantOperandVal(1); |
| Src = Src.getOperand(0); |
| |
| unsigned CombinedShAmt; |
| if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) |
| CombinedShAmt = ShAmt1 | ShAmt2; |
| else |
| CombinedShAmt = ShAmt1 ^ ShAmt2; |
| |
| if (CombinedShAmt == 0) |
| return Src; |
| |
| SDLoc DL(N); |
| return DAG.getNode( |
| N->getOpcode(), DL, N->getValueType(0), Src, |
| DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); |
| } |
| |
| // Combine a constant select operand into its use: |
| // |
| // (and (select cond, -1, c), x) |
| // -> (select cond, x, (and x, c)) [AllOnes=1] |
| // (or (select cond, 0, c), x) |
| // -> (select cond, x, (or x, c)) [AllOnes=0] |
| // (xor (select cond, 0, c), x) |
| // -> (select cond, x, (xor x, c)) [AllOnes=0] |
| // (add (select cond, 0, c), x) |
| // -> (select cond, x, (add x, c)) [AllOnes=0] |
| // (sub x, (select cond, 0, c)) |
| // -> (select cond, x, (sub x, c)) [AllOnes=0] |
| static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, |
| SelectionDAG &DAG, bool AllOnes) { |
| EVT VT = N->getValueType(0); |
| |
| // Skip vectors. |
| if (VT.isVector()) |
| return SDValue(); |
| |
| if ((Slct.getOpcode() != ISD::SELECT && |
| Slct.getOpcode() != RISCVISD::SELECT_CC) || |
| !Slct.hasOneUse()) |
| return SDValue(); |
| |
| auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { |
| return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); |
| }; |
| |
| bool SwapSelectOps; |
| unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; |
| SDValue TrueVal = Slct.getOperand(1 + OpOffset); |
| SDValue FalseVal = Slct.getOperand(2 + OpOffset); |
| SDValue NonConstantVal; |
| if (isZeroOrAllOnes(TrueVal, AllOnes)) { |
| SwapSelectOps = false; |
| NonConstantVal = FalseVal; |
| } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { |
| SwapSelectOps = true; |
| NonConstantVal = TrueVal; |
| } else |
| return SDValue(); |
| |
| // Slct is now know to be the desired identity constant when CC is true. |
| TrueVal = OtherOp; |
| FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); |
| // Unless SwapSelectOps says the condition should be false. |
| if (SwapSelectOps) |
| std::swap(TrueVal, FalseVal); |
| |
| if (Slct.getOpcode() == RISCVISD::SELECT_CC) |
| return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, |
| {Slct.getOperand(0), Slct.getOperand(1), |
| Slct.getOperand(2), TrueVal, FalseVal}); |
| |
| return DAG.getNode(ISD::SELECT, SDLoc(N), VT, |
| {Slct.getOperand(0), TrueVal, FalseVal}); |
| } |
| |
| // Attempt combineSelectAndUse on each operand of a commutative operator N. |
| static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, |
| bool AllOnes) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes)) |
| return Result; |
| if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes)) |
| return Result; |
| return SDValue(); |
| } |
| |
| // Transform (add (mul x, c0), c1) -> |
| // (add (mul (add x, c1/c0), c0), c1%c0). |
| // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case |
| // that should be excluded is when c0*(c1/c0) is simm12, which will lead |
| // to an infinite loop in DAGCombine if transformed. |
| // Or transform (add (mul x, c0), c1) -> |
| // (add (mul (add x, c1/c0+1), c0), c1%c0-c0), |
| // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner |
| // case that should be excluded is when c0*(c1/c0+1) is simm12, which will |
| // lead to an infinite loop in DAGCombine if transformed. |
| // Or transform (add (mul x, c0), c1) -> |
| // (add (mul (add x, c1/c0-1), c0), c1%c0+c0), |
| // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner |
| // case that should be excluded is when c0*(c1/c0-1) is simm12, which will |
| // lead to an infinite loop in DAGCombine if transformed. |
| // Or transform (add (mul x, c0), c1) -> |
| // (mul (add x, c1/c0), c0). |
| // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. |
| static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| // Skip for vector types and larger types. |
| EVT VT = N->getValueType(0); |
| if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) |
| return SDValue(); |
| // The first operand node must be a MUL and has no other use. |
| SDValue N0 = N->getOperand(0); |
| if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) |
| return SDValue(); |
| // Check if c0 and c1 match above conditions. |
| auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); |
| auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!N0C || !N1C) |
| return SDValue(); |
| // If N0C has multiple uses it's possible one of the cases in |
| // DAGCombiner::isMulAddWithConstProfitable will be true, which would result |
| // in an infinite loop. |
| if (!N0C->hasOneUse()) |
| return SDValue(); |
| int64_t C0 = N0C->getSExtValue(); |
| int64_t C1 = N1C->getSExtValue(); |
| int64_t CA, CB; |
| if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) |
| return SDValue(); |
| // Search for proper CA (non-zero) and CB that both are simm12. |
| if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && |
| !isInt<12>(C0 * (C1 / C0))) { |
| CA = C1 / C0; |
| CB = C1 % C0; |
| } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && |
| isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { |
| CA = C1 / C0 + 1; |
| CB = C1 % C0 - C0; |
| } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && |
| isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { |
| CA = C1 / C0 - 1; |
| CB = C1 % C0 + C0; |
| } else |
| return SDValue(); |
| // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). |
| SDLoc DL(N); |
| SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), |
| DAG.getConstant(CA, DL, VT)); |
| SDValue New1 = |
| DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); |
| return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); |
| } |
| |
| static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) |
| return V; |
| if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) |
| return V; |
| // fold (add (select lhs, rhs, cc, 0, y), x) -> |
| // (select lhs, rhs, cc, x, (add x, y)) |
| return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); |
| } |
| |
| static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) { |
| // fold (sub x, (select lhs, rhs, cc, 0, y)) -> |
| // (select lhs, rhs, cc, x, (sub x, y)) |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false); |
| } |
| |
| static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG) { |
| // fold (and (select lhs, rhs, cc, -1, y), x) -> |
| // (select lhs, rhs, cc, x, (and x, y)) |
| return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true); |
| } |
| |
| static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget) { |
| if (Subtarget.hasStdExtZbp()) { |
| if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) |
| return GREV; |
| if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) |
| return GORC; |
| if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) |
| return SHFL; |
| } |
| |
| // fold (or (select cond, 0, y), x) -> |
| // (select cond, x, (or x, y)) |
| return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); |
| } |
| |
| static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) { |
| // fold (xor (select cond, 0, y), x) -> |
| // (select cond, x, (xor x, y)) |
| return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false); |
| } |
| |
| // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND |
| // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free |
| // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be |
| // removed during type legalization leaving an ADD/SUB/MUL use that won't use |
| // ADDW/SUBW/MULW. |
| static SDValue performANY_EXTENDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const RISCVSubtarget &Subtarget) { |
| if (!Subtarget.is64Bit()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| |
| SDValue Src = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i64 || Src.getValueType() != MVT::i32) |
| return SDValue(); |
| |
| // The opcode must be one that can implicitly sign_extend. |
| // FIXME: Additional opcodes. |
| switch (Src.getOpcode()) { |
| default: |
| return SDValue(); |
| case ISD::MUL: |
| if (!Subtarget.hasStdExtM()) |
| return SDValue(); |
| LLVM_FALLTHROUGH; |
| case ISD::ADD: |
| case ISD::SUB: |
| break; |
| } |
| |
| // Only handle cases where the result is used by a CopyToReg. That likely |
| // means the value is a liveout of the basic block. This helps prevent |
| // infinite combine loops like PR51206. |
| if (none_of(N->uses(), |
| [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; })) |
| return SDValue(); |
| |
| SmallVector<SDNode *, 4> SetCCs; |
| for (SDNode::use_iterator UI = Src.getNode()->use_begin(), |
| UE = Src.getNode()->use_end(); |
| UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User == N) |
| continue; |
| if (UI.getUse().getResNo() != Src.getResNo()) |
| continue; |
| // All i32 setccs are legalized by sign extending operands. |
| if (User->getOpcode() == ISD::SETCC) { |
| SetCCs.push_back(User); |
| continue; |
| } |
| // We don't know if we can extend this user. |
| break; |
| } |
| |
| // If we don't have any SetCCs, this isn't worthwhile. |
| if (SetCCs.empty()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src); |
| DCI.CombineTo(N, SExt); |
| |
| // Promote all the setccs. |
| for (SDNode *SetCC : SetCCs) { |
| SmallVector<SDValue, 4> Ops; |
| |
| for (unsigned j = 0; j != 2; ++j) { |
| SDValue SOp = SetCC->getOperand(j); |
| if (SOp == Src) |
| Ops.push_back(SExt); |
| else |
| Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp)); |
| } |
| |
| Ops.push_back(SetCC->getOperand(2)); |
| DCI.CombineTo(SetCC, |
| DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); |
| } |
| return SDValue(N, 0); |
| } |
| |
| // Try to form VWMUL, VWMULU or VWMULSU. |
| // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op. |
| static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG, |
| bool Commute) { |
| assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode"); |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| if (Commute) |
| std::swap(Op0, Op1); |
| |
| bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL; |
| bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL; |
| bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL; |
| if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse()) |
| return SDValue(); |
| |
| SDValue Mask = N->getOperand(2); |
| SDValue VL = N->getOperand(3); |
| |
| // Make sure the mask and VL match. |
| if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL) |
| return SDValue(); |
| |
| MVT VT = N->getSimpleValueType(0); |
| |
| // Determine the narrow size for a widening multiply. |
| unsigned NarrowSize = VT.getScalarSizeInBits() / 2; |
| MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), |
| VT.getVectorElementCount()); |
| |
| SDLoc DL(N); |
| |
| // See if the other operand is the same opcode. |
| if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) { |
| if (!Op1.hasOneUse()) |
| return SDValue(); |
| |
| // Make sure the mask and VL match. |
| if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL) |
| return SDValue(); |
| |
| Op1 = Op1.getOperand(0); |
| } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) { |
| // The operand is a splat of a scalar. |
| |
| // The VL must be the same. |
| if (Op1.getOperand(1) != VL) |
| return SDValue(); |
| |
| // Get the scalar value. |
| Op1 = Op1.getOperand(0); |
| |
| // See if have enough sign bits or zero bits in the scalar to use a |
| // widening multiply by splatting to smaller element size. |
| unsigned EltBits = VT.getScalarSizeInBits(); |
| unsigned ScalarBits = Op1.getValueSizeInBits(); |
| // Make sure we're getting all element bits from the scalar register. |
| // FIXME: Support implicit sign extension of vmv.v.x? |
| if (ScalarBits < EltBits) |
| return SDValue(); |
| |
| if (IsSignExt) { |
| if (DAG.ComputeNumSignBits(Op1) <= (ScalarBits - NarrowSize)) |
| return SDValue(); |
| } else { |
| APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize); |
| if (!DAG.MaskedValueIsZero(Op1, Mask)) |
| return SDValue(); |
| } |
| |
| Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, Op1, VL); |
| } else |
| return SDValue(); |
| |
| Op0 = Op0.getOperand(0); |
| |
| // Re-introduce narrower extends if needed. |
| unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; |
| if (Op0.getValueType() != NarrowVT) |
| Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL); |
| // vwmulsu requires second operand to be zero extended. |
| ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc; |
| if (Op1.getValueType() != NarrowVT) |
| Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL); |
| |
| unsigned WMulOpc = RISCVISD::VWMULSU_VL; |
| if (!IsVWMULSU) |
| WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; |
| return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL); |
| } |
| |
| static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) { |
| switch (Op.getOpcode()) { |
| case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE; |
| case ISD::FTRUNC: return RISCVFPRndMode::RTZ; |
| case ISD::FFLOOR: return RISCVFPRndMode::RDN; |
| case ISD::FCEIL: return RISCVFPRndMode::RUP; |
| case ISD::FROUND: return RISCVFPRndMode::RMM; |
| } |
| |
| return RISCVFPRndMode::Invalid; |
| } |
| |
| // Fold |
| // (fp_to_int (froundeven X)) -> fcvt X, rne |
| // (fp_to_int (ftrunc X)) -> fcvt X, rtz |
| // (fp_to_int (ffloor X)) -> fcvt X, rdn |
| // (fp_to_int (fceil X)) -> fcvt X, rup |
| // (fp_to_int (fround X)) -> fcvt X, rmm |
| static SDValue performFP_TO_INTCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const RISCVSubtarget &Subtarget) { |
| SelectionDAG &DAG = DCI.DAG; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| // Only handle XLen or i32 types. Other types narrower than XLen will |
| // eventually be legalized to XLenVT. |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32 && VT != XLenVT) |
| return SDValue(); |
| |
| SDValue Src = N->getOperand(0); |
| |
| // Ensure the FP type is also legal. |
| if (!TLI.isTypeLegal(Src.getValueType())) |
| return SDValue(); |
| |
| // Don't do this for f16 with Zfhmin and not Zfh. |
| if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) |
| return SDValue(); |
| |
| RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); |
| if (FRM == RISCVFPRndMode::Invalid) |
| return SDValue(); |
| |
| bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; |
| |
| unsigned Opc; |
| if (VT == XLenVT) |
| Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; |
| else |
| Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; |
| |
| SDLoc DL(N); |
| SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), |
| DAG.getTargetConstant(FRM, DL, XLenVT)); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); |
| } |
| |
| // Fold |
| // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) |
| // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) |
| // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) |
| // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) |
| // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) |
| static SDValue performFP_TO_INT_SATCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const RISCVSubtarget &Subtarget) { |
| SelectionDAG &DAG = DCI.DAG; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| // Only handle XLen types. Other types narrower than XLen will eventually be |
| // legalized to XLenVT. |
| EVT DstVT = N->getValueType(0); |
| if (DstVT != XLenVT) |
| return SDValue(); |
| |
| SDValue Src = N->getOperand(0); |
| |
| // Ensure the FP type is also legal. |
| if (!TLI.isTypeLegal(Src.getValueType())) |
| return SDValue(); |
| |
| // Don't do this for f16 with Zfhmin and not Zfh. |
| if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) |
| return SDValue(); |
| |
| EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); |
| |
| RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src); |
| if (FRM == RISCVFPRndMode::Invalid) |
| return SDValue(); |
| |
| bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; |
| |
| unsigned Opc; |
| if (SatVT == DstVT) |
| Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; |
| else if (DstVT == MVT::i64 && SatVT == MVT::i32) |
| Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; |
| else |
| return SDValue(); |
| // FIXME: Support other SatVTs by clamping before or after the conversion. |
| |
| Src = Src.getOperand(0); |
| |
| SDLoc DL(N); |
| SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, |
| DAG.getTargetConstant(FRM, DL, XLenVT)); |
| |
| // RISCV FP-to-int conversions saturate to the destination register size, but |
| // don't produce 0 for nan. |
| SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); |
| return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); |
| } |
| |
| SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| // Helper to call SimplifyDemandedBits on an operand of N where only some low |
| // bits are demanded. N will be added to the Worklist if it was not deleted. |
| // Caller should return SDValue(N, 0) if this returns true. |
| auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { |
| SDValue Op = N->getOperand(OpNo); |
| APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); |
| if (!SimplifyDemandedBits(Op, Mask, DCI)) |
| return false; |
| |
| if (N->getOpcode() != ISD::DELETED_NODE) |
| DCI.AddToWorklist(N); |
| return true; |
| }; |
| |
| switch (N->getOpcode()) { |
| default: |
| break; |
| case RISCVISD::SplitF64: { |
| SDValue Op0 = N->getOperand(0); |
| // If the input to SplitF64 is just BuildPairF64 then the operation is |
| // redundant. Instead, use BuildPairF64's operands directly. |
| if (Op0->getOpcode() == RISCVISD::BuildPairF64) |
| return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); |
| |
| SDLoc DL(N); |
| |
| // It's cheaper to materialise two 32-bit integers than to load a double |
| // from the constant pool and transfer it to integer registers through the |
| // stack. |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { |
| APInt V = C->getValueAPF().bitcastToAPInt(); |
| SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); |
| SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); |
| return DCI.CombineTo(N, Lo, Hi); |
| } |
| |
| // This is a target-specific version of a DAGCombine performed in |
| // DAGCombiner::visitBITCAST. It performs the equivalent of: |
| // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) |
| // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) |
| if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || |
| !Op0.getNode()->hasOneUse()) |
| break; |
| SDValue NewSplitF64 = |
| DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), |
| Op0.getOperand(0)); |
| SDValue Lo = NewSplitF64.getValue(0); |
| SDValue Hi = NewSplitF64.getValue(1); |
| APInt SignBit = APInt::getSignMask(32); |
| if (Op0.getOpcode() == ISD::FNEG) { |
| SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, |
| DAG.getConstant(SignBit, DL, MVT::i32)); |
| return DCI.CombineTo(N, Lo, NewHi); |
| } |
| assert(Op0.getOpcode() == ISD::FABS); |
| SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, |
| DAG.getConstant(~SignBit, DL, MVT::i32)); |
| return DCI.CombineTo(N, Lo, NewHi); |
| } |
| case RISCVISD::SLLW: |
| case RISCVISD::SRAW: |
| case RISCVISD::SRLW: |
| case RISCVISD::ROLW: |
| case RISCVISD::RORW: { |
| // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. |
| if (SimplifyDemandedLowBitsHelper(0, 32) || |
| SimplifyDemandedLowBitsHelper(1, 5)) |
| return SDValue(N, 0); |
| break; |
| } |
| case RISCVISD::CLZW: |
| case RISCVISD::CTZW: { |
| // Only the lower 32 bits of the first operand are read |
| if (SimplifyDemandedLowBitsHelper(0, 32)) |
| return SDValue(N, 0); |
| break; |
| } |
| case RISCVISD::GREV: |
| case RISCVISD::GORC: { |
| // Only the lower log2(Bitwidth) bits of the the shift amount are read. |
| unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); |
| assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); |
| if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth))) |
| return SDValue(N, 0); |
| |
| return combineGREVI_GORCI(N, DAG); |
| } |
| case RISCVISD::GREVW: |
| case RISCVISD::GORCW: { |
| // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. |
| if (SimplifyDemandedLowBitsHelper(0, 32) || |
| SimplifyDemandedLowBitsHelper(1, 5)) |
| return SDValue(N, 0); |
| |
| return combineGREVI_GORCI(N, DAG); |
| } |
| case RISCVISD::SHFL: |
| case RISCVISD::UNSHFL: { |
| // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read. |
| unsigned BitWidth = N->getOperand(1).getValueSizeInBits(); |
| assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); |
| if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1)) |
| return SDValue(N, 0); |
| |
| break; |
| } |
| case RISCVISD::SHFLW: |
| case RISCVISD::UNSHFLW: { |
| // Only the lower 32 bits of LHS and lower 4 bits of RHS are read. |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); |
| APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); |
| if (SimplifyDemandedLowBitsHelper(0, 32) || |
| SimplifyDemandedLowBitsHelper(1, 4)) |
| return SDValue(N, 0); |
| |
| break; |
| } |
| case RISCVISD::BCOMPRESSW: |
| case RISCVISD::BDECOMPRESSW: { |
| // Only the lower 32 bits of LHS and RHS are read. |
| if (SimplifyDemandedLowBitsHelper(0, 32) || |
| SimplifyDemandedLowBitsHelper(1, 32)) |
| return SDValue(N, 0); |
| |
| break; |
| } |
| case RISCVISD::FMV_X_ANYEXTH: |
| case RISCVISD::FMV_X_ANYEXTW_RV64: { |
| SDLoc DL(N); |
| SDValue Op0 = N->getOperand(0); |
| MVT VT = N->getSimpleValueType(0); |
| // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the |
| // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 |
| // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. |
| if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && |
| Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || |
| (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && |
| Op0->getOpcode() == RISCVISD::FMV_H_X)) { |
| assert(Op0.getOperand(0).getValueType() == VT && |
| "Unexpected value type!"); |
| return Op0.getOperand(0); |
| } |
| |
| // This is a target-specific version of a DAGCombine performed in |
| // DAGCombiner::visitBITCAST. It performs the equivalent of: |
| // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) |
| // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) |
| if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || |
| !Op0.getNode()->hasOneUse()) |
| break; |
| SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); |
| unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; |
| APInt SignBit = APInt::getSignMask(FPBits).sextOrSelf(VT.getSizeInBits()); |
| if (Op0.getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::XOR, DL, VT, NewFMV, |
| DAG.getConstant(SignBit, DL, VT)); |
| |
| assert(Op0.getOpcode() == ISD::FABS); |
| return DAG.getNode(ISD::AND, DL, VT, NewFMV, |
| DAG.getConstant(~SignBit, DL, VT)); |
| } |
| case ISD::ADD: |
| return performADDCombine(N, DAG, Subtarget); |
| case ISD::SUB: |
| return performSUBCombine(N, DAG); |
| case ISD::AND: |
| return performANDCombine(N, DAG); |
| case ISD::OR: |
| return performORCombine(N, DAG, Subtarget); |
| case ISD::XOR: |
| return performXORCombine(N, DAG); |
| case ISD::ANY_EXTEND: |
| return performANY_EXTENDCombine(N, DCI, Subtarget); |
| case ISD::ZERO_EXTEND: |
| // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during |
| // type legalization. This is safe because fp_to_uint produces poison if |
| // it overflows. |
| if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { |
| SDValue Src = N->getOperand(0); |
| if (Src.getOpcode() == ISD::FP_TO_UINT && |
| isTypeLegal(Src.getOperand(0).getValueType())) |
| return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, |
| Src.getOperand(0)); |
| if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && |
| isTypeLegal(Src.getOperand(1).getValueType())) { |
| SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); |
| SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, |
| Src.getOperand(0), Src.getOperand(1)); |
| DCI.CombineTo(N, Res); |
| DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); |
| DCI.recursivelyDeleteUnusedNodes(Src.getNode()); |
| return SDValue(N, 0); // Return N so it doesn't get rechecked. |
| } |
| } |
| return SDValue(); |
| case RISCVISD::SELECT_CC: { |
| // Transform |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| SDValue TrueV = N->getOperand(3); |
| SDValue FalseV = N->getOperand(4); |
| |
| // If the True and False values are the same, we don't need a select_cc. |
| if (TrueV == FalseV) |
| return TrueV; |
| |
| ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| if (!ISD::isIntEqualitySetCC(CCVal)) |
| break; |
| |
| // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> |
| // (select_cc X, Y, lt, trueV, falseV) |
| // Sometimes the setcc is introduced after select_cc has been formed. |
| if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && |
| LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { |
| // If we're looking for eq 0 instead of ne 0, we need to invert the |
| // condition. |
| bool Invert = CCVal == ISD::SETEQ; |
| CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); |
| if (Invert) |
| CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); |
| |
| SDLoc DL(N); |
| RHS = LHS.getOperand(1); |
| LHS = LHS.getOperand(0); |
| translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); |
| |
| SDValue TargetCC = DAG.getCondCode(CCVal); |
| return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), |
| {LHS, RHS, TargetCC, TrueV, FalseV}); |
| } |
| |
| // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> |
| // (select_cc X, Y, eq/ne, trueV, falseV) |
| if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) |
| return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), |
| {LHS.getOperand(0), LHS.getOperand(1), |
| N->getOperand(2), TrueV, FalseV}); |
| // (select_cc X, 1, setne, trueV, falseV) -> |
| // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. |
| // This can occur when legalizing some floating point comparisons. |
| APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); |
| if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { |
| SDLoc DL(N); |
| CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); |
| SDValue TargetCC = DAG.getCondCode(CCVal); |
| RHS = DAG.getConstant(0, DL, LHS.getValueType()); |
| return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), |
| {LHS, RHS, TargetCC, TrueV, FalseV}); |
| } |
| |
| break; |
| } |
| case RISCVISD::BR_CC: { |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); |
| if (!ISD::isIntEqualitySetCC(CCVal)) |
| break; |
| |
| // Fold (br_cc (setlt X, Y), 0, ne, dest) -> |
| // (br_cc X, Y, lt, dest) |
| // Sometimes the setcc is introduced after br_cc has been formed. |
| if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && |
| LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { |
| // If we're looking for eq 0 instead of ne 0, we need to invert the |
| // condition. |
| bool Invert = CCVal == ISD::SETEQ; |
| CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); |
| if (Invert) |
| CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); |
| |
| SDLoc DL(N); |
| RHS = LHS.getOperand(1); |
| LHS = LHS.getOperand(0); |
| translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); |
| |
| return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), |
| N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), |
| N->getOperand(4)); |
| } |
| |
| // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> |
| // (br_cc X, Y, eq/ne, trueV, falseV) |
| if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) |
| return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), |
| N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), |
| N->getOperand(3), N->getOperand(4)); |
| |
| // (br_cc X, 1, setne, br_cc) -> |
| // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. |
| // This can occur when legalizing some floating point comparisons. |
| APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); |
| if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { |
| SDLoc DL(N); |
| CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); |
| SDValue TargetCC = DAG.getCondCode(CCVal); |
| RHS = DAG.getConstant(0, DL, LHS.getValueType()); |
| return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), |
| N->getOperand(0), LHS, RHS, TargetCC, |
| N->getOperand(4)); |
| } |
| break; |
| } |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| return performFP_TO_INTCombine(N, DCI, Subtarget); |
| case ISD::FP_TO_SINT_SAT: |
| case ISD::FP_TO_UINT_SAT: |
| return performFP_TO_INT_SATCombine(N, DCI, Subtarget); |
| case ISD::FCOPYSIGN: { |
| EVT VT = N->getValueType(0); |
| if (!VT.isVector()) |
| break; |
| // There is a form of VFSGNJ which injects the negated sign of its second |
| // operand. Try and bubble any FNEG up after the extend/round to produce |
| // this optimized pattern. Avoid modifying cases where FP_ROUND and |
| // TRUNC=1. |
| SDValue In2 = N->getOperand(1); |
| // Avoid cases where the extend/round has multiple uses, as duplicating |
| // those is typically more expensive than removing a fneg. |
| if (!In2.hasOneUse()) |
| break; |
| if (In2.getOpcode() != ISD::FP_EXTEND && |
| (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) |
| break; |
| In2 = In2.getOperand(0); |
| if (In2.getOpcode() != ISD::FNEG) |
| break; |
| SDLoc DL(N); |
| SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); |
| return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), |
| DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); |
| } |
| case ISD::MGATHER: |
| case ISD::MSCATTER: |
| case ISD::VP_GATHER: |
| case ISD::VP_SCATTER: { |
| if (!DCI.isBeforeLegalize()) |
| break; |
| SDValue Index, ScaleOp; |
| bool IsIndexScaled = false; |
| bool IsIndexSigned = false; |
| if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { |
| Index = VPGSN->getIndex(); |
| ScaleOp = VPGSN->getScale(); |
| IsIndexScaled = VPGSN->isIndexScaled(); |
| IsIndexSigned = VPGSN->isIndexSigned(); |
| } else { |
| const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); |
| Index = MGSN->getIndex(); |
| ScaleOp = MGSN->getScale(); |
| IsIndexScaled = MGSN->isIndexScaled(); |
| IsIndexSigned = MGSN->isIndexSigned(); |
| } |
| EVT IndexVT = Index.getValueType(); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| // RISCV indexed loads only support the "unsigned unscaled" addressing |
| // mode, so anything else must be manually legalized. |
| bool NeedsIdxLegalization = |
| IsIndexScaled || |
| (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); |
| if (!NeedsIdxLegalization) |
| break; |
| |
| SDLoc DL(N); |
| |
| // Any index legalization should first promote to XLenVT, so we don't lose |
| // bits when scaling. This may create an illegal index type so we let |
| // LLVM's legalization take care of the splitting. |
| // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. |
| if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { |
| IndexVT = IndexVT.changeVectorElementType(XLenVT); |
| Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, |
| DL, IndexVT, Index); |
| } |
| |
| unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); |
| if (IsIndexScaled && Scale != 1) { |
| // Manually scale the indices by the element size. |
| // TODO: Sanitize the scale operand here? |
| // TODO: For VP nodes, should we use VP_SHL here? |
| assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); |
| SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); |
| Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); |
| } |
| |
| ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; |
| if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) |
| return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, |
| {VPGN->getChain(), VPGN->getBasePtr(), Index, |
| VPGN->getScale(), VPGN->getMask(), |
| VPGN->getVectorLength()}, |
| VPGN->getMemOperand(), NewIndexTy); |
| if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) |
| return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, |
| {VPSN->getChain(), VPSN->getValue(), |
| VPSN->getBasePtr(), Index, VPSN->getScale(), |
| VPSN->getMask(), VPSN->getVectorLength()}, |
| VPSN->getMemOperand(), NewIndexTy); |
| if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) |
| return DAG.getMaskedGather( |
| N->getVTList(), MGN->getMemoryVT(), DL, |
| {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), |
| MGN->getBasePtr(), Index, MGN->getScale()}, |
| MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); |
| const auto *MSN = cast<MaskedScatterSDNode>(N); |
| return DAG.getMaskedScatter( |
| N->getVTList(), MSN->getMemoryVT(), DL, |
| {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), |
| Index, MSN->getScale()}, |
| MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); |
| } |
| case RISCVISD::SRA_VL: |
| case RISCVISD::SRL_VL: |
| case RISCVISD::SHL_VL: { |
| SDValue ShAmt = N->getOperand(1); |
| if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { |
| // We don't need the upper 32 bits of a 64-bit element for a shift amount. |
| SDLoc DL(N); |
| SDValue VL = N->getOperand(3); |
| EVT VT = N->getValueType(0); |
| ShAmt = |
| DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL); |
| return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, |
| N->getOperand(2), N->getOperand(3)); |
| } |
| break; |
| } |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::SHL: { |
| SDValue ShAmt = N->getOperand(1); |
| if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { |
| // We don't need the upper 32 bits of a 64-bit element for a shift amount. |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| ShAmt = |
| DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0)); |
| return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); |
| } |
| break; |
| } |
| case RISCVISD::MUL_VL: |
| if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false)) |
| return V; |
| // Mul is commutative. |
| return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true); |
| case ISD::STORE: { |
| auto *Store = cast<StoreSDNode>(N); |
| SDValue Val = Store->getValue(); |
| // Combine store of vmv.x.s to vse with VL of 1. |
| // FIXME: Support FP. |
| if (Val.getOpcode() == RISCVISD::VMV_X_S) { |
| SDValue Src = Val.getOperand(0); |
| EVT VecVT = Src.getValueType(); |
| EVT MemVT = Store->getMemoryVT(); |
| // The memory VT and the element type must match. |
| if (VecVT.getVectorElementType() == MemVT) { |
| SDLoc DL(N); |
| MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); |
| return DAG.getStoreVP( |
| Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), |
| DAG.getConstant(1, DL, MaskVT), |
| DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, |
| Store->getMemOperand(), Store->getAddressingMode(), |
| Store->isTruncatingStore(), /*IsCompress*/ false); |
| } |
| } |
| |
| break; |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| bool RISCVTargetLowering::isDesirableToCommuteWithShift( |
| const SDNode *N, CombineLevel Level) const { |
| // The following folds are only desirable if `(OP _, c1 << c2)` can be |
| // materialised in fewer instructions than `(OP _, c1)`: |
| // |
| // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) |
| // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) |
| SDValue N0 = N->getOperand(0); |
| EVT Ty = N0.getValueType(); |
| if (Ty.isScalarInteger() && |
| (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { |
| auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); |
| auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (C1 && C2) { |
| const APInt &C1Int = C1->getAPIntValue(); |
| APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); |
| |
| // We can materialise `c1 << c2` into an add immediate, so it's "free", |
| // and the combine should happen, to potentially allow further combines |
| // later. |
| if (ShiftedC1Int.getMinSignedBits() <= 64 && |
| isLegalAddImmediate(ShiftedC1Int.getSExtValue())) |
| return true; |
| |
| // We can materialise `c1` in an add immediate, so it's "free", and the |
| // combine should be prevented. |
| if (C1Int.getMinSignedBits() <= 64 && |
| isLegalAddImmediate(C1Int.getSExtValue())) |
| return false; |
| |
| // Neither constant will fit into an immediate, so find materialisation |
| // costs. |
| int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), |
| Subtarget.getFeatureBits(), |
| /*CompressionCost*/true); |
| int ShiftedC1Cost = RISCVMatInt::getIntMatCost( |
| ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), |
| /*CompressionCost*/true); |
| |
| // Materialising `c1` is cheaper than materialising `c1 << c2`, so the |
| // combine should be prevented. |
| if (C1Cost < ShiftedC1Cost) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool RISCVTargetLowering::targetShrinkDemandedConstant( |
| SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, |
| TargetLoweringOpt &TLO) const { |
| // Delay this optimization as late as possible. |
| if (!TLO.LegalOps) |
| return false; |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector()) |
| return false; |
| |
| // Only handle AND for now. |
| if (Op.getOpcode() != ISD::AND) |
| return false; |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| if (!C) |
| return false; |
| |
| const APInt &Mask = C->getAPIntValue(); |
| |
| // Clear all non-demanded bits initially. |
| APInt ShrunkMask = Mask & DemandedBits; |
| |
| // Try to make a smaller immediate by setting undemanded bits. |
| |
| APInt ExpandedMask = Mask | ~DemandedBits; |
| |
| auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { |
| return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); |
| }; |
| auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { |
| if (NewMask == Mask) |
| return true; |
| SDLoc DL(Op); |
| SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); |
| SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); |
| return TLO.CombineTo(Op, NewOp); |
| }; |
| |
| // If the shrunk mask fits in sign extended 12 bits, let the target |
| // independent code apply it. |
| if (ShrunkMask.isSignedIntN(12)) |
| return false; |
| |
| // Preserve (and X, 0xffff) when zext.h is supported. |
| if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { |
| APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); |
| if (IsLegalMask(NewMask)) |
| return UseMask(NewMask); |
| } |
| |
| // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. |
| if (VT == MVT::i64) { |
| APInt NewMask = APInt(64, 0xffffffff); |
| if (IsLegalMask(NewMask)) |
| return UseMask(NewMask); |
| } |
| |
| // For the remaining optimizations, we need to be able to make a negative |
| // number through a combination of mask and undemanded bits. |
| if (!ExpandedMask.isNegative()) |
| return false; |
| |
| // What is the fewest number of bits we need to represent the negative number. |
| unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); |
| |
| // Try to make a 12 bit negative immediate. If that fails try to make a 32 |
| // bit negative immediate unless the shrunk immediate already fits in 32 bits. |
| APInt NewMask = ShrunkMask; |
| if (MinSignedBits <= 12) |
| NewMask.setBitsFrom(11); |
| else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) |
| NewMask.setBitsFrom(31); |
| else |
| return false; |
| |
| // Check that our new mask is a subset of the demanded mask. |
| assert(IsLegalMask(NewMask)); |
| return UseMask(NewMask); |
| } |
| |
| static void computeGREV(APInt &Src, unsigned ShAmt) { |
| ShAmt &= Src.getBitWidth() - 1; |
| uint64_t x = Src.getZExtValue(); |
| if (ShAmt & 1) |
| x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); |
| if (ShAmt & 2) |
| x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); |
| if (ShAmt & 4) |
| x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); |
| if (ShAmt & 8) |
| x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); |
| if (ShAmt & 16) |
| x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); |
| if (ShAmt & 32) |
| x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); |
| Src = x; |
| } |
| |
| void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| unsigned BitWidth = Known.getBitWidth(); |
| unsigned Opc = Op.getOpcode(); |
| assert((Opc >= ISD::BUILTIN_OP_END || |
| Opc == ISD::INTRINSIC_WO_CHAIN || |
| Opc == ISD::INTRINSIC_W_CHAIN || |
| Opc == ISD::INTRINSIC_VOID) && |
| "Should use MaskedValueIsZero if you don't know whether Op" |
| " is a target node!"); |
| |
| Known.resetAll(); |
| switch (Opc) { |
| default: break; |
| case RISCVISD::SELECT_CC: { |
| Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); |
| // If we don't know any bits, early out. |
| if (Known.isUnknown()) |
| break; |
| KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); |
| |
| // Only known if known in both the LHS and RHS. |
| Known = KnownBits::commonBits(Known, Known2); |
| break; |
| } |
| case RISCVISD::REMUW: { |
| KnownBits Known2; |
| Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); |
| Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); |
| // We only care about the lower 32 bits. |
| Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); |
| // Restore the original width by sign extending. |
| Known = Known.sext(BitWidth); |
| break; |
| } |
| case RISCVISD::DIVUW: { |
| KnownBits Known2; |
| Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); |
| Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); |
| // We only care about the lower 32 bits. |
| Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); |
| // Restore the original width by sign extending. |
| Known = Known.sext(BitWidth); |
| break; |
| } |
| case RISCVISD::CTZW: { |
| KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); |
| unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); |
| unsigned LowBits = Log2_32(PossibleTZ) + 1; |
| Known.Zero.setBitsFrom(LowBits); |
| break; |
| } |
| case RISCVISD::CLZW: { |
| KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); |
| unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); |
| unsigned LowBits = Log2_32(PossibleLZ) + 1; |
| Known.Zero.setBitsFrom(LowBits); |
| break; |
| } |
| case RISCVISD::GREV: |
| case RISCVISD::GREVW: { |
| if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); |
| if (Opc == RISCVISD::GREVW) |
| Known = Known.trunc(32); |
| unsigned ShAmt = C->getZExtValue(); |
| computeGREV(Known.Zero, ShAmt); |
| computeGREV(Known.One, ShAmt); |
| if (Opc == RISCVISD::GREVW) |
| Known = Known.sext(BitWidth); |
| } |
| break; |
| } |
| case RISCVISD::READ_VLENB: { |
| // If we know the minimum VLen from Zvl extensions, we can use that to |
| // determine the trailing zeros of VLENB. |
| // FIXME: Limit to 128 bit vectors until we have more testing. |
| unsigned MinVLenB = std::min(128U, Subtarget.getMinVLen()) / 8; |
| if (MinVLenB > 0) |
| Known.Zero.setLowBits(Log2_32(MinVLenB)); |
| // We assume VLENB is no more than 65536 / 8 bytes. |
| Known.Zero.setBitsFrom(14); |
| break; |
| } |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntNo = |
| Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); |
| switch (IntNo) { |
| default: |
| // We can't do anything for most intrinsics. |
| break; |
| case Intrinsic::riscv_vsetvli: |
| case Intrinsic::riscv_vsetvlimax: |
| case Intrinsic::riscv_vsetvli_opt: |
| case Intrinsic::riscv_vsetvlimax_opt: |
| // Assume that VL output is positive and would fit in an int32_t. |
| // TODO: VLEN might be capped at 16 bits in a future V spec update. |
| if (BitWidth >= 32) |
| Known.Zero.setBitsFrom(31); |
| break; |
| } |
| break; |
| } |
| } |
| } |
| |
| unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( |
| SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
| unsigned Depth) const { |
| switch (Op.getOpcode()) { |
| default: |
| break; |
| case RISCVISD::SELECT_CC: { |
| unsigned Tmp = |
| DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); |
| if (Tmp == 1) return 1; // Early out. |
| unsigned Tmp2 = |
| DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); |
| return std::min(Tmp, Tmp2); |
| } |
| case RISCVISD::SLLW: |
| case RISCVISD::SRAW: |
| case RISCVISD::SRLW: |
| case RISCVISD::DIVW: |
| case RISCVISD::DIVUW: |
| case RISCVISD::REMUW: |
| case RISCVISD::ROLW: |
| case RISCVISD::RORW: |
| case RISCVISD::GREVW: |
| case RISCVISD::GORCW: |
| case RISCVISD::FSLW: |
| case RISCVISD::FSRW: |
| case RISCVISD::SHFLW: |
| case RISCVISD::UNSHFLW: |
| case RISCVISD::BCOMPRESSW: |
| case RISCVISD::BDECOMPRESSW: |
| case RISCVISD::BFPW: |
| case RISCVISD::FCVT_W_RV64: |
| case RISCVISD::FCVT_WU_RV64: |
| case RISCVISD::STRICT_FCVT_W_RV64: |
| case RISCVISD::STRICT_FCVT_WU_RV64: |
| // TODO: As the result is sign-extended, this is conservatively correct. A |
| // more precise answer could be calculated for SRAW depending on known |
| // bits in the shift amount. |
| return 33; |
| case RISCVISD::SHFL: |
| case RISCVISD::UNSHFL: { |
| // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word |
| // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but |
| // will stay within the upper 32 bits. If there were more than 32 sign bits |
| // before there will be at least 33 sign bits after. |
| if (Op.getValueType() == MVT::i64 && |
| isa<ConstantSDNode>(Op.getOperand(1)) && |
| (Op.getConstantOperandVal(1) & 0x10) == 0) { |
| unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); |
| if (Tmp > 32) |
| return 33; |
| } |
| break; |
| } |
| case RISCVISD::VMV_X_S: { |
| // The number of sign bits of the scalar result is computed by obtaining the |
| // element type of the input vector operand, subtracting its width from the |
| // XLEN, and then adding one (sign bit within the element type). If the |
| // element type is wider than XLen, the least-significant XLEN bits are |
| // taken. |
| unsigned XLen = Subtarget.getXLen(); |
| unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); |
| if (EltBits <= XLen) |
| return XLen - EltBits + 1; |
| break; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, |
| MachineBasicBlock *BB) { |
| assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); |
| |
| // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. |
| // Should the count have wrapped while it was being read, we need to try |
| // again. |
| // ... |
| // read: |
| // rdcycleh x3 # load high word of cycle |
| // rdcycle x2 # load low word of cycle |
| // rdcycleh x4 # load high word of cycle |
| // bne x3, x4, read # check if high word reads match, otherwise try again |
| // ... |
| |
| MachineFunction &MF = *BB->getParent(); |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| |
| MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); |
| MF.insert(It, LoopMBB); |
| |
| MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); |
| MF.insert(It, DoneMBB); |
| |
| // Transfer the remainder of BB and its successor edges to DoneMBB. |
| DoneMBB->splice(DoneMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| DoneMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(LoopMBB); |
| |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); |
| Register LoReg = MI.getOperand(0).getReg(); |
| Register HiReg = MI.getOperand(1).getReg(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) |
| .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) |
| .addReg(RISCV::X0); |
| BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) |
| .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) |
| .addReg(RISCV::X0); |
| BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) |
| .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) |
| .addReg(RISCV::X0); |
| |
| BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) |
| .addReg(HiReg) |
| .addReg(ReadAgainReg) |
| .addMBB(LoopMBB); |
| |
| LoopMBB->addSuccessor(LoopMBB); |
| LoopMBB->addSuccessor(DoneMBB); |
| |
| MI.eraseFromParent(); |
| |
| return DoneMBB; |
| } |
| |
| static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, |
| MachineBasicBlock *BB) { |
| assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); |
| |
| MachineFunction &MF = *BB->getParent(); |
| DebugLoc DL = MI.getDebugLoc(); |
| const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); |
| const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); |
| Register LoReg = MI.getOperand(0).getReg(); |
| Register HiReg = MI.getOperand(1).getReg(); |
| Register SrcReg = MI.getOperand(2).getReg(); |
| const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; |
| int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); |
| |
| TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, |
| RI); |
| MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); |
| MachineMemOperand *MMOLo = |
| MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); |
| MachineMemOperand *MMOHi = MF.getMachineMemOperand( |
| MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); |
| BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMOLo); |
| BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) |
| .addFrameIndex(FI) |
| .addImm(4) |
| .addMemOperand(MMOHi); |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, |
| MachineBasicBlock *BB) { |
| assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && |
| "Unexpected instruction"); |
| |
| MachineFunction &MF = *BB->getParent(); |
| DebugLoc DL = MI.getDebugLoc(); |
| const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); |
| const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register LoReg = MI.getOperand(1).getReg(); |
| Register HiReg = MI.getOperand(2).getReg(); |
| const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; |
| int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); |
| |
| MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); |
| MachineMemOperand *MMOLo = |
| MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); |
| MachineMemOperand *MMOHi = MF.getMachineMemOperand( |
| MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); |
| BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) |
| .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMOLo); |
| BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) |
| .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) |
| .addFrameIndex(FI) |
| .addImm(4) |
| .addMemOperand(MMOHi); |
| TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| static bool isSelectPseudo(MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| case RISCV::Select_GPR_Using_CC_GPR: |
| case RISCV::Select_FPR16_Using_CC_GPR: |
| case RISCV::Select_FPR32_Using_CC_GPR: |
| case RISCV::Select_FPR64_Using_CC_GPR: |
| return true; |
| } |
| } |
| |
| static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, |
| unsigned RelOpcode, unsigned EqOpcode, |
| const RISCVSubtarget &Subtarget) { |
| DebugLoc DL = MI.getDebugLoc(); |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register Src1Reg = MI.getOperand(1).getReg(); |
| Register Src2Reg = MI.getOperand(2).getReg(); |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); |
| const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); |
| |
| // Save the current FFLAGS. |
| BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); |
| |
| auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) |
| .addReg(Src1Reg) |
| .addReg(Src2Reg); |
| if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) |
| MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); |
| |
| // Restore the FFLAGS. |
| BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) |
| .addReg(SavedFFlags, RegState::Kill); |
| |
| // Issue a dummy FEQ opcode to raise exception for signaling NaNs. |
| auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) |
| .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) |
| .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); |
| if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) |
| MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); |
| |
| // Erase the pseudoinstruction. |
| MI.eraseFromParent(); |
| return BB; |
| } |
| |
| static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, |
| MachineBasicBlock *BB, |
| const RISCVSubtarget &Subtarget) { |
| // To "insert" Select_* instructions, we actually have to insert the triangle |
| // control-flow pattern. The incoming instructions know the destination vreg |
| // to set, the condition code register to branch on, the true/false values to |
| // select between, and the condcode to use to select the appropriate branch. |
| // |
| // We produce the following control flow: |
| // HeadMBB |
| // | \ |
| // | IfFalseMBB |
| // | / |
| // TailMBB |
| // |
| // When we find a sequence of selects we attempt to optimize their emission |
| // by sharing the control flow. Currently we only handle cases where we have |
| // multiple selects with the exact same condition (same LHS, RHS and CC). |
| // The selects may be interleaved with other instructions if the other |
| // instructions meet some requirements we deem safe: |
| // - They are debug instructions. Otherwise, |
| // - They do not have side-effects, do not access memory and their inputs do |
| // not depend on the results of the select pseudo-instructions. |
| // The TrueV/FalseV operands of the selects cannot depend on the result of |
| // previous selects in the sequence. |
| // These conditions could be further relaxed. See the X86 target for a |
| // related approach and more information. |
| Register LHS = MI.getOperand(1).getReg(); |
| Register RHS = MI.getOperand(2).getReg(); |
| auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); |
| |
| SmallVector<MachineInstr *, 4> SelectDebugValues; |
| SmallSet<Register, 4> SelectDests; |
| SelectDests.insert(MI.getOperand(0).getReg()); |
| |
| MachineInstr *LastSelectPseudo = &MI; |
| |
| for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); |
| SequenceMBBI != E; ++SequenceMBBI) { |
| if (SequenceMBBI->isDebugInstr()) |
| continue; |
| else if (isSelectPseudo(*SequenceMBBI)) { |
| if (SequenceMBBI->getOperand(1).getReg() != LHS || |
| SequenceMBBI->getOperand(2).getReg() != RHS || |
| SequenceMBBI->getOperand(3).getImm() != CC || |
| SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || |
| SelectDests.count(SequenceMBBI->getOperand(5).getReg())) |
| break; |
| LastSelectPseudo = &*SequenceMBBI; |
| SequenceMBBI->collectDebugValues(SelectDebugValues); |
| SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); |
| } else { |
| if (SequenceMBBI->hasUnmodeledSideEffects() || |
| SequenceMBBI->mayLoadOrStore()) |
| break; |
| if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { |
| return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); |
| })) |
| break; |
| } |
| } |
| |
| const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction::iterator I = ++BB->getIterator(); |
| |
| MachineBasicBlock *HeadMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| |
| F->insert(I, IfFalseMBB); |
| F->insert(I, TailMBB); |
| |
| // Transfer debug instructions associated with the selects to TailMBB. |
| for (MachineInstr *DebugInstr : SelectDebugValues) { |
| TailMBB->push_back(DebugInstr->removeFromParent()); |
| } |
| |
| // Move all instructions after the sequence to TailMBB. |
| TailMBB->splice(TailMBB->end(), HeadMBB, |
| std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); |
| // Update machine-CFG edges by transferring all successors of the current |
| // block to the new block which will contain the Phi nodes for the selects. |
| TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); |
| // Set the successors for HeadMBB. |
| HeadMBB->addSuccessor(IfFalseMBB); |
| HeadMBB->addSuccessor(TailMBB); |
| |
| // Insert appropriate branch. |
| BuildMI(HeadMBB, DL, TII.getBrCond(CC)) |
| .addReg(LHS) |
| .addReg(RHS) |
| .addMBB(TailMBB); |
| |
| // IfFalseMBB just falls through to TailMBB. |
| IfFalseMBB->addSuccessor(TailMBB); |
| |
| // Create PHIs for all of the select pseudo-instructions. |
| auto SelectMBBI = MI.getIterator(); |
| auto SelectEnd = std::next(LastSelectPseudo->getIterator()); |
| auto InsertionPoint = TailMBB->begin(); |
| while (SelectMBBI != SelectEnd) { |
| auto Next = std::next(SelectMBBI); |
| if (isSelectPseudo(*SelectMBBI)) { |
| // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] |
| BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), |
| TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) |
| .addReg(SelectMBBI->getOperand(4).getReg()) |
| .addMBB(HeadMBB) |
| .addReg(SelectMBBI->getOperand(5).getReg()) |
| .addMBB(IfFalseMBB); |
| SelectMBBI->eraseFromParent(); |
| } |
| SelectMBBI = Next; |
| } |
| |
| F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); |
| return TailMBB; |
| } |
| |
| MachineBasicBlock * |
| RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected instr type to insert"); |
| case RISCV::ReadCycleWide: |
| assert(!Subtarget.is64Bit() && |
| "ReadCycleWrite is only to be used on riscv32"); |
| return emitReadCycleWidePseudo(MI, BB); |
| case RISCV::Select_GPR_Using_CC_GPR: |
| case RISCV::Select_FPR16_Using_CC_GPR: |
| case RISCV::Select_FPR32_Using_CC_GPR: |
| case RISCV::Select_FPR64_Using_CC_GPR: |
| return emitSelectPseudo(MI, BB, Subtarget); |
| case RISCV::BuildPairF64Pseudo: |
| return emitBuildPairF64Pseudo(MI, BB); |
| case RISCV::SplitF64Pseudo: |
| return emitSplitF64Pseudo(MI, BB); |
| case RISCV::PseudoQuietFLE_H: |
| return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); |
| case RISCV::PseudoQuietFLT_H: |
| return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); |
| case RISCV::PseudoQuietFLE_S: |
| return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); |
| case RISCV::PseudoQuietFLT_S: |
| return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); |
| case RISCV::PseudoQuietFLE_D: |
| return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); |
| case RISCV::PseudoQuietFLT_D: |
| return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); |
| } |
| } |
| |
| void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, |
| SDNode *Node) const { |
| // Add FRM dependency to any instructions with dynamic rounding mode. |
| unsigned Opc = MI.getOpcode(); |
| auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); |
| if (Idx < 0) |
| return; |
| if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) |
| return; |
| // If the instruction already reads FRM, don't add another read. |
| if (MI.readsRegister(RISCV::FRM)) |
| return; |
| MI.addOperand( |
| MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); |
| } |
| |
| // Calling Convention Implementation. |
| // The expectations for frontend ABI lowering vary from target to target. |
| // Ideally, an LLVM frontend would be able to avoid worrying about many ABI |
| // details, but this is a longer term goal. For now, we simply try to keep the |
| // role of the frontend as simple and well-defined as possible. The rules can |
| // be summarised as: |
| // * Never split up large scalar arguments. We handle them here. |
| // * If a hardfloat calling convention is being used, and the struct may be |
| // passed in a pair of registers (fp+fp, int+fp), and both registers are |
| // available, then pass as two separate arguments. If either the GPRs or FPRs |
| // are exhausted, then pass according to the rule below. |
| // * If a struct could never be passed in registers or directly in a stack |
| // slot (as it is larger than 2*XLEN and the floating point rules don't |
| // apply), then pass it using a pointer with the byval attribute. |
| // * If a struct is less than 2*XLEN, then coerce to either a two-element |
| // word-sized array or a 2*XLEN scalar (depending on alignment). |
| // * The frontend can determine whether a struct is returned by reference or |
| // not based on its size and fields. If it will be returned by reference, the |
| // frontend must modify the prototype so a pointer with the sret annotation is |
| // passed as the first argument. This is not necessary for large scalar |
| // returns. |
| // * Struct return values and varargs should be coerced to structs containing |
| // register-size fields in the same situations they would be for fixed |
| // arguments. |
| |
| static const MCPhysReg ArgGPRs[] = { |
| RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, |
| RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 |
| }; |
| static const MCPhysReg ArgFPR16s[] = { |
| RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, |
| RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H |
| }; |
| static const MCPhysReg ArgFPR32s[] = { |
| RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, |
| RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F |
| }; |
| static const MCPhysReg ArgFPR64s[] = { |
| RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, |
| RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D |
| }; |
| // This is an interim calling convention and it may be changed in the future. |
| static const MCPhysReg ArgVRs[] = { |
| RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, |
| RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, |
| RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; |
| static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, |
| RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, |
| RISCV::V20M2, RISCV::V22M2}; |
| static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, |
| RISCV::V20M4}; |
| static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; |
| |
| // Pass a 2*XLEN argument that has been split into two XLEN values through |
| // registers or the stack as necessary. |
| static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, |
| ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, |
| MVT ValVT2, MVT LocVT2, |
| ISD::ArgFlagsTy ArgFlags2) { |
| unsigned XLenInBytes = XLen / 8; |
| if (Register Reg = State.AllocateReg(ArgGPRs)) { |
| // At least one half can be passed via register. |
| State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, |
| VA1.getLocVT(), CCValAssign::Full)); |
| } else { |
| // Both halves must be passed on the stack, with proper alignment. |
| Align StackAlign = |
| std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); |
| State.addLoc( |
| CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), |
| State.AllocateStack(XLenInBytes, StackAlign), |
| VA1.getLocVT(), CCValAssign::Full)); |
| State.addLoc(CCValAssign::getMem( |
| ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), |
| LocVT2, CCValAssign::Full)); |
| return false; |
| } |
| |
| if (Register Reg = State.AllocateReg(ArgGPRs)) { |
| // The second half can also be passed via register. |
| State.addLoc( |
| CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); |
| } else { |
| // The second half is passed via the stack, without additional alignment. |
| State.addLoc(CCValAssign::getMem( |
| ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), |
| LocVT2, CCValAssign::Full)); |
| } |
| |
| return false; |
| } |
| |
| static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, |
| Optional<unsigned> FirstMaskArgument, |
| CCState &State, const RISCVTargetLowering &TLI) { |
| const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); |
| if (RC == &RISCV::VRRegClass) { |
| // Assign the first mask argument to V0. |
| // This is an interim calling convention and it may be changed in the |
| // future. |
| if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue()) |
| return State.AllocateReg(RISCV::V0); |
| return State.AllocateReg(ArgVRs); |
| } |
| if (RC == &RISCV::VRM2RegClass) |
| return State.AllocateReg(ArgVRM2s); |
| if (RC == &RISCV::VRM4RegClass) |
| return State.AllocateReg(ArgVRM4s); |
| if (RC == &RISCV::VRM8RegClass) |
| return State.AllocateReg(ArgVRM8s); |
| llvm_unreachable("Unhandled register class for ValueType"); |
| } |
| |
| // Implements the RISC-V calling convention. Returns true upon failure. |
| static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, |
| MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, |
| bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, |
| Optional<unsigned> FirstMaskArgument) { |
| unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); |
| assert(XLen == 32 || XLen == 64); |
| MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; |
| |
| // Any return value split in to more than two values can't be returned |
| // directly. Vectors are returned via the available vector registers. |
| if (!LocVT.isVector() && IsRet && ValNo > 1) |
| return true; |
| |
| // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a |
| // variadic argument, or if no F16/F32 argument registers are available. |
| bool UseGPRForF16_F32 = true; |
| // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a |
| // variadic argument, or if no F64 argument registers are available. |
| bool UseGPRForF64 = true; |
| |
| switch (ABI) { |
| default: |
| llvm_unreachable("Unexpected ABI"); |
| case RISCVABI::ABI_ILP32: |
| case RISCVABI::ABI_LP64: |
| break; |
| case RISCVABI::ABI_ILP32F: |
| case RISCVABI::ABI_LP64F: |
| UseGPRForF16_F32 = !IsFixed; |
| break; |
| case RISCVABI::ABI_ILP32D: |
| case RISCVABI::ABI_LP64D: |
| UseGPRForF16_F32 = !IsFixed; |
| UseGPRForF64 = !IsFixed; |
| break; |
| } |
| |
| // FPR16, FPR32, and FPR64 alias each other. |
| if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { |
| UseGPRForF16_F32 = true; |
| UseGPRForF64 = true; |
| } |
| |
| // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and |
| // similar local variables rather than directly checking against the target |
| // ABI. |
| |
| if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { |
| LocVT = XLenVT; |
| LocInfo = CCValAssign::BCvt; |
| } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { |
| LocVT = MVT::i64; |
| LocInfo = CCValAssign::BCvt; |
| } |
| |
| // If this is a variadic argument, the RISC-V calling convention requires |
| // that it is assigned an 'even' or 'aligned' register if it has 8-byte |
| // alignment (RV32) or 16-byte alignment (RV64). An aligned register should |
| // be used regardless of whether the original argument was split during |
| // legalisation or not. The argument will not be passed by registers if the |
| // original type is larger than 2*XLEN, so the register alignment rule does |
| // not apply. |
| unsigned TwoXLenInBytes = (2 * XLen) / 8; |
| if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && |
| DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { |
| unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); |
| // Skip 'odd' register if necessary. |
| if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) |
| State.AllocateReg(ArgGPRs); |
| } |
| |
| SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); |
| SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = |
| State.getPendingArgFlags(); |
| |
| assert(PendingLocs.size() == PendingArgFlags.size() && |
| "PendingLocs and PendingArgFlags out of sync"); |
| |
| // Handle passing f64 on RV32D with a soft float ABI or when floating point |
| // registers are exhausted. |
| if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { |
| assert(!ArgFlags.isSplit() && PendingLocs.empty() && |
| "Can't lower f64 if it is split"); |
| // Depending on available argument GPRS, f64 may be passed in a pair of |
| // GPRs, split between a GPR and the stack, or passed completely on the |
| // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these |
| // cases. |
| Register Reg = State.AllocateReg(ArgGPRs); |
| LocVT = MVT::i32; |
| if (!Reg) { |
| unsigned StackOffset = State.AllocateStack(8, Align(8)); |
| State.addLoc( |
| CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); |
| return false; |
| } |
| if (!State.AllocateReg(ArgGPRs)) |
| State.AllocateStack(4, Align(4)); |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| |
| // Fixed-length vectors are located in the corresponding scalable-vector |
| // container types. |
| if (ValVT.isFixedLengthVector()) |
| LocVT = TLI.getContainerForFixedLengthVector(LocVT); |
| |
| // Split arguments might be passed indirectly, so keep track of the pending |
| // values. Split vectors are passed via a mix of registers and indirectly, so |
| // treat them as we would any other argument. |
| if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { |
| LocVT = XLenVT; |
| LocInfo = CCValAssign::Indirect; |
| PendingLocs.push_back( |
| CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); |
| PendingArgFlags.push_back(ArgFlags); |
| if (!ArgFlags.isSplitEnd()) { |
| return false; |
| } |
| } |
| |
| // If the split argument only had two elements, it should be passed directly |
| // in registers or on the stack. |
| if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && |
| PendingLocs.size() <= 2) { |
| assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); |
| // Apply the normal calling convention rules to the first half of the |
| // split argument. |
| CCValAssign VA = PendingLocs[0]; |
| ISD::ArgFlagsTy AF = PendingArgFlags[0]; |
| PendingLocs.clear(); |
| PendingArgFlags.clear(); |
| return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, |
| ArgFlags); |
| } |
| |
| // Allocate to a register if possible, or else a stack slot. |
| Register Reg; |
| unsigned StoreSizeBytes = XLen / 8; |
| Align StackAlign = Align(XLen / 8); |
| |
| if (ValVT == MVT::f16 && !UseGPRForF16_F32) |
| Reg = State.AllocateReg(ArgFPR16s); |
| else if (ValVT == MVT::f32 && !UseGPRForF16_F32) |
| Reg = State.AllocateReg(ArgFPR32s); |
| else if (ValVT == MVT::f64 && !UseGPRForF64) |
| Reg = State.AllocateReg(ArgFPR64s); |
| else if (ValVT.isVector()) { |
| Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); |
| if (!Reg) { |
| // For return values, the vector must be passed fully via registers or |
| // via the stack. |
| // FIXME: The proposed vector ABI only mandates v8-v15 for return values, |
| // but we're using all of them. |
| if (IsRet) |
| return true; |
| // Try using a GPR to pass the address |
| if ((Reg = State.AllocateReg(ArgGPRs))) { |
| LocVT = XLenVT; |
| LocInfo = CCValAssign::Indirect; |
| } else if (ValVT.isScalableVector()) { |
| LocVT = XLenVT; |
| LocInfo = CCValAssign::Indirect; |
| } else { |
| // Pass fixed-length vectors on the stack. |
| LocVT = ValVT; |
| StoreSizeBytes = ValVT.getStoreSize(); |
| // Align vectors to their element sizes, being careful for vXi1 |
| // vectors. |
| StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); |
| } |
| } |
| } else { |
| Reg = State.AllocateReg(ArgGPRs); |
| } |
| |
| unsigned StackOffset = |
| Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); |
| |
| // If we reach this point and PendingLocs is non-empty, we must be at the |
| // end of a split argument that must be passed indirectly. |
| if (!PendingLocs.empty()) { |
| assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); |
| assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); |
| |
| for (auto &It : PendingLocs) { |
| if (Reg) |
| It.convertToReg(Reg); |
| else |
| It.convertToMem(StackOffset); |
| State.addLoc(It); |
| } |
| PendingLocs.clear(); |
| PendingArgFlags.clear(); |
| return false; |
| } |
| |
| assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || |
| (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && |
| "Expected an XLenVT or vector types at this stage"); |
| |
| if (Reg) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| |
| // When a floating-point value is passed on the stack, no bit-conversion is |
| // needed. |
| if (ValVT.isFloatingPoint()) { |
| LocVT = ValVT; |
| LocInfo = CCValAssign::Full; |
| } |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); |
| return false; |
| } |
| |
| template <typename ArgTy> |
| static Optional<unsigned> preAssignMask(const ArgTy &Args) { |
| for (const auto &ArgIdx : enumerate(Args)) { |
| MVT ArgVT = ArgIdx.value().VT; |
| if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) |
| return ArgIdx.index(); |
| } |
| return None; |
| } |
| |
| void RISCVTargetLowering::analyzeInputArgs( |
| MachineFunction &MF, CCState &CCInfo, |
| const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, |
| RISCVCCAssignFn Fn) const { |
| unsigned NumArgs = Ins.size(); |
| FunctionType *FType = MF.getFunction().getFunctionType(); |
| |
| Optional<unsigned> FirstMaskArgument; |
| if (Subtarget.hasVInstructions()) |
| FirstMaskArgument = preAssignMask(Ins); |
| |
| for (unsigned i = 0; i != NumArgs; ++i) { |
| MVT ArgVT = Ins[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; |
| |
| Type *ArgTy = nullptr; |
| if (IsRet) |
| ArgTy = FType->getReturnType(); |
| else if (Ins[i].isOrigArg()) |
| ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); |
| |
| RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); |
| if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, |
| ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, |
| FirstMaskArgument)) { |
| LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " |
| << EVT(ArgVT).getEVTString() << '\n'); |
| llvm_unreachable(nullptr); |
| } |
| } |
| } |
| |
| void RISCVTargetLowering::analyzeOutputArgs( |
| MachineFunction &MF, CCState &CCInfo, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, |
| CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { |
| unsigned NumArgs = Outs.size(); |
| |
| Optional<unsigned> FirstMaskArgument; |
| if (Subtarget.hasVInstructions()) |
| FirstMaskArgument = preAssignMask(Outs); |
| |
| for (unsigned i = 0; i != NumArgs; i++) { |
| MVT ArgVT = Outs[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; |
| |
| RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); |
| if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, |
| ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, |
| FirstMaskArgument)) { |
| LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " |
| << EVT(ArgVT).getEVTString() << "\n"); |
| llvm_unreachable(nullptr); |
| } |
| } |
| } |
| |
| // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect |
| // values. |
| static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, |
| const CCValAssign &VA, const SDLoc &DL, |
| const RISCVSubtarget &Subtarget) { |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unexpected CCValAssign::LocInfo"); |
| case CCValAssign::Full: |
| if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) |
| Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); |
| break; |
| case CCValAssign::BCvt: |
| if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) |
| Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); |
| else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) |
| Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); |
| else |
| Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); |
| break; |
| } |
| return Val; |
| } |
| |
| // The caller is responsible for loading the full value if the argument is |
| // passed with CCValAssign::Indirect. |
| static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, |
| const CCValAssign &VA, const SDLoc &DL, |
| const RISCVTargetLowering &TLI) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| EVT LocVT = VA.getLocVT(); |
| SDValue Val; |
| const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); |
| Register VReg = RegInfo.createVirtualRegister(RC); |
| RegInfo.addLiveIn(VA.getLocReg(), VReg); |
| Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); |
| |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| return Val; |
| |
| return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); |
| } |
| |
| static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, |
| const CCValAssign &VA, const SDLoc &DL, |
| const RISCVSubtarget &Subtarget) { |
| EVT LocVT = VA.getLocVT(); |
| |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unexpected CCValAssign::LocInfo"); |
| case CCValAssign::Full: |
| if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) |
| Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); |
| break; |
| case CCValAssign::BCvt: |
| if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) |
| Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); |
| else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) |
| Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); |
| else |
| Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); |
| break; |
| } |
| return Val; |
| } |
| |
| // The caller is responsible for loading the full value if the argument is |
| // passed with CCValAssign::Indirect. |
| static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, |
| const CCValAssign &VA, const SDLoc &DL) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| EVT LocVT = VA.getLocVT(); |
| EVT ValVT = VA.getValVT(); |
| EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); |
| if (ValVT.isScalableVector()) { |
| // When the value is a scalable vector, we save the pointer which points to |
| // the scalable vector value in the stack. The ValVT will be the pointer |
| // type, instead of the scalable vector type. |
| ValVT = LocVT; |
| } |
| int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), |
| /*IsImmutable=*/true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| SDValue Val; |
| |
| ISD::LoadExtType ExtType; |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unexpected CCValAssign::LocInfo"); |
| case CCValAssign::Full: |
| case CCValAssign::Indirect: |
| case CCValAssign::BCvt: |
| ExtType = ISD::NON_EXTLOAD; |
| break; |
| } |
| Val = DAG.getExtLoad( |
| ExtType, DL, LocVT, Chain, FIN, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); |
| return Val; |
| } |
| |
| static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, |
| const CCValAssign &VA, const SDLoc &DL) { |
| assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && |
| "Unexpected VA"); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| |
| if (VA.isMemLoc()) { |
| // f64 is passed on the stack. |
| int FI = |
| MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); |
| SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); |
| return DAG.getLoad(MVT::f64, DL, Chain, FIN, |
| MachinePointerInfo::getFixedStack(MF, FI)); |
| } |
| |
| assert(VA.isRegLoc() && "Expected register VA assignment"); |
| |
| Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); |
| RegInfo.addLiveIn(VA.getLocReg(), LoVReg); |
| SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); |
| SDValue Hi; |
| if (VA.getLocReg() == RISCV::X17) { |
| // Second half of f64 is passed on the stack. |
| int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); |
| SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); |
| Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, |
| MachinePointerInfo::getFixedStack(MF, FI)); |
| } else { |
| // Second half of f64 is passed in another GPR. |
| Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); |
| RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); |
| Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); |
| } |
| return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); |
| } |
| |
| // FastCC has less than 1% performance improvement for some particular |
| // benchmark. But theoretically, it may has benenfit for some cases. |
| static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, |
| unsigned ValNo, MVT ValVT, MVT LocVT, |
| CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State, |
| bool IsFixed, bool IsRet, Type *OrigTy, |
| const RISCVTargetLowering &TLI, |
| Optional<unsigned> FirstMaskArgument) { |
| |
| // X5 and X6 might be used for save-restore libcall. |
| static const MCPhysReg GPRList[] = { |
| RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, |
| RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, |
| RISCV::X29, RISCV::X30, RISCV::X31}; |
| |
| if (LocVT == MVT::i32 || LocVT == MVT::i64) { |
| if (unsigned Reg = State.AllocateReg(GPRList)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| if (LocVT == MVT::f16) { |
| static const MCPhysReg FPR16List[] = { |
| RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, |
| RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, |
| RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, |
| RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; |
| if (unsigned Reg = State.AllocateReg(FPR16List)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| if (LocVT == MVT::f32) { |
| static const MCPhysReg FPR32List[] = { |
| RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, |
| RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, |
| RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, |
| RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; |
| if (unsigned Reg = State.AllocateReg(FPR32List)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| if (LocVT == MVT::f64) { |
| static const MCPhysReg FPR64List[] = { |
| RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, |
| RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, |
| RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, |
| RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; |
| if (unsigned Reg = State.AllocateReg(FPR64List)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| if (LocVT == MVT::i32 || LocVT == MVT::f32) { |
| unsigned Offset4 = State.AllocateStack(4, Align(4)); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); |
| return false; |
| } |
| |
| if (LocVT == MVT::i64 || LocVT == MVT::f64) { |
| unsigned Offset5 = State.AllocateStack(8, Align(8)); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); |
| return false; |
| } |
| |
| if (LocVT.isVector()) { |
| if (unsigned Reg = |
| allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { |
| // Fixed-length vectors are located in the corresponding scalable-vector |
| // container types. |
| if (ValVT.isFixedLengthVector()) |
| LocVT = TLI.getContainerForFixedLengthVector(LocVT); |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| } else { |
| // Try and pass the address via a "fast" GPR. |
| if (unsigned GPRReg = State.AllocateReg(GPRList)) { |
| LocInfo = CCValAssign::Indirect; |
| LocVT = TLI.getSubtarget().getXLenVT(); |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); |
| } else if (ValVT.isFixedLengthVector()) { |
| auto StackAlign = |
| MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); |
| unsigned StackOffset = |
| State.AllocateStack(ValVT.getStoreSize(), StackAlign); |
| State.addLoc( |
| CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); |
| } else { |
| // Can't pass scalable vectors on the stack. |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| return true; // CC didn't match. |
| } |
| |
| static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, |
| CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| |
| if (LocVT == MVT::i32 || LocVT == MVT::i64) { |
| // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim |
| // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 |
| static const MCPhysReg GPRList[] = { |
| RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, |
| RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; |
| if (unsigned Reg = State.AllocateReg(GPRList)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| if (LocVT == MVT::f32) { |
| // Pass in STG registers: F1, ..., F6 |
| // fs0 ... fs5 |
| static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, |
| RISCV::F18_F, RISCV::F19_F, |
| RISCV::F20_F, RISCV::F21_F}; |
| if (unsigned Reg = State.AllocateReg(FPR32List)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| if (LocVT == MVT::f64) { |
| // Pass in STG registers: D1, ..., D6 |
| // fs6 ... fs11 |
| static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, |
| RISCV::F24_D, RISCV::F25_D, |
| RISCV::F26_D, RISCV::F27_D}; |
| if (unsigned Reg = State.AllocateReg(FPR64List)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| report_fatal_error("No registers left in GHC calling convention"); |
| return true; |
| } |
| |
| // Transform physical registers into virtual registers. |
| SDValue RISCVTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| switch (CallConv) { |
| default: |
| report_fatal_error("Unsupported calling convention"); |
| case CallingConv::C: |
| case CallingConv::Fast: |
| break; |
| case CallingConv::GHC: |
| if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || |
| !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) |
| report_fatal_error( |
| "GHC calling convention requires the F and D instruction set extensions"); |
| } |
| |
| const Function &Func = MF.getFunction(); |
| if (Func.hasFnAttribute("interrupt")) { |
| if (!Func.arg_empty()) |
| report_fatal_error( |
| "Functions with the interrupt attribute cannot have arguments!"); |
| |
| StringRef Kind = |
| MF.getFunction().getFnAttribute("interrupt").getValueAsString(); |
| |
| if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) |
| report_fatal_error( |
| "Function interrupt attribute argument not supported!"); |
| } |
| |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| unsigned XLenInBytes = Subtarget.getXLen() / 8; |
| // Used with vargs to acumulate store chains. |
| std::vector<SDValue> OutChains; |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| |
| if (CallConv == CallingConv::GHC) |
| CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); |
| else |
| analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, |
| CallConv == CallingConv::Fast ? CC_RISCV_FastCC |
| : CC_RISCV); |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue ArgValue; |
| // Passing f64 on RV32D with a soft float ABI must be handled as a special |
| // case. |
| if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) |
| ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); |
| else if (VA.isRegLoc()) |
| ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); |
| else |
| ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); |
| |
| if (VA.getLocInfo() == CCValAssign::Indirect) { |
| // If the original argument was split and passed by reference (e.g. i128 |
| // on RV32), we need to load all parts of it here (using the same |
| // address). Vectors may be partly split to registers and partly to the |
| // stack, in which case the base address is partly offset and subsequent |
| // stores are relative to that. |
| InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, |
| MachinePointerInfo())); |
| unsigned ArgIndex = Ins[i].OrigArgIndex; |
| unsigned ArgPartOffset = Ins[i].PartOffset; |
| assert(VA.getValVT().isVector() || ArgPartOffset == 0); |
| while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { |
| CCValAssign &PartVA = ArgLocs[i + 1]; |
| unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; |
| SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); |
| if (PartVA.getValVT().isScalableVector()) |
| Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); |
| SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); |
| InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, |
| MachinePointerInfo())); |
| ++i; |
| } |
| continue; |
| } |
| InVals.push_back(ArgValue); |
| } |
| |
| if (IsVarArg) { |
| ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); |
| unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); |
| const TargetRegisterClass *RC = &RISCV::GPRRegClass; |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| // Offset of the first variable argument from stack pointer, and size of |
| // the vararg save area. For now, the varargs save area is either zero or |
| // large enough to hold a0-a7. |
| int VaArgOffset, VarArgsSaveSize; |
| |
| // If all registers are allocated, then all varargs must be passed on the |
| // stack and we don't need to save any argregs. |
| if (ArgRegs.size() == Idx) { |
| VaArgOffset = CCInfo.getNextStackOffset(); |
| VarArgsSaveSize = 0; |
| } else { |
| VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); |
| VaArgOffset = -VarArgsSaveSize; |
| } |
| |
| // Record the frame index of the first variable argument |
| // which is a value necessary to VASTART. |
| int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); |
| RVFI->setVarArgsFrameIndex(FI); |
| |
| // If saving an odd number of registers then create an extra stack slot to |
| // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures |
| // offsets to even-numbered registered remain 2*XLEN-aligned. |
| if (Idx % 2) { |
| MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); |
| VarArgsSaveSize += XLenInBytes; |
| } |
| |
| // Copy the integer registers that may have been used for passing varargs |
| // to the vararg save area. |
| for (unsigned I = Idx; I < ArgRegs.size(); |
| ++I, VaArgOffset += XLenInBytes) { |
| const Register Reg = RegInfo.createVirtualRegister(RC); |
| RegInfo.addLiveIn(ArgRegs[I], Reg); |
| SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); |
| FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); |
| SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, |
| MachinePointerInfo::getFixedStack(MF, FI)); |
| cast<StoreSDNode>(Store.getNode()) |
| ->getMemOperand() |
| ->setValue((Value *)nullptr); |
| OutChains.push_back(Store); |
| } |
| RVFI->setVarArgsSaveSize(VarArgsSaveSize); |
| } |
| |
| // All stores are grouped in one node to allow the matching between |
| // the size of Ins and InVals. This only happens for vararg functions. |
| if (!OutChains.empty()) { |
| OutChains.push_back(Chain); |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); |
| } |
| |
| return Chain; |
| } |
| |
| /// isEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. |
| /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. |
| bool RISCVTargetLowering::isEligibleForTailCallOptimization( |
| CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, |
| const SmallVector<CCValAssign, 16> &ArgLocs) const { |
| |
| auto &Callee = CLI.Callee; |
| auto CalleeCC = CLI.CallConv; |
| auto &Outs = CLI.Outs; |
| auto &Caller = MF.getFunction(); |
| auto CallerCC = Caller.getCallingConv(); |
| |
| // Exception-handling functions need a special set of instructions to |
| // indicate a return to the hardware. Tail-calling another function would |
| // probably break this. |
| // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This |
| // should be expanded as new function attributes are introduced. |
| if (Caller.hasFnAttribute("interrupt")) |
| return false; |
| |
| // Do not tail call opt if the stack is used to pass parameters. |
| if (CCInfo.getNextStackOffset() != 0) |
| return false; |
| |
| // Do not tail call opt if any parameters need to be passed indirectly. |
| // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are |
| // passed indirectly. So the address of the value will be passed in a |
| // register, or if not available, then the address is put on the stack. In |
| // order to pass indirectly, space on the stack often needs to be allocated |
| // in order to store the value. In this case the CCInfo.getNextStackOffset() |
| // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs |
| // are passed CCValAssign::Indirect. |
| for (auto &VA : ArgLocs) |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| return false; |
| |
| // Do not tail call opt if either caller or callee uses struct return |
| // semantics. |
| auto IsCallerStructRet = Caller.hasStructRetAttr(); |
| auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); |
| if (IsCallerStructRet || IsCalleeStructRet) |
| return false; |
| |
| // Externally-defined functions with weak linkage should not be |
| // tail-called. The behaviour of branch instructions in this situation (as |
| // used for tail calls) is implementation-defined, so we cannot rely on the |
| // linker replacing the tail call with a return. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = G->getGlobal(); |
| if (GV->hasExternalWeakLinkage()) |
| return false; |
| } |
| |
| // The callee has to preserve all registers the caller needs to preserve. |
| const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
| if (CalleeCC != CallerCC) { |
| const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); |
| if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) |
| return false; |
| } |
| |
| // Byval parameters hand the function a pointer directly into the stack area |
| // we want to reuse during a tail call. Working around this *is* possible |
| // but less efficient and uglier in LowerCall. |
| for (auto &Arg : Outs) |
| if (Arg.Flags.isByVal()) |
| return false; |
| |
| return true; |
| } |
| |
| static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { |
| return DAG.getDataLayout().getPrefTypeAlign( |
| VT.getTypeForEVT(*DAG.getContext())); |
| } |
| |
| // Lower a call to a callseq_start + CALL + callseq_end chain, and add input |
| // and output parameter nodes. |
| SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &DL = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &IsTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool IsVarArg = CLI.IsVarArg; |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| MVT XLenVT = Subtarget.getXLenVT(); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Analyze the operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| |
| if (CallConv == CallingConv::GHC) |
| ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); |
| else |
| analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, |
| CallConv == CallingConv::Fast ? CC_RISCV_FastCC |
| : CC_RISCV); |
| |
| // Check if it's really possible to do a tail call. |
| if (IsTailCall) |
| IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); |
| |
| if (IsTailCall) |
| ++NumTailCalls; |
| else if (CLI.CB && CLI.CB->isMustTailCall()) |
| report_fatal_error("failed to perform tail call elimination on a call " |
| "site marked musttail"); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = ArgCCInfo.getNextStackOffset(); |
| |
| // Create local copies for byval args |
| SmallVector<SDValue, 8> ByValArgs; |
| for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| if (!Flags.isByVal()) |
| continue; |
| |
| SDValue Arg = OutVals[i]; |
| unsigned Size = Flags.getByValSize(); |
| Align Alignment = Flags.getNonZeroByValAlign(); |
| |
| int FI = |
| MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); |
| SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); |
| |
| Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, |
| /*IsVolatile=*/false, |
| /*AlwaysInline=*/false, IsTailCall, |
| MachinePointerInfo(), MachinePointerInfo()); |
| ByValArgs.push_back(FIPtr); |
| } |
| |
| if (!IsTailCall) |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); |
| |
| // Copy argument values to their designated locations. |
| SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| SDValue StackPtr; |
| for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue ArgValue = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| |
| // Handle passing f64 on RV32D with a soft float ABI as a special case. |
| bool IsF64OnRV32DSoftABI = |
| VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; |
| if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { |
| SDValue SplitF64 = DAG.getNode( |
| RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); |
| SDValue Lo = SplitF64.getValue(0); |
| SDValue Hi = SplitF64.getValue(1); |
| |
| Register RegLo = VA.getLocReg(); |
| RegsToPass.push_back(std::make_pair(RegLo, Lo)); |
| |
| if (RegLo == RISCV::X17) { |
| // Second half of f64 is passed on the stack. |
| // Work out the address of the stack slot. |
| if (!StackPtr.getNode()) |
| StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); |
| // Emit the store. |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); |
| } else { |
| // Second half of f64 is passed in another GPR. |
| assert(RegLo < RISCV::X31 && "Invalid register pair"); |
| Register RegHigh = RegLo + 1; |
| RegsToPass.push_back(std::make_pair(RegHigh, Hi)); |
| } |
| continue; |
| } |
| |
| // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way |
| // as any other MemLoc. |
| |
| // Promote the value if needed. |
| // For now, only handle fully promoted and indirect arguments. |
| if (VA.getLocInfo() == CCValAssign::Indirect) { |
| // Store the argument in a stack slot and pass its address. |
| Align StackAlign = |
| std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), |
| getPrefTypeAlign(ArgValue.getValueType(), DAG)); |
| TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); |
| // If the original argument was split (e.g. i128), we need |
| // to store the required parts of it here (and pass just one address). |
| // Vectors may be partly split to registers and partly to the stack, in |
| // which case the base address is partly offset and subsequent stores are |
| // relative to that. |
| unsigned ArgIndex = Outs[i].OrigArgIndex; |
| unsigned ArgPartOffset = Outs[i].PartOffset; |
| assert(VA.getValVT().isVector() || ArgPartOffset == 0); |
| // Calculate the total size to store. We don't have access to what we're |
| // actually storing other than performing the loop and collecting the |
| // info. |
| SmallVector<std::pair<SDValue, SDValue>> Parts; |
| while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { |
| SDValue PartValue = OutVals[i + 1]; |
| unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; |
| SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); |
| EVT PartVT = PartValue.getValueType(); |
| if (PartVT.isScalableVector()) |
| Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); |
| StoredSize += PartVT.getStoreSize(); |
| StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); |
| Parts.push_back(std::make_pair(PartValue, Offset)); |
| ++i; |
| } |
| SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); |
| int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, ArgValue, SpillSlot, |
| MachinePointerInfo::getFixedStack(MF, FI))); |
| for (const auto &Part : Parts) { |
| SDValue PartValue = Part.first; |
| SDValue PartOffset = Part.second; |
| SDValue Address = |
| DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, PartValue, Address, |
| MachinePointerInfo::getFixedStack(MF, FI))); |
| } |
| ArgValue = SpillSlot; |
| } else { |
| ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); |
| } |
| |
| // Use local copy if it is a byval arg. |
| if (Flags.isByVal()) |
| ArgValue = ByValArgs[j++]; |
| |
| if (VA.isRegLoc()) { |
| // Queue up the argument copies and emit them at the end. |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); |
| } else { |
| assert(VA.isMemLoc() && "Argument not register or memory"); |
| assert(!IsTailCall && "Tail call not allowed if stack is used " |
| "for passing parameters"); |
| |
| // Work out the address of the stack slot. |
| if (!StackPtr.getNode()) |
| StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); |
| SDValue Address = |
| DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, |
| DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); |
| |
| // Emit the store. |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); |
| } |
| } |
| |
| // Join the stores, which are independent of one another. |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); |
| |
| SDValue Glue; |
| |
| // Build a sequence of copy-to-reg nodes, chained and glued together. |
| for (auto &Reg : RegsToPass) { |
| Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); |
| Glue = Chain.getValue(1); |
| } |
| |
| // Validate that none of the argument registers have been marked as |
| // reserved, if so report an error. Do the same for the return address if this |
| // is not a tailcall. |
| validateCCReservedRegs(RegsToPass, MF); |
| if (!IsTailCall && |
| MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) |
| MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ |
| MF.getFunction(), |
| "Return address register required, but has been reserved."}); |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a |
| // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't |
| // split it and then direct call can be matched by PseudoCALL. |
| if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = S->getGlobal(); |
| |
| unsigned OpFlags = RISCVII::MO_CALL; |
| if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) |
| OpFlags = RISCVII::MO_PLT; |
| |
| Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| unsigned OpFlags = RISCVII::MO_CALL; |
| |
| if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), |
| nullptr)) |
| OpFlags = RISCVII::MO_PLT; |
| |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); |
| } |
| |
| // The first call operand is the chain and the second is the target address. |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are |
| // known live into the call. |
| for (auto &Reg : RegsToPass) |
| Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); |
| |
| if (!IsTailCall) { |
| // Add a register mask operand representing the call-preserved registers. |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| } |
| |
| // Glue the call to the argument copies, if any. |
| if (Glue.getNode()) |
| Ops.push_back(Glue); |
| |
| // Emit the call. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| if (IsTailCall) { |
| MF.getFrameInfo().setHasTailCall(); |
| return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); |
| } |
| |
| Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); |
| DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); |
| Glue = Chain.getValue(1); |
| |
| // Mark the end of the call, which is glued to the call itself. |
| Chain = DAG.getCALLSEQ_END(Chain, |
| DAG.getConstant(NumBytes, DL, PtrVT, true), |
| DAG.getConstant(0, DL, PtrVT, true), |
| Glue, DL); |
| Glue = Chain.getValue(1); |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); |
| analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (auto &VA : RVLocs) { |
| // Copy the value out |
| SDValue RetValue = |
| DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); |
| // Glue the RetValue to the end of the call sequence |
| Chain = RetValue.getValue(1); |
| Glue = RetValue.getValue(2); |
| |
| if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { |
| assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); |
| SDValue RetValue2 = |
| DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); |
| Chain = RetValue2.getValue(1); |
| Glue = RetValue2.getValue(2); |
| RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, |
| RetValue2); |
| } |
| |
| RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); |
| |
| InVals.push_back(RetValue); |
| } |
| |
| return Chain; |
| } |
| |
| bool RISCVTargetLowering::CanLowerReturn( |
| CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); |
| |
| Optional<unsigned> FirstMaskArgument; |
| if (Subtarget.hasVInstructions()) |
| FirstMaskArgument = preAssignMask(Outs); |
| |
| for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
| MVT VT = Outs[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); |
| if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, |
| ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, |
| *this, FirstMaskArgument)) |
| return false; |
| } |
| return true; |
| } |
| |
| SDValue |
| RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); |
| |
| // Stores the assignment of the return value to a location. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // Info about the registers and stack slot. |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, |
| nullptr, CC_RISCV); |
| |
| if (CallConv == CallingConv::GHC && !RVLocs.empty()) |
| report_fatal_error("GHC functions return void only"); |
| |
| SDValue Glue; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { |
| SDValue Val = OutVals[i]; |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { |
| // Handle returning f64 on RV32D with a soft float ABI. |
| assert(VA.isRegLoc() && "Expected return via registers"); |
| SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, |
| DAG.getVTList(MVT::i32, MVT::i32), Val); |
| SDValue Lo = SplitF64.getValue(0); |
| SDValue Hi = SplitF64.getValue(1); |
| Register RegLo = VA.getLocReg(); |
| assert(RegLo < RISCV::X31 && "Invalid register pair"); |
| Register RegHi = RegLo + 1; |
| |
| if (STI.isRegisterReservedByUser(RegLo) || |
| STI.isRegisterReservedByUser(RegHi)) |
| MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ |
| MF.getFunction(), |
| "Return value register required, but has been reserved."}); |
| |
| Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); |
| Glue = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); |
| Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); |
| Glue = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); |
| } else { |
| // Handle a 'normal' return. |
| Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); |
| |
| if (STI.isRegisterReservedByUser(VA.getLocReg())) |
| MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ |
| MF.getFunction(), |
| "Return value register required, but has been reserved."}); |
| |
| // Guarantee that all emitted copies are stuck together. |
| Glue = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the glue node if we have it. |
| if (Glue.getNode()) { |
| RetOps.push_back(Glue); |
| } |
| |
| unsigned RetOpc = RISCVISD::RET_FLAG; |
| // Interrupt service routines use different return instructions. |
| const Function &Func = DAG.getMachineFunction().getFunction(); |
| if (Func.hasFnAttribute("interrupt")) { |
| if (!Func.getReturnType()->isVoidTy()) |
| report_fatal_error( |
| "Functions with the interrupt attribute must have void return type!"); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| StringRef Kind = |
| MF.getFunction().getFnAttribute("interrupt").getValueAsString(); |
| |
| if (Kind == "user") |
| RetOpc = RISCVISD::URET_FLAG; |
| else if (Kind == "supervisor") |
| RetOpc = RISCVISD::SRET_FLAG; |
| else |
| RetOpc = RISCVISD::MRET_FLAG; |
| } |
| |
| return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); |
| } |
| |
| void RISCVTargetLowering::validateCCReservedRegs( |
| const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, |
| MachineFunction &MF) const { |
| const Function &F = MF.getFunction(); |
| const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); |
| |
| if (llvm::any_of(Regs, [&STI](auto Reg) { |
| return STI.isRegisterReservedByUser(Reg.first); |
| })) |
| F.getContext().diagnose(DiagnosticInfoUnsupported{ |
| F, "Argument register required, but has been reserved."}); |
| } |
| |
| bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| return CI->isTailCall(); |
| } |
| |
| const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| #define NODE_NAME_CASE(NODE) \ |
| case RISCVISD::NODE: \ |
| return "RISCVISD::" #NODE; |
| // clang-format off |
| switch ((RISCVISD::NodeType)Opcode) { |
| case RISCVISD::FIRST_NUMBER: |
| break; |
| NODE_NAME_CASE(RET_FLAG) |
| NODE_NAME_CASE(URET_FLAG) |
| NODE_NAME_CASE(SRET_FLAG) |
| NODE_NAME_CASE(MRET_FLAG) |
| NODE_NAME_CASE(CALL) |
| NODE_NAME_CASE(SELECT_CC) |
| NODE_NAME_CASE(BR_CC) |
| NODE_NAME_CASE(BuildPairF64) |
| NODE_NAME_CASE(SplitF64) |
| NODE_NAME_CASE(TAIL) |
| NODE_NAME_CASE(MULHSU) |
| NODE_NAME_CASE(SLLW) |
| NODE_NAME_CASE(SRAW) |
| NODE_NAME_CASE(SRLW) |
| NODE_NAME_CASE(DIVW) |
| NODE_NAME_CASE(DIVUW) |
| NODE_NAME_CASE(REMUW) |
| NODE_NAME_CASE(ROLW) |
| NODE_NAME_CASE(RORW) |
| NODE_NAME_CASE(CLZW) |
| NODE_NAME_CASE(CTZW) |
| NODE_NAME_CASE(FSLW) |
| NODE_NAME_CASE(FSRW) |
| NODE_NAME_CASE(FSL) |
| NODE_NAME_CASE(FSR) |
| NODE_NAME_CASE(FMV_H_X) |
| NODE_NAME_CASE(FMV_X_ANYEXTH) |
| NODE_NAME_CASE(FMV_W_X_RV64) |
| NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) |
| NODE_NAME_CASE(FCVT_X) |
| NODE_NAME_CASE(FCVT_XU) |
| NODE_NAME_CASE(FCVT_W_RV64) |
| NODE_NAME_CASE(FCVT_WU_RV64) |
| NODE_NAME_CASE(STRICT_FCVT_W_RV64) |
| NODE_NAME_CASE(STRICT_FCVT_WU_RV64) |
| NODE_NAME_CASE(READ_CYCLE_WIDE) |
| NODE_NAME_CASE(GREV) |
| NODE_NAME_CASE(GREVW) |
| NODE_NAME_CASE(GORC) |
| NODE_NAME_CASE(GORCW) |
| NODE_NAME_CASE(SHFL) |
| NODE_NAME_CASE(SHFLW) |
| NODE_NAME_CASE(UNSHFL) |
| NODE_NAME_CASE(UNSHFLW) |
| NODE_NAME_CASE(BFP) |
| NODE_NAME_CASE(BFPW) |
| NODE_NAME_CASE(BCOMPRESS) |
| NODE_NAME_CASE(BCOMPRESSW) |
| NODE_NAME_CASE(BDECOMPRESS) |
| NODE_NAME_CASE(BDECOMPRESSW) |
| NODE_NAME_CASE(VMV_V_X_VL) |
| NODE_NAME_CASE(VFMV_V_F_VL) |
| NODE_NAME_CASE(VMV_X_S) |
| NODE_NAME_CASE(VMV_S_X_VL) |
| NODE_NAME_CASE(VFMV_S_F_VL) |
| NODE_NAME_CASE(SPLAT_VECTOR_I64) |
| NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) |
| NODE_NAME_CASE(READ_VLENB) |
| NODE_NAME_CASE(TRUNCATE_VECTOR_VL) |
| NODE_NAME_CASE(VSLIDEUP_VL) |
| NODE_NAME_CASE(VSLIDE1UP_VL) |
| NODE_NAME_CASE(VSLIDEDOWN_VL) |
| NODE_NAME_CASE(VSLIDE1DOWN_VL) |
| NODE_NAME_CASE(VID_VL) |
| NODE_NAME_CASE(VFNCVT_ROD_VL) |
| NODE_NAME_CASE(VECREDUCE_ADD_VL) |
| NODE_NAME_CASE(VECREDUCE_UMAX_VL) |
| NODE_NAME_CASE(VECREDUCE_SMAX_VL) |
| NODE_NAME_CASE(VECREDUCE_UMIN_VL) |
| NODE_NAME_CASE(VECREDUCE_SMIN_VL) |
| NODE_NAME_CASE(VECREDUCE_AND_VL) |
| NODE_NAME_CASE(VECREDUCE_OR_VL) |
| NODE_NAME_CASE(VECREDUCE_XOR_VL) |
| NODE_NAME_CASE(VECREDUCE_FADD_VL) |
| NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) |
| NODE_NAME_CASE(VECREDUCE_FMIN_VL) |
| NODE_NAME_CASE(VECREDUCE_FMAX_VL) |
| NODE_NAME_CASE(ADD_VL) |
| NODE_NAME_CASE(AND_VL) |
| NODE_NAME_CASE(MUL_VL) |
| NODE_NAME_CASE(OR_VL) |
| NODE_NAME_CASE(SDIV_VL) |
| NODE_NAME_CASE(SHL_VL) |
| NODE_NAME_CASE(SREM_VL) |
| NODE_NAME_CASE(SRA_VL) |
| NODE_NAME_CASE(SRL_VL) |
| NODE_NAME_CASE(SUB_VL) |
| NODE_NAME_CASE(UDIV_VL) |
| NODE_NAME_CASE(UREM_VL) |
| NODE_NAME_CASE(XOR_VL) |
| NODE_NAME_CASE(SADDSAT_VL) |
| NODE_NAME_CASE(UADDSAT_VL) |
| NODE_NAME_CASE(SSUBSAT_VL) |
| NODE_NAME_CASE(USUBSAT_VL) |
| NODE_NAME_CASE(FADD_VL) |
| NODE_NAME_CASE(FSUB_VL) |
| NODE_NAME_CASE(FMUL_VL) |
| NODE_NAME_CASE(FDIV_VL) |
| NODE_NAME_CASE(FNEG_VL) |
| NODE_NAME_CASE(FABS_VL) |
| NODE_NAME_CASE(FSQRT_VL) |
| NODE_NAME_CASE(FMA_VL) |
| NODE_NAME_CASE(FCOPYSIGN_VL) |
| NODE_NAME_CASE(SMIN_VL) |
| NODE_NAME_CASE(SMAX_VL) |
| NODE_NAME_CASE(UMIN_VL) |
| NODE_NAME_CASE(UMAX_VL) |
| NODE_NAME_CASE(FMINNUM_VL) |
| NODE_NAME_CASE(FMAXNUM_VL) |
| NODE_NAME_CASE(MULHS_VL) |
| NODE_NAME_CASE(MULHU_VL) |
| NODE_NAME_CASE(FP_TO_SINT_VL) |
| NODE_NAME_CASE(FP_TO_UINT_VL) |
| NODE_NAME_CASE(SINT_TO_FP_VL) |
| NODE_NAME_CASE(UINT_TO_FP_VL) |
| NODE_NAME_CASE(FP_EXTEND_VL) |
| NODE_NAME_CASE(FP_ROUND_VL) |
| NODE_NAME_CASE(VWMUL_VL) |
| NODE_NAME_CASE(VWMULU_VL) |
| NODE_NAME_CASE(VWMULSU_VL) |
| NODE_NAME_CASE(VWADDU_VL) |
| NODE_NAME_CASE(SETCC_VL) |
| NODE_NAME_CASE(VSELECT_VL) |
| NODE_NAME_CASE(VP_MERGE_VL) |
| NODE_NAME_CASE(VMAND_VL) |
| NODE_NAME_CASE(VMOR_VL) |
| NODE_NAME_CASE(VMXOR_VL) |
| NODE_NAME_CASE(VMCLR_VL) |
| NODE_NAME_CASE(VMSET_VL) |
| NODE_NAME_CASE(VRGATHER_VX_VL) |
| NODE_NAME_CASE(VRGATHER_VV_VL) |
| NODE_NAME_CASE(VRGATHEREI16_VV_VL) |
| NODE_NAME_CASE(VSEXT_VL) |
| NODE_NAME_CASE(VZEXT_VL) |
| NODE_NAME_CASE(VCPOP_VL) |
| NODE_NAME_CASE(VLE_VL) |
| NODE_NAME_CASE(VSE_VL) |
| NODE_NAME_CASE(READ_CSR) |
| NODE_NAME_CASE(WRITE_CSR) |
| NODE_NAME_CASE(SWAP_CSR) |
| } |
| // clang-format on |
| return nullptr; |
| #undef NODE_NAME_CASE |
| } |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| RISCVTargetLowering::ConstraintType |
| RISCVTargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: |
| break; |
| case 'f': |
| return C_RegisterClass; |
| case 'I': |
| case 'J': |
| case 'K': |
| return C_Immediate; |
| case 'A': |
| return C_Memory; |
| case 'S': // A symbolic address |
| return C_Other; |
| } |
| } else { |
| if (Constraint == "vr" || Constraint == "vm") |
| return C_RegisterClass; |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| // First, see if this is a constraint that directly corresponds to a |
| // RISCV register class. |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'r': |
| // TODO: Support fixed vectors up to XLen for P extension? |
| if (VT.isVector()) |
| break; |
| return std::make_pair(0U, &RISCV::GPRRegClass); |
| case 'f': |
| if (Subtarget.hasStdExtZfh() && VT == MVT::f16) |
| return std::make_pair(0U, &RISCV::FPR16RegClass); |
| if (Subtarget.hasStdExtF() && VT == MVT::f32) |
| return std::make_pair(0U, &RISCV::FPR32RegClass); |
| if (Subtarget.hasStdExtD() && VT == MVT::f64) |
| return std::make_pair(0U, &RISCV::FPR64RegClass); |
| break; |
| default: |
| break; |
| } |
| } else if (Constraint == "vr") { |
| for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, |
| &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { |
| if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) |
| return std::make_pair(0U, RC); |
| } |
| } else if (Constraint == "vm") { |
| if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) |
| return std::make_pair(0U, &RISCV::VMV0RegClass); |
| } |
| |
| // Clang will correctly decode the usage of register name aliases into their |
| // official names. However, other frontends like `rustc` do not. This allows |
| // users of these frontends to use the ABI names for registers in LLVM-style |
| // register constraints. |
| unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) |
| .Case("{zero}", RISCV::X0) |
| .Case("{ra}", RISCV::X1) |
| .Case("{sp}", RISCV::X2) |
| .Case("{gp}", RISCV::X3) |
| .Case("{tp}", RISCV::X4) |
| .Case("{t0}", RISCV::X5) |
| .Case("{t1}", RISCV::X6) |
| .Case("{t2}", RISCV::X7) |
| .Cases("{s0}", "{fp}", RISCV::X8) |
| .Case("{s1}", RISCV::X9) |
| .Case("{a0}", RISCV::X10) |
| .Case("{a1}", RISCV::X11) |
| .Case("{a2}", RISCV::X12) |
| .Case("{a3}", RISCV::X13) |
| .Case("{a4}", RISCV::X14) |
| .Case("{a5}", RISCV::X15) |
| .Case("{a6}", RISCV::X16) |
| .Case("{a7}", RISCV::X17) |
| .Case("{s2}", RISCV::X18) |
| .Case("{s3}", RISCV::X19) |
| .Case("{s4}", RISCV::X20) |
| .Case("{s5}", RISCV::X21) |
| .Case("{s6}", RISCV::X22) |
| .Case("{s7}", RISCV::X23) |
| .Case("{s8}", RISCV::X24) |
| .Case("{s9}", RISCV::X25) |
| .Case("{s10}", RISCV::X26) |
| .Case("{s11}", RISCV::X27) |
| .Case("{t3}", RISCV::X28) |
| .Case("{t4}", RISCV::X29) |
| .Case("{t5}", RISCV::X30) |
| .Case("{t6}", RISCV::X31) |
| .Default(RISCV::NoRegister); |
| if (XRegFromAlias != RISCV::NoRegister) |
| return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); |
| |
| // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the |
| // TableGen record rather than the AsmName to choose registers for InlineAsm |
| // constraints, plus we want to match those names to the widest floating point |
| // register type available, manually select floating point registers here. |
| // |
| // The second case is the ABI name of the register, so that frontends can also |
| // use the ABI names in register constraint lists. |
| if (Subtarget.hasStdExtF()) { |
| unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) |
| .Cases("{f0}", "{ft0}", RISCV::F0_F) |
| .Cases("{f1}", "{ft1}", RISCV::F1_F) |
| .Cases("{f2}", "{ft2}", RISCV::F2_F) |
| .Cases("{f3}", "{ft3}", RISCV::F3_F) |
| .Cases("{f4}", "{ft4}", RISCV::F4_F) |
| .Cases("{f5}", "{ft5}", RISCV::F5_F) |
| .Cases("{f6}", "{ft6}", RISCV::F6_F) |
| .Cases("{f7}", "{ft7}", RISCV::F7_F) |
| .Cases("{f8}", "{fs0}", RISCV::F8_F) |
| .Cases("{f9}", "{fs1}", RISCV::F9_F) |
| .Cases("{f10}", "{fa0}", RISCV::F10_F) |
| .Cases("{f11}", "{fa1}", RISCV::F11_F) |
| .Cases("{f12}", "{fa2}", RISCV::F12_F) |
| .Cases("{f13}", "{fa3}", RISCV::F13_F) |
| .Cases("{f14}", "{fa4}", RISCV::F14_F) |
| .Cases("{f15}", "{fa5}", RISCV::F15_F) |
| .Cases("{f16}", "{fa6}", RISCV::F16_F) |
| .Cases("{f17}", "{fa7}", RISCV::F17_F) |
| .Cases("{f18}", "{fs2}", RISCV::F18_F) |
| .Cases("{f19}", "{fs3}", RISCV::F19_F) |
| .Cases("{f20}", "{fs4}", RISCV::F20_F) |
| .Cases("{f21}", "{fs5}", RISCV::F21_F) |
| .Cases("{f22}", "{fs6}", RISCV::F22_F) |
| .Cases("{f23}", "{fs7}", RISCV::F23_F) |
| .Cases("{f24}", "{fs8}", RISCV::F24_F) |
| .Cases("{f25}", "{fs9}", RISCV::F25_F) |
| .Cases("{f26}", "{fs10}", RISCV::F26_F) |
| .Cases("{f27}", "{fs11}", RISCV::F27_F) |
| .Cases("{f28}", "{ft8}", RISCV::F28_F) |
| .Cases("{f29}", "{ft9}", RISCV::F29_F) |
| .Cases("{f30}", "{ft10}", RISCV::F30_F) |
| .Cases("{f31}", "{ft11}", RISCV::F31_F) |
| .Default(RISCV::NoRegister); |
| if (FReg != RISCV::NoRegister) { |
| assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); |
| if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { |
| unsigned RegNo = FReg - RISCV::F0_F; |
| unsigned DReg = RISCV::F0_D + RegNo; |
| return std::make_pair(DReg, &RISCV::FPR64RegClass); |
| } |
| if (VT == MVT::f32 || VT == MVT::Other) |
| return std::make_pair(FReg, &RISCV::FPR32RegClass); |
| if (Subtarget.hasStdExtZfh() && VT == MVT::f16) { |
| unsigned RegNo = FReg - RISCV::F0_F; |
| unsigned HReg = RISCV::F0_H + RegNo; |
| return std::make_pair(HReg, &RISCV::FPR16RegClass); |
| } |
| } |
| } |
| |
| if (Subtarget.hasVInstructions()) { |
| Register VReg = StringSwitch<Register>(Constraint.lower()) |
| .Case("{v0}", RISCV::V0) |
| .Case("{v1}", RISCV::V1) |
| .Case("{v2}", RISCV::V2) |
| .Case("{v3}", RISCV::V3) |
| .Case("{v4}", RISCV::V4) |
| .Case("{v5}", RISCV::V5) |
| .Case("{v6}", RISCV::V6) |
| .Case("{v7}", RISCV::V7) |
| .Case("{v8}", RISCV::V8) |
| .Case("{v9}", RISCV::V9) |
| .Case("{v10}", RISCV::V10) |
| .Case("{v11}", RISCV::V11) |
| .Case("{v12}", RISCV::V12) |
| .Case("{v13}", RISCV::V13) |
| .Case("{v14}", RISCV::V14) |
| .Case("{v15}", RISCV::V15) |
| .Case("{v16}", RISCV::V16) |
| .Case("{v17}", RISCV::V17) |
| .Case("{v18}", RISCV::V18) |
| .Case("{v19}", RISCV::V19) |
| .Case("{v20}", RISCV::V20) |
| .Case("{v21}", RISCV::V21) |
| .Case("{v22}", RISCV::V22) |
| .Case("{v23}", RISCV::V23) |
| .Case("{v24}", RISCV::V24) |
| .Case("{v25}", RISCV::V25) |
| .Case("{v26}", RISCV::V26) |
| .Case("{v27}", RISCV::V27) |
| .Case("{v28}", RISCV::V28) |
| .Case("{v29}", RISCV::V29) |
| .Case("{v30}", RISCV::V30) |
| .Case("{v31}", RISCV::V31) |
| .Default(RISCV::NoRegister); |
| if (VReg != RISCV::NoRegister) { |
| if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) |
| return std::make_pair(VReg, &RISCV::VMRegClass); |
| if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) |
| return std::make_pair(VReg, &RISCV::VRRegClass); |
| for (const auto *RC : |
| {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { |
| if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { |
| VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); |
| return std::make_pair(VReg, RC); |
| } |
| } |
| } |
| } |
| |
| std::pair<Register, const TargetRegisterClass *> Res = |
| TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| |
| // If we picked one of the Zfinx register classes, remap it to the GPR class. |
| // FIXME: When Zfinx is supported in CodeGen this will need to take the |
| // Subtarget into account. |
| if (Res.second == &RISCV::GPRF16RegClass || |
| Res.second == &RISCV::GPRF32RegClass || |
| Res.second == &RISCV::GPRF64RegClass) |
| return std::make_pair(Res.first, &RISCV::GPRRegClass); |
| |
| return Res; |
| } |
| |
| unsigned |
| RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { |
| // Currently only support length 1 constraints. |
| if (ConstraintCode.size() == 1) { |
| switch (ConstraintCode[0]) { |
| case 'A': |
| return InlineAsm::Constraint_A; |
| default: |
| break; |
| } |
| } |
| |
| return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); |
| } |
| |
| void RISCVTargetLowering::LowerAsmOperandForConstraint( |
| SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| // Currently only support length 1 constraints. |
| if (Constraint.length() == 1) { |
| switch (Constraint[0]) { |
| case 'I': |
| // Validate & create a 12-bit signed immediate operand. |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) { |
| uint64_t CVal = C->getSExtValue(); |
| if (isInt<12>(CVal)) |
| Ops.push_back( |
| DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); |
| } |
| return; |
| case 'J': |
| // Validate & create an integer zero operand. |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) |
| if (C->getZExtValue() == 0) |
| Ops.push_back( |
| DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); |
| return; |
| case 'K': |
| // Validate & create a 5-bit unsigned immediate operand. |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) { |
| uint64_t CVal = C->getZExtValue(); |
| if (isUInt<5>(CVal)) |
| Ops.push_back( |
| DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); |
| } |
| return; |
| case 'S': |
| if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { |
| Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), |
| GA->getValueType(0))); |
| } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { |
| Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), |
| BA->getValueType(0))); |
| } |
| return; |
| default: |
| break; |
| } |
| } |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) |
| return Builder.CreateFence(Ord); |
| if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) |
| return Builder.CreateFence(AtomicOrdering::Release); |
| return nullptr; |
| } |
| |
| Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) |
| return Builder.CreateFence(AtomicOrdering::Acquire); |
| return nullptr; |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { |
| // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating |
| // point operations can't be used in an lr/sc sequence without breaking the |
| // forward-progress guarantee. |
| if (AI->isFloatingPointOperation()) |
| return AtomicExpansionKind::CmpXChg; |
| |
| unsigned Size = AI->getType()->getPrimitiveSizeInBits(); |
| if (Size == 8 || Size == 16) |
| return AtomicExpansionKind::MaskedIntrinsic; |
| return AtomicExpansionKind::None; |
| } |
| |
| static Intrinsic::ID |
| getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { |
| if (XLen == 32) { |
| switch (BinOp) { |
| default: |
| llvm_unreachable("Unexpected AtomicRMW BinOp"); |
| case AtomicRMWInst::Xchg: |
| return Intrinsic::riscv_masked_atomicrmw_xchg_i32; |
| case AtomicRMWInst::Add: |
| return Intrinsic::riscv_masked_atomicrmw_add_i32; |
| case AtomicRMWInst::Sub: |
| return Intrinsic::riscv_masked_atomicrmw_sub_i32; |
| case AtomicRMWInst::Nand: |
| return Intrinsic::riscv_masked_atomicrmw_nand_i32; |
| case AtomicRMWInst::Max: |
| return Intrinsic::riscv_masked_atomicrmw_max_i32; |
| case AtomicRMWInst::Min: |
| return Intrinsic::riscv_masked_atomicrmw_min_i32; |
| case AtomicRMWInst::UMax: |
| return Intrinsic::riscv_masked_atomicrmw_umax_i32; |
| case AtomicRMWInst::UMin: |
| return Intrinsic::riscv_masked_atomicrmw_umin_i32; |
| } |
| } |
| |
| if (XLen == 64) { |
| switch (BinOp) { |
| default: |
| llvm_unreachable("Unexpected AtomicRMW BinOp"); |
| case AtomicRMWInst::Xchg: |
| return Intrinsic::riscv_masked_atomicrmw_xchg_i64; |
| case AtomicRMWInst::Add: |
| return Intrinsic::riscv_masked_atomicrmw_add_i64; |
| case AtomicRMWInst::Sub: |
| return Intrinsic::riscv_masked_atomicrmw_sub_i64; |
| case AtomicRMWInst::Nand: |
| return Intrinsic::riscv_masked_atomicrmw_nand_i64; |
| case AtomicRMWInst::Max: |
| return Intrinsic::riscv_masked_atomicrmw_max_i64; |
| case AtomicRMWInst::Min: |
| return Intrinsic::riscv_masked_atomicrmw_min_i64; |
| case AtomicRMWInst::UMax: |
| return Intrinsic::riscv_masked_atomicrmw_umax_i64; |
| case AtomicRMWInst::UMin: |
| return Intrinsic::riscv_masked_atomicrmw_umin_i64; |
| } |
| } |
| |
| llvm_unreachable("Unexpected XLen\n"); |
| } |
| |
| Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( |
| IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, |
| Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { |
| unsigned XLen = Subtarget.getXLen(); |
| Value *Ordering = |
| Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); |
| Type *Tys[] = {AlignedAddr->getType()}; |
| Function *LrwOpScwLoop = Intrinsic::getDeclaration( |
| AI->getModule(), |
| getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); |
| |
| if (XLen == 64) { |
| Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); |
| Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); |
| ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); |
| } |
| |
| Value *Result; |
| |
| // Must pass the shift amount needed to sign extend the loaded value prior |
| // to performing a signed comparison for min/max. ShiftAmt is the number of |
| // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which |
| // is the number of bits to left+right shift the value in order to |
| // sign-extend. |
| if (AI->getOperation() == AtomicRMWInst::Min || |
| AI->getOperation() == AtomicRMWInst::Max) { |
| const DataLayout &DL = AI->getModule()->getDataLayout(); |
| unsigned ValWidth = |
| DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); |
| Value *SextShamt = |
| Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); |
| Result = Builder.CreateCall(LrwOpScwLoop, |
| {AlignedAddr, Incr, Mask, SextShamt, Ordering}); |
| } else { |
| Result = |
| Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); |
| } |
| |
| if (XLen == 64) |
| Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); |
| return Result; |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( |
| AtomicCmpXchgInst *CI) const { |
| unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); |
| if (Size == 8 || Size == 16) |
| return AtomicExpansionKind::MaskedIntrinsic; |
| return AtomicExpansionKind::None; |
| } |
| |
| Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( |
| IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, |
| Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { |
| unsigned XLen = Subtarget.getXLen(); |
| Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); |
| Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; |
| if (XLen == 64) { |
| CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); |
| NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); |
| Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); |
| CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; |
| } |
| Type *Tys[] = {AlignedAddr->getType()}; |
| Function *MaskedCmpXchg = |
| Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); |
| Value *Result = Builder.CreateCall( |
| MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); |
| if (XLen == 64) |
| Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); |
| return Result; |
| } |
| |
| bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { |
| return false; |
| } |
| |
| bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, |
| EVT VT) const { |
| if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) |
| return false; |
| |
| switch (FPVT.getSimpleVT().SimpleTy) { |
| case MVT::f16: |
| return Subtarget.hasStdExtZfh(); |
| case MVT::f32: |
| return Subtarget.hasStdExtF(); |
| case MVT::f64: |
| return Subtarget.hasStdExtD(); |
| default: |
| return false; |
| } |
| } |
| |
| unsigned RISCVTargetLowering::getJumpTableEncoding() const { |
| // If we are using the small code model, we can reduce size of jump table |
| // entry to 4 bytes. |
| if (Subtarget.is64Bit() && !isPositionIndependent() && |
| getTargetMachine().getCodeModel() == CodeModel::Small) { |
| return MachineJumpTableInfo::EK_Custom32; |
| } |
| return TargetLowering::getJumpTableEncoding(); |
| } |
| |
| const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( |
| const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, |
| unsigned uid, MCContext &Ctx) const { |
| assert(Subtarget.is64Bit() && !isPositionIndependent() && |
| getTargetMachine().getCodeModel() == CodeModel::Small); |
| return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); |
| } |
| |
| bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, |
| EVT VT) const { |
| VT = VT.getScalarType(); |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::f16: |
| return Subtarget.hasStdExtZfh(); |
| case MVT::f32: |
| return Subtarget.hasStdExtF(); |
| case MVT::f64: |
| return Subtarget.hasStdExtD(); |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| Register RISCVTargetLowering::getExceptionPointerRegister( |
| const Constant *PersonalityFn) const { |
| return RISCV::X10; |
| } |
| |
| Register RISCVTargetLowering::getExceptionSelectorRegister( |
| const Constant *PersonalityFn) const { |
| return RISCV::X11; |
| } |
| |
| bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { |
| // Return false to suppress the unnecessary extensions if the LibCall |
| // arguments or return value is f32 type for LP64 ABI. |
| RISCVABI::ABI ABI = Subtarget.getTargetABI(); |
| if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) |
| return false; |
| |
| return true; |
| } |
| |
| bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { |
| if (Subtarget.is64Bit() && Type == MVT::i32) |
| return true; |
| |
| return IsSigned; |
| } |
| |
| bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, |
| SDValue C) const { |
| // Check integral scalar types. |
| if (VT.isScalarInteger()) { |
| // Omit the optimization if the sub target has the M extension and the data |
| // size exceeds XLen. |
| if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) |
| return false; |
| if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { |
| // Break the MUL to a SLLI and an ADD/SUB. |
| const APInt &Imm = ConstNode->getAPIntValue(); |
| if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || |
| (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) |
| return true; |
| // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. |
| if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && |
| ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || |
| (Imm - 8).isPowerOf2())) |
| return true; |
| // Omit the following optimization if the sub target has the M extension |
| // and the data size >= XLen. |
| if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) |
| return false; |
| // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs |
| // a pair of LUI/ADDI. |
| if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { |
| APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); |
| if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || |
| (1 - ImmS).isPowerOf2()) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool RISCVTargetLowering::isMulAddWithConstProfitable( |
| const SDValue &AddNode, const SDValue &ConstNode) const { |
| // Let the DAGCombiner decide for vectors. |
| EVT VT = AddNode.getValueType(); |
| if (VT.isVector()) |
| return true; |
| |
| // Let the DAGCombiner decide for larger types. |
| if (VT.getScalarSizeInBits() > Subtarget.getXLen()) |
| return true; |
| |
| // It is worse if c1 is simm12 while c1*c2 is not. |
| ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); |
| ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); |
| const APInt &C1 = C1Node->getAPIntValue(); |
| const APInt &C2 = C2Node->getAPIntValue(); |
| if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) |
| return false; |
| |
| // Default to true and let the DAGCombiner decide. |
| return true; |
| } |
| |
| bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( |
| EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, |
| bool *Fast) const { |
| if (!VT.isVector()) |
| return false; |
| |
| EVT ElemVT = VT.getVectorElementType(); |
| if (Alignment >= ElemVT.getStoreSize()) { |
| if (Fast) |
| *Fast = true; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool RISCVTargetLowering::splitValueIntoRegisterParts( |
| SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, |
| unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { |
| bool IsABIRegCopy = CC.hasValue(); |
| EVT ValueVT = Val.getValueType(); |
| if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { |
| // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, |
| // and cast to f32. |
| Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); |
| Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); |
| Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, |
| DAG.getConstant(0xFFFF0000, DL, MVT::i32)); |
| Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); |
| Parts[0] = Val; |
| return true; |
| } |
| |
| if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { |
| LLVMContext &Context = *DAG.getContext(); |
| EVT ValueEltVT = ValueVT.getVectorElementType(); |
| EVT PartEltVT = PartVT.getVectorElementType(); |
| unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); |
| unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); |
| if (PartVTBitSize % ValueVTBitSize == 0) { |
| assert(PartVTBitSize >= ValueVTBitSize); |
| // If the element types are different, bitcast to the same element type of |
| // PartVT first. |
| // Give an example here, we want copy a <vscale x 1 x i8> value to |
| // <vscale x 4 x i16>. |
| // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert |
| // subvector, then we can bitcast to <vscale x 4 x i16>. |
| if (ValueEltVT != PartEltVT) { |
| if (PartVTBitSize > ValueVTBitSize) { |
| unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); |
| assert(Count != 0 && "The number of element should not be zero."); |
| EVT SameEltTypeVT = |
| EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); |
| Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, |
| DAG.getUNDEF(SameEltTypeVT), Val, |
| DAG.getVectorIdxConstant(0, DL)); |
| } |
| Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
| } else { |
| Val = |
| DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), |
| Val, DAG.getVectorIdxConstant(0, DL)); |
| } |
| Parts[0] = Val; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( |
| SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, |
| MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { |
| bool IsABIRegCopy = CC.hasValue(); |
| if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { |
| SDValue Val = Parts[0]; |
| |
| // Cast the f32 to i32, truncate to i16, and cast back to f16. |
| Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); |
| Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); |
| return Val; |
| } |
| |
| if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { |
| LLVMContext &Context = *DAG.getContext(); |
| SDValue Val = Parts[0]; |
| EVT ValueEltVT = ValueVT.getVectorElementType(); |
| EVT PartEltVT = PartVT.getVectorElementType(); |
| unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); |
| unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); |
| if (PartVTBitSize % ValueVTBitSize == 0) { |
| assert(PartVTBitSize >= ValueVTBitSize); |
| EVT SameEltTypeVT = ValueVT; |
| // If the element types are different, convert it to the same element type |
| // of PartVT. |
| // Give an example here, we want copy a <vscale x 1 x i8> value from |
| // <vscale x 4 x i16>. |
| // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, |
| // then we can extract <vscale x 1 x i8>. |
| if (ValueEltVT != PartEltVT) { |
| unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); |
| assert(Count != 0 && "The number of element should not be zero."); |
| SameEltTypeVT = |
| EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); |
| Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); |
| } |
| Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, |
| DAG.getVectorIdxConstant(0, DL)); |
| return Val; |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue |
| RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, |
| SelectionDAG &DAG, |
| SmallVectorImpl<SDNode *> &Created) const { |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (isIntDivCheap(N->getValueType(0), Attr)) |
| return SDValue(N, 0); // Lower SDIV as SDIV |
| |
| assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) && |
| "Unexpected divisor!"); |
| |
| // Conditional move is needed, so do the transformation iff Zbt is enabled. |
| if (!Subtarget.hasStdExtZbt()) |
| return SDValue(); |
| |
| // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation. |
| // Besides, more critical path instructions will be generated when dividing |
| // by 2. So we keep using the original DAGs for these cases. |
| unsigned Lg2 = Divisor.countTrailingZeros(); |
| if (Lg2 == 1 || Lg2 >= 12) |
| return SDValue(); |
| |
| // fold (sdiv X, pow2) |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64)) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue N0 = N->getOperand(0); |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); |
| |
| // Add (N0 < 0) ? Pow2 - 1 : 0; |
| SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); |
| SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); |
| |
| Created.push_back(Cmp.getNode()); |
| Created.push_back(Add.getNode()); |
| Created.push_back(Sel.getNode()); |
| |
| // Divide by pow2. |
| SDValue SRA = |
| DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT)); |
| |
| // If we're dividing by a positive value, we're done. Otherwise, we must |
| // negate the result. |
| if (Divisor.isNonNegative()) |
| return SRA; |
| |
| Created.push_back(SRA.getNode()); |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); |
| } |
| |
| #define GET_REGISTER_MATCHER |
| #include "RISCVGenAsmMatcher.inc" |
| |
| Register |
| RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, |
| const MachineFunction &MF) const { |
| Register Reg = MatchRegisterAltName(RegName); |
| if (Reg == RISCV::NoRegister) |
| Reg = MatchRegisterName(RegName); |
| if (Reg == RISCV::NoRegister) |
| report_fatal_error( |
| Twine("Invalid register name \"" + StringRef(RegName) + "\".")); |
| BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); |
| if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) |
| report_fatal_error(Twine("Trying to obtain non-reserved register \"" + |
| StringRef(RegName) + "\".")); |
| return Reg; |
| } |
| |
| namespace llvm { |
| namespace RISCVVIntrinsicsTable { |
| |
| #define GET_RISCVVIntrinsicsTable_IMPL |
| #include "RISCVGenSearchableTables.inc" |
| |
| } // namespace RISCVVIntrinsicsTable |
| |
| } // namespace llvm |