blob: 9eb96ec76800c8634355aae052d55bc7eca4450f [file] [log] [blame]
use ArgumentType::*;
use Position::*;
use rustc_ast as ast;
use rustc_ast::ptr::P;
use rustc_ast::tokenstream::TokenStream;
use rustc_ast::visit::{self, Visitor};
use rustc_ast::{token, BlockCheckMode, UnsafeSource};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{pluralize, Applicability, MultiSpan, PResult};
use rustc_expand::base::{self, *};
use rustc_parse_format as parse;
use rustc_span::symbol::{sym, Ident, Symbol};
use rustc_span::{BytePos, InnerSpan, Span};
use smallvec::SmallVec;
use rustc_lint_defs::builtin::NAMED_ARGUMENTS_USED_POSITIONALLY;
use rustc_lint_defs::{BufferedEarlyLint, BuiltinLintDiagnostics, LintId};
use rustc_parse_format::Count;
use std::borrow::Cow;
use std::collections::hash_map::Entry;
#[derive(PartialEq)]
enum ArgumentType {
Placeholder(&'static str),
Count,
}
enum Position {
Exact(usize),
Capture(usize),
Named(Symbol, InnerSpan),
}
/// Indicates how positional named argument (i.e. an named argument which is used by position
/// instead of by name) is used in format string
/// * `Arg` is the actual argument to print
/// * `Width` is width format argument
/// * `Precision` is precion format argument
/// Example: `{Arg:Width$.Precision$}
#[derive(Debug, Eq, PartialEq)]
enum PositionalNamedArgType {
Arg,
Width,
Precision,
}
/// Contains information necessary to create a lint for a positional named argument
#[derive(Debug)]
struct PositionalNamedArg {
ty: PositionalNamedArgType,
/// The piece of the using this argument (multiple pieces can use the same argument)
cur_piece: usize,
/// The InnerSpan for in the string to be replaced with the named argument
/// This will be None when the position is implicit
inner_span_to_replace: Option<rustc_parse_format::InnerSpan>,
/// The name to use instead of the position
replacement: Symbol,
/// The span for the positional named argument (so the lint can point a message to it)
positional_named_arg_span: Span,
has_formatting: bool,
}
impl PositionalNamedArg {
/// Determines:
/// 1) span to be replaced with the name of the named argument and
/// 2) span to be underlined for error messages
fn get_positional_arg_spans(&self, cx: &Context<'_, '_>) -> (Option<Span>, Option<Span>) {
if let Some(inner_span) = &self.inner_span_to_replace {
let span =
cx.fmtsp.from_inner(InnerSpan { start: inner_span.start, end: inner_span.end });
(Some(span), Some(span))
} else if self.ty == PositionalNamedArgType::Arg {
// In the case of a named argument whose position is implicit, if the argument *has*
// formatting, there will not be a span to replace. Instead, we insert the name after
// the `{`, which will be the first character of arg_span. If the argument does *not*
// have formatting, there may or may not be a span to replace. This is because
// whitespace is allowed in arguments without formatting (such as `format!("{ }", 1);`)
// but is not allowed in arguments with formatting (an error will be generated in cases
// like `format!("{ :1.1}", 1.0f32);`.
// For the message span, if there is formatting, we want to use the opening `{` and the
// next character, which will the `:` indicating the start of formatting. If there is
// not any formatting, we want to underline the entire span.
cx.arg_spans.get(self.cur_piece).map_or((None, None), |arg_span| {
if self.has_formatting {
(
Some(arg_span.with_lo(arg_span.lo() + BytePos(1)).shrink_to_lo()),
Some(arg_span.with_hi(arg_span.lo() + BytePos(2))),
)
} else {
let replace_start = arg_span.lo() + BytePos(1);
let replace_end = arg_span.hi() - BytePos(1);
let to_replace = arg_span.with_lo(replace_start).with_hi(replace_end);
(Some(to_replace), Some(*arg_span))
}
})
} else {
(None, None)
}
}
}
/// Encapsulates all the named arguments that have been used positionally
#[derive(Debug)]
struct PositionalNamedArgsLint {
positional_named_args: Vec<PositionalNamedArg>,
}
impl PositionalNamedArgsLint {
/// For a given positional argument, check if the index is for a named argument.
///
/// Since positional arguments are required to come before named arguments, if the positional
/// index is greater than or equal to the start of named arguments, we know it's a named
/// argument used positionally.
///
/// Example:
/// println!("{} {} {2}", 0, a=1, b=2);
///
/// In this case, the first piece (`{}`) would be ArgumentImplicitlyIs with an index of 0. The
/// total number of arguments is 3 and the number of named arguments is 2, so the start of named
/// arguments is index 1. Therefore, the index of 0 is okay.
///
/// The second piece (`{}`) would be ArgumentImplicitlyIs with an index of 1, which is the start
/// of named arguments, and so we should add a lint to use the named argument `a`.
///
/// The third piece (`{2}`) would be ArgumentIs with an index of 2, which is greater than the
/// start of named arguments, and so we should add a lint to use the named argument `b`.
///
/// This same check also works for width and precision formatting when either or both are
/// CountIsParam, which contains an index into the arguments.
fn maybe_add_positional_named_arg(
&mut self,
current_positional_arg: usize,
total_args_length: usize,
format_argument_index: usize,
ty: PositionalNamedArgType,
cur_piece: usize,
inner_span_to_replace: Option<rustc_parse_format::InnerSpan>,
names: &FxHashMap<Symbol, (usize, Span)>,
has_formatting: bool,
) {
let start_of_named_args = total_args_length - names.len();
if current_positional_arg >= start_of_named_args {
self.maybe_push(
format_argument_index,
ty,
cur_piece,
inner_span_to_replace,
names,
has_formatting,
)
}
}
/// Try constructing a PositionalNamedArg struct and pushing it into the vec of positional
/// named arguments. If a named arg associated with `format_argument_index` cannot be found,
/// a new item will not be added as the lint cannot be emitted in this case.
fn maybe_push(
&mut self,
format_argument_index: usize,
ty: PositionalNamedArgType,
cur_piece: usize,
inner_span_to_replace: Option<rustc_parse_format::InnerSpan>,
names: &FxHashMap<Symbol, (usize, Span)>,
has_formatting: bool,
) {
let named_arg = names
.iter()
.find(|&(_, &(index, _))| index == format_argument_index)
.map(|found| found.clone());
if let Some((&replacement, &(_, positional_named_arg_span))) = named_arg {
// In FormatSpec, `precision_span` starts at the leading `.`, which we want to keep in
// the lint suggestion, so increment `start` by 1 when `PositionalArgumentType` is
// `Precision`.
let inner_span_to_replace = if ty == PositionalNamedArgType::Precision {
inner_span_to_replace
.map(|is| rustc_parse_format::InnerSpan { start: is.start + 1, end: is.end })
} else {
inner_span_to_replace
};
self.positional_named_args.push(PositionalNamedArg {
ty,
cur_piece,
inner_span_to_replace,
replacement,
positional_named_arg_span,
has_formatting,
});
}
}
}
struct Context<'a, 'b> {
ecx: &'a mut ExtCtxt<'b>,
/// The macro's call site. References to unstable formatting internals must
/// use this span to pass the stability checker.
macsp: Span,
/// The span of the format string literal.
fmtsp: Span,
/// List of parsed argument expressions.
/// Named expressions are resolved early, and are appended to the end of
/// argument expressions.
///
/// Example showing the various data structures in motion:
///
/// * Original: `"{foo:o} {:o} {foo:x} {0:x} {1:o} {:x} {1:x} {0:o}"`
/// * Implicit argument resolution: `"{foo:o} {0:o} {foo:x} {0:x} {1:o} {1:x} {1:x} {0:o}"`
/// * Name resolution: `"{2:o} {0:o} {2:x} {0:x} {1:o} {1:x} {1:x} {0:o}"`
/// * `arg_types` (in JSON): `[[0, 1, 0], [0, 1, 1], [0, 1]]`
/// * `arg_unique_types` (in simplified JSON): `[["o", "x"], ["o", "x"], ["o", "x"]]`
/// * `names` (in JSON): `{"foo": 2}`
args: Vec<P<ast::Expr>>,
/// The number of arguments that were added by implicit capturing.
num_captured_args: usize,
/// Placeholder slot numbers indexed by argument.
arg_types: Vec<Vec<usize>>,
/// Unique format specs seen for each argument.
arg_unique_types: Vec<Vec<ArgumentType>>,
/// Map from named arguments to their resolved indices.
names: FxHashMap<Symbol, (usize, Span)>,
/// The latest consecutive literal strings, or empty if there weren't any.
literal: String,
/// Collection of the compiled `rt::Argument` structures
pieces: Vec<P<ast::Expr>>,
/// Collection of string literals
str_pieces: Vec<P<ast::Expr>>,
/// Stays `true` if all formatting parameters are default (as in "{}{}").
all_pieces_simple: bool,
/// Mapping between positional argument references and indices into the
/// final generated static argument array. We record the starting indices
/// corresponding to each positional argument, and number of references
/// consumed so far for each argument, to facilitate correct `Position`
/// mapping in `build_piece`. In effect this can be seen as a "flattened"
/// version of `arg_unique_types`.
///
/// Again with the example described above in docstring for `args`:
///
/// * `arg_index_map` (in JSON): `[[0, 1, 0], [2, 3, 3], [4, 5]]`
arg_index_map: Vec<Vec<usize>>,
/// Starting offset of count argument slots.
count_args_index_offset: usize,
/// Count argument slots and tracking data structures.
/// Count arguments are separately tracked for de-duplication in case
/// multiple references are made to one argument. For example, in this
/// format string:
///
/// * Original: `"{:.*} {:.foo$} {1:.*} {:.0$}"`
/// * Implicit argument resolution: `"{1:.0$} {2:.foo$} {1:.3$} {4:.0$}"`
/// * Name resolution: `"{1:.0$} {2:.5$} {1:.3$} {4:.0$}"`
/// * `count_positions` (in JSON): `{0: 0, 5: 1, 3: 2}`
/// * `count_args`: `vec![0, 5, 3]`
count_args: Vec<usize>,
/// Relative slot numbers for count arguments.
count_positions: FxHashMap<usize, usize>,
/// Number of count slots assigned.
count_positions_count: usize,
/// Current position of the implicit positional arg pointer, as if it
/// still existed in this phase of processing.
/// Used only for `all_pieces_simple` tracking in `build_piece`.
curarg: usize,
/// Current piece being evaluated, used for error reporting.
curpiece: usize,
/// Keep track of invalid references to positional arguments.
invalid_refs: Vec<(usize, usize)>,
/// Spans of all the formatting arguments, in order.
arg_spans: Vec<Span>,
/// All the formatting arguments that have formatting flags set, in order for diagnostics.
arg_with_formatting: Vec<parse::FormatSpec<'a>>,
/// Whether this format string came from a string literal, as opposed to a macro.
is_literal: bool,
unused_names_lint: PositionalNamedArgsLint,
}
pub struct FormatArg {
expr: P<ast::Expr>,
named: bool,
}
/// Parses the arguments from the given list of tokens, returning the diagnostic
/// if there's a parse error so we can continue parsing other format!
/// expressions.
///
/// If parsing succeeds, the return value is:
///
/// ```text
/// Some((fmtstr, parsed arguments, index map for named arguments))
/// ```
fn parse_args<'a>(
ecx: &mut ExtCtxt<'a>,
sp: Span,
tts: TokenStream,
) -> PResult<'a, (P<ast::Expr>, Vec<FormatArg>, FxHashMap<Symbol, (usize, Span)>)> {
let mut args = Vec::<FormatArg>::new();
let mut names = FxHashMap::<Symbol, (usize, Span)>::default();
let mut p = ecx.new_parser_from_tts(tts);
if p.token == token::Eof {
return Err(ecx.struct_span_err(sp, "requires at least a format string argument"));
}
let first_token = &p.token;
let fmtstr = match first_token.kind {
token::TokenKind::Literal(token::Lit {
kind: token::LitKind::Str | token::LitKind::StrRaw(_),
..
}) => {
// If the first token is a string literal, then a format expression
// is constructed from it.
//
// This allows us to properly handle cases when the first comma
// after the format string is mistakenly replaced with any operator,
// which cause the expression parser to eat too much tokens.
p.parse_literal_maybe_minus()?
}
_ => {
// Otherwise, we fall back to the expression parser.
p.parse_expr()?
}
};
let mut first = true;
let mut named = false;
while p.token != token::Eof {
if !p.eat(&token::Comma) {
if first {
p.clear_expected_tokens();
}
match p.expect(&token::Comma) {
Err(mut err) => {
match token::TokenKind::Comma.similar_tokens() {
Some(tks) if tks.contains(&p.token.kind) => {
// If a similar token is found, then it may be a typo. We
// consider it as a comma, and continue parsing.
err.emit();
p.bump();
}
// Otherwise stop the parsing and return the error.
_ => return Err(err),
}
}
Ok(recovered) => {
assert!(recovered);
}
}
}
first = false;
if p.token == token::Eof {
break;
} // accept trailing commas
match p.token.ident() {
Some((ident, _)) if p.look_ahead(1, |t| *t == token::Eq) => {
named = true;
p.bump();
p.expect(&token::Eq)?;
let e = p.parse_expr()?;
if let Some((prev, _)) = names.get(&ident.name) {
ecx.struct_span_err(e.span, &format!("duplicate argument named `{}`", ident))
.span_label(args[*prev].expr.span, "previously here")
.span_label(e.span, "duplicate argument")
.emit();
continue;
}
// Resolve names into slots early.
// Since all the positional args are already seen at this point
// if the input is valid, we can simply append to the positional
// args. And remember the names.
let slot = args.len();
names.insert(ident.name, (slot, ident.span));
args.push(FormatArg { expr: e, named: true });
}
_ => {
let e = p.parse_expr()?;
if named {
let mut err = ecx.struct_span_err(
e.span,
"positional arguments cannot follow named arguments",
);
err.span_label(e.span, "positional arguments must be before named arguments");
for pos in names.values() {
err.span_label(args[pos.0].expr.span, "named argument");
}
err.emit();
}
args.push(FormatArg { expr: e, named: false });
}
}
}
Ok((fmtstr, args, names))
}
impl<'a, 'b> Context<'a, 'b> {
/// The number of arguments that were explicitly given.
fn num_args(&self) -> usize {
self.args.len() - self.num_captured_args
}
fn resolve_name_inplace(&mut self, p: &mut parse::Piece<'_>) {
// NOTE: the `unwrap_or` branch is needed in case of invalid format
// arguments, e.g., `format_args!("{foo}")`.
let lookup =
|s: &str| self.names.get(&Symbol::intern(s)).unwrap_or(&(0, Span::default())).0;
match *p {
parse::String(_) => {}
parse::NextArgument(ref mut arg) => {
if let parse::ArgumentNamed(s) = arg.position {
arg.position = parse::ArgumentIs(lookup(s));
}
if let parse::CountIsName(s, _) = arg.format.width {
arg.format.width = parse::CountIsParam(lookup(s));
}
if let parse::CountIsName(s, _) = arg.format.precision {
arg.format.precision = parse::CountIsParam(lookup(s));
}
}
}
}
/// Verifies one piece of a parse string, and remembers it if valid.
/// All errors are not emitted as fatal so we can continue giving errors
/// about this and possibly other format strings.
fn verify_piece(&mut self, p: &parse::Piece<'_>) {
match *p {
parse::String(..) => {}
parse::NextArgument(ref arg) => {
// width/precision first, if they have implicit positional
// parameters it makes more sense to consume them first.
self.verify_count(
arg.format.width,
&arg.format.width_span,
PositionalNamedArgType::Width,
);
self.verify_count(
arg.format.precision,
&arg.format.precision_span,
PositionalNamedArgType::Precision,
);
let has_precision = arg.format.precision != Count::CountImplied;
let has_width = arg.format.width != Count::CountImplied;
// argument second, if it's an implicit positional parameter
// it's written second, so it should come after width/precision.
let pos = match arg.position {
parse::ArgumentIs(i) => {
self.unused_names_lint.maybe_add_positional_named_arg(
i,
self.args.len(),
i,
PositionalNamedArgType::Arg,
self.curpiece,
Some(arg.position_span),
&self.names,
has_precision || has_width,
);
Exact(i)
}
parse::ArgumentImplicitlyIs(i) => {
self.unused_names_lint.maybe_add_positional_named_arg(
i,
self.args.len(),
i,
PositionalNamedArgType::Arg,
self.curpiece,
None,
&self.names,
has_precision || has_width,
);
Exact(i)
}
parse::ArgumentNamed(s) => {
let symbol = Symbol::intern(s);
let span = arg.position_span;
Named(symbol, InnerSpan::new(span.start, span.end))
}
};
let ty = Placeholder(match arg.format.ty {
"" => "Display",
"?" => "Debug",
"e" => "LowerExp",
"E" => "UpperExp",
"o" => "Octal",
"p" => "Pointer",
"b" => "Binary",
"x" => "LowerHex",
"X" => "UpperHex",
_ => {
let fmtsp = self.fmtsp;
let sp = arg
.format
.ty_span
.map(|sp| fmtsp.from_inner(InnerSpan::new(sp.start, sp.end)));
let mut err = self.ecx.struct_span_err(
sp.unwrap_or(fmtsp),
&format!("unknown format trait `{}`", arg.format.ty),
);
err.note(
"the only appropriate formatting traits are:\n\
- ``, which uses the `Display` trait\n\
- `?`, which uses the `Debug` trait\n\
- `e`, which uses the `LowerExp` trait\n\
- `E`, which uses the `UpperExp` trait\n\
- `o`, which uses the `Octal` trait\n\
- `p`, which uses the `Pointer` trait\n\
- `b`, which uses the `Binary` trait\n\
- `x`, which uses the `LowerHex` trait\n\
- `X`, which uses the `UpperHex` trait",
);
if let Some(sp) = sp {
for (fmt, name) in &[
("", "Display"),
("?", "Debug"),
("e", "LowerExp"),
("E", "UpperExp"),
("o", "Octal"),
("p", "Pointer"),
("b", "Binary"),
("x", "LowerHex"),
("X", "UpperHex"),
] {
// FIXME: rustfix (`run-rustfix`) fails to apply suggestions.
// > "Cannot replace slice of data that was already replaced"
err.tool_only_span_suggestion(
sp,
&format!("use the `{}` trait", name),
*fmt,
Applicability::MaybeIncorrect,
);
}
}
err.emit();
"<invalid>"
}
});
self.verify_arg_type(pos, ty);
self.curpiece += 1;
}
}
}
fn verify_count(
&mut self,
c: parse::Count<'_>,
inner_span: &Option<rustc_parse_format::InnerSpan>,
named_arg_type: PositionalNamedArgType,
) {
match c {
parse::CountImplied | parse::CountIs(..) => {}
parse::CountIsParam(i) => {
self.unused_names_lint.maybe_add_positional_named_arg(
i,
self.args.len(),
i,
named_arg_type,
self.curpiece,
*inner_span,
&self.names,
true,
);
self.verify_arg_type(Exact(i), Count);
}
parse::CountIsName(s, span) => {
self.verify_arg_type(
Named(Symbol::intern(s), InnerSpan::new(span.start, span.end)),
Count,
);
}
}
}
fn describe_num_args(&self) -> Cow<'_, str> {
match self.num_args() {
0 => "no arguments were given".into(),
1 => "there is 1 argument".into(),
x => format!("there are {} arguments", x).into(),
}
}
/// Handle invalid references to positional arguments. Output different
/// errors for the case where all arguments are positional and for when
/// there are named arguments or numbered positional arguments in the
/// format string.
fn report_invalid_references(&self, numbered_position_args: bool) {
let mut e;
let sp = if !self.arg_spans.is_empty() {
// Point at the formatting arguments.
MultiSpan::from_spans(self.arg_spans.clone())
} else {
MultiSpan::from_span(self.fmtsp)
};
let refs =
self.invalid_refs.iter().map(|(r, pos)| (r.to_string(), self.arg_spans.get(*pos)));
let mut zero_based_note = false;
let count = self.pieces.len()
+ self.arg_with_formatting.iter().filter(|fmt| fmt.precision_span.is_some()).count();
if self.names.is_empty() && !numbered_position_args && count != self.num_args() {
e = self.ecx.struct_span_err(
sp,
&format!(
"{} positional argument{} in format string, but {}",
count,
pluralize!(count),
self.describe_num_args(),
),
);
for arg in &self.args {
// Point at the arguments that will be formatted.
e.span_label(arg.span, "");
}
} else {
let (mut refs, spans): (Vec<_>, Vec<_>) = refs.unzip();
// Avoid `invalid reference to positional arguments 7 and 7 (there is 1 argument)`
// for `println!("{7:7$}", 1);`
refs.sort();
refs.dedup();
let spans: Vec<_> = spans.into_iter().filter_map(|sp| sp.copied()).collect();
let sp = if self.arg_spans.is_empty() || spans.is_empty() {
MultiSpan::from_span(self.fmtsp)
} else {
MultiSpan::from_spans(spans)
};
let arg_list = if refs.len() == 1 {
format!("argument {}", refs[0])
} else {
let reg = refs.pop().unwrap();
format!("arguments {head} and {tail}", head = refs.join(", "), tail = reg)
};
e = self.ecx.struct_span_err(
sp,
&format!(
"invalid reference to positional {} ({})",
arg_list,
self.describe_num_args()
),
);
zero_based_note = true;
};
for fmt in &self.arg_with_formatting {
if let Some(span) = fmt.precision_span {
let span = self.fmtsp.from_inner(InnerSpan::new(span.start, span.end));
match fmt.precision {
parse::CountIsParam(pos) if pos > self.num_args() => {
e.span_label(
span,
&format!(
"this precision flag expects an `usize` argument at position {}, \
but {}",
pos,
self.describe_num_args(),
),
);
zero_based_note = true;
}
parse::CountIsParam(pos) => {
let count = self.pieces.len()
+ self
.arg_with_formatting
.iter()
.filter(|fmt| fmt.precision_span.is_some())
.count();
e.span_label(
span,
&format!(
"this precision flag adds an extra required argument at position {}, \
which is why there {} expected",
pos,
if count == 1 {
"is 1 argument".to_string()
} else {
format!("are {} arguments", count)
},
),
);
if let Some(arg) = self.args.get(pos) {
e.span_label(
arg.span,
"this parameter corresponds to the precision flag",
);
}
zero_based_note = true;
}
_ => {}
}
}
if let Some(span) = fmt.width_span {
let span = self.fmtsp.from_inner(InnerSpan::new(span.start, span.end));
match fmt.width {
parse::CountIsParam(pos) if pos >= self.num_args() => {
e.span_label(
span,
&format!(
"this width flag expects an `usize` argument at position {}, \
but {}",
pos,
self.describe_num_args(),
),
);
zero_based_note = true;
}
_ => {}
}
}
}
if zero_based_note {
e.note("positional arguments are zero-based");
}
if !self.arg_with_formatting.is_empty() {
e.note(
"for information about formatting flags, visit \
https://doc.rust-lang.org/std/fmt/index.html",
);
}
e.emit();
}
/// Actually verifies and tracks a given format placeholder
/// (a.k.a. argument).
fn verify_arg_type(&mut self, arg: Position, ty: ArgumentType) {
if let Exact(arg) = arg {
if arg >= self.num_args() {
self.invalid_refs.push((arg, self.curpiece));
return;
}
}
match arg {
Exact(arg) | Capture(arg) => {
match ty {
Placeholder(_) => {
// record every (position, type) combination only once
let seen_ty = &mut self.arg_unique_types[arg];
let i = seen_ty.iter().position(|x| *x == ty).unwrap_or_else(|| {
let i = seen_ty.len();
seen_ty.push(ty);
i
});
self.arg_types[arg].push(i);
}
Count => {
if let Entry::Vacant(e) = self.count_positions.entry(arg) {
let i = self.count_positions_count;
e.insert(i);
self.count_args.push(arg);
self.count_positions_count += 1;
}
}
}
}
Named(name, span) => {
match self.names.get(&name) {
Some(&idx) => {
// Treat as positional arg.
self.verify_arg_type(Capture(idx.0), ty)
}
None => {
// For the moment capturing variables from format strings expanded from macros is
// disabled (see RFC #2795)
if self.is_literal {
// Treat this name as a variable to capture from the surrounding scope
let idx = self.args.len();
self.arg_types.push(Vec::new());
self.arg_unique_types.push(Vec::new());
let span = if self.is_literal {
self.fmtsp.from_inner(span)
} else {
self.fmtsp
};
self.num_captured_args += 1;
self.args.push(self.ecx.expr_ident(span, Ident::new(name, span)));
self.names.insert(name, (idx, span));
self.verify_arg_type(Capture(idx), ty)
} else {
let msg = format!("there is no argument named `{}`", name);
let sp = if self.is_literal {
self.fmtsp.from_inner(span)
} else {
self.fmtsp
};
let mut err = self.ecx.struct_span_err(sp, &msg);
err.note(&format!(
"did you intend to capture a variable `{}` from \
the surrounding scope?",
name
));
err.note(
"to avoid ambiguity, `format_args!` cannot capture variables \
when the format string is expanded from a macro",
);
err.emit();
}
}
}
}
}
}
/// Builds the mapping between format placeholders and argument objects.
fn build_index_map(&mut self) {
// NOTE: Keep the ordering the same as `into_expr`'s expansion would do!
let args_len = self.args.len();
self.arg_index_map.reserve(args_len);
let mut sofar = 0usize;
// Map the arguments
for i in 0..args_len {
let arg_types = &self.arg_types[i];
let arg_offsets = arg_types.iter().map(|offset| sofar + *offset).collect::<Vec<_>>();
self.arg_index_map.push(arg_offsets);
sofar += self.arg_unique_types[i].len();
}
// Record starting index for counts, which appear just after arguments
self.count_args_index_offset = sofar;
}
fn rtpath(ecx: &ExtCtxt<'_>, s: Symbol) -> Vec<Ident> {
ecx.std_path(&[sym::fmt, sym::rt, sym::v1, s])
}
fn build_count(&self, c: parse::Count<'_>) -> P<ast::Expr> {
let sp = self.macsp;
let count = |c, arg| {
let mut path = Context::rtpath(self.ecx, sym::Count);
path.push(Ident::new(c, sp));
match arg {
Some(arg) => self.ecx.expr_call_global(sp, path, vec![arg]),
None => self.ecx.expr_path(self.ecx.path_global(sp, path)),
}
};
match c {
parse::CountIs(i) => count(sym::Is, Some(self.ecx.expr_usize(sp, i))),
parse::CountIsParam(i) => {
// This needs mapping too, as `i` is referring to a macro
// argument. If `i` is not found in `count_positions` then
// the error had already been emitted elsewhere.
let i = self.count_positions.get(&i).cloned().unwrap_or(0)
+ self.count_args_index_offset;
count(sym::Param, Some(self.ecx.expr_usize(sp, i)))
}
parse::CountImplied => count(sym::Implied, None),
// should never be the case, names are already resolved
parse::CountIsName(..) => panic!("should never happen"),
}
}
/// Build a literal expression from the accumulated string literals
fn build_literal_string(&mut self) -> P<ast::Expr> {
let sp = self.fmtsp;
let s = Symbol::intern(&self.literal);
self.literal.clear();
self.ecx.expr_str(sp, s)
}
/// Builds a static `rt::Argument` from a `parse::Piece` or append
/// to the `literal` string.
fn build_piece(
&mut self,
piece: &parse::Piece<'a>,
arg_index_consumed: &mut Vec<usize>,
) -> Option<P<ast::Expr>> {
let sp = self.macsp;
match *piece {
parse::String(s) => {
self.literal.push_str(s);
None
}
parse::NextArgument(ref arg) => {
// Build the position
let pos = {
match arg.position {
parse::ArgumentIs(i, ..) | parse::ArgumentImplicitlyIs(i) => {
// Map to index in final generated argument array
// in case of multiple types specified
let arg_idx = match arg_index_consumed.get_mut(i) {
None => 0, // error already emitted elsewhere
Some(offset) => {
let idx_map = &self.arg_index_map[i];
// unwrap_or branch: error already emitted elsewhere
let arg_idx = *idx_map.get(*offset).unwrap_or(&0);
*offset += 1;
arg_idx
}
};
self.ecx.expr_usize(sp, arg_idx)
}
// should never be the case, because names are already
// resolved.
parse::ArgumentNamed(..) => panic!("should never happen"),
}
};
let simple_arg = parse::Argument {
position: {
// We don't have ArgumentNext any more, so we have to
// track the current argument ourselves.
let i = self.curarg;
self.curarg += 1;
parse::ArgumentIs(i)
},
position_span: arg.position_span,
format: parse::FormatSpec {
fill: arg.format.fill,
align: parse::AlignUnknown,
flags: 0,
precision: parse::CountImplied,
precision_span: None,
width: parse::CountImplied,
width_span: None,
ty: arg.format.ty,
ty_span: arg.format.ty_span,
},
};
let fill = arg.format.fill.unwrap_or(' ');
let pos_simple = arg.position.index() == simple_arg.position.index();
if arg.format.precision_span.is_some() || arg.format.width_span.is_some() {
self.arg_with_formatting.push(arg.format);
}
if !pos_simple || arg.format != simple_arg.format || fill != ' ' {
self.all_pieces_simple = false;
}
// Build the format
let fill = self.ecx.expr_lit(sp, ast::LitKind::Char(fill));
let align = |name| {
let mut p = Context::rtpath(self.ecx, sym::Alignment);
p.push(Ident::new(name, sp));
self.ecx.path_global(sp, p)
};
let align = match arg.format.align {
parse::AlignLeft => align(sym::Left),
parse::AlignRight => align(sym::Right),
parse::AlignCenter => align(sym::Center),
parse::AlignUnknown => align(sym::Unknown),
};
let align = self.ecx.expr_path(align);
let flags = self.ecx.expr_u32(sp, arg.format.flags);
let prec = self.build_count(arg.format.precision);
let width = self.build_count(arg.format.width);
let path = self.ecx.path_global(sp, Context::rtpath(self.ecx, sym::FormatSpec));
let fmt = self.ecx.expr_struct(
sp,
path,
vec![
self.ecx.field_imm(sp, Ident::new(sym::fill, sp), fill),
self.ecx.field_imm(sp, Ident::new(sym::align, sp), align),
self.ecx.field_imm(sp, Ident::new(sym::flags, sp), flags),
self.ecx.field_imm(sp, Ident::new(sym::precision, sp), prec),
self.ecx.field_imm(sp, Ident::new(sym::width, sp), width),
],
);
let path = self.ecx.path_global(sp, Context::rtpath(self.ecx, sym::Argument));
Some(self.ecx.expr_struct(
sp,
path,
vec![
self.ecx.field_imm(sp, Ident::new(sym::position, sp), pos),
self.ecx.field_imm(sp, Ident::new(sym::format, sp), fmt),
],
))
}
}
}
/// Actually builds the expression which the format_args! block will be
/// expanded to.
fn into_expr(self) -> P<ast::Expr> {
let mut original_args = self.args;
let mut fmt_args = Vec::with_capacity(
self.arg_unique_types.iter().map(|v| v.len()).sum::<usize>() + self.count_args.len(),
);
// First, build up the static array which will become our precompiled
// format "string"
let pieces = self.ecx.expr_array_ref(self.fmtsp, self.str_pieces);
// We need to construct a &[ArgumentV1] to pass into the fmt::Arguments
// constructor. In general the expressions in this slice might be
// permuted from their order in original_args (such as in the case of
// "{1} {0}"), or may have multiple entries referring to the same
// element of original_args ("{0} {0}").
//
// The following vector has one item per element of our output slice,
// identifying the index of which element of original_args it's passing,
// and that argument's type.
let mut fmt_arg_index_and_ty = SmallVec::<[(usize, &ArgumentType); 8]>::new();
for (i, unique_types) in self.arg_unique_types.iter().enumerate() {
fmt_arg_index_and_ty.extend(unique_types.iter().map(|ty| (i, ty)));
}
fmt_arg_index_and_ty.extend(self.count_args.iter().map(|&i| (i, &Count)));
// Figure out whether there are permuted or repeated elements. If not,
// we can generate simpler code.
//
// The sequence has no indices out of order or repeated if: for every
// adjacent pair of elements, the first one's index is less than the
// second one's index.
let nicely_ordered =
fmt_arg_index_and_ty.array_windows().all(|[(i, _i_ty), (j, _j_ty)]| i < j);
// We want to emit:
//
// [ArgumentV1::new(&$arg0, …), ArgumentV1::new(&$arg1, …), …]
//
// However, it's only legal to do so if $arg0, $arg1, … were written in
// exactly that order by the programmer. When arguments are permuted, we
// want them evaluated in the order written by the programmer, not in
// the order provided to fmt::Arguments. When arguments are repeated, we
// want the expression evaluated only once.
//
// Further, if any arg _after the first one_ contains a yield point such
// as `await` or `yield`, the above short form is inconvenient for the
// caller because it would keep a temporary of type ArgumentV1 alive
// across the yield point. ArgumentV1 can't implement Send since it
// holds a type-erased arbitrary type.
//
// Thus in the not nicely ordered case, and in the yielding case, we
// emit the following instead:
//
// match (&$arg0, &$arg1, …) {
// args => [ArgumentV1::new(args.$i, …), ArgumentV1::new(args.$j, …), …]
// }
//
// for the sequence of indices $i, $j, … governed by fmt_arg_index_and_ty.
// This more verbose representation ensures that all arguments are
// evaluated a single time each, in the order written by the programmer,
// and that the surrounding future/generator (if any) is Send whenever
// possible.
let no_need_for_match =
nicely_ordered && !original_args.iter().skip(1).any(|e| may_contain_yield_point(e));
for (arg_index, arg_ty) in fmt_arg_index_and_ty {
let e = &mut original_args[arg_index];
let span = e.span;
let arg = if no_need_for_match {
let expansion_span = e.span.with_ctxt(self.macsp.ctxt());
// The indices are strictly ordered so e has not been taken yet.
self.ecx.expr_addr_of(expansion_span, P(e.take()))
} else {
let def_site = self.ecx.with_def_site_ctxt(span);
let args_tuple = self.ecx.expr_ident(def_site, Ident::new(sym::args, def_site));
let member = Ident::new(sym::integer(arg_index), def_site);
self.ecx.expr(def_site, ast::ExprKind::Field(args_tuple, member))
};
fmt_args.push(Context::format_arg(self.ecx, self.macsp, span, arg_ty, arg));
}
let args_array = self.ecx.expr_array(self.macsp, fmt_args);
let args_slice = self.ecx.expr_addr_of(
self.macsp,
if no_need_for_match {
args_array
} else {
// In the !no_need_for_match case, none of the exprs were moved
// away in the previous loop.
//
// This uses the arg span for `&arg` so that borrowck errors
// point to the specific expression passed to the macro (the
// span is otherwise unavailable in the MIR used by borrowck).
let heads = original_args
.into_iter()
.map(|e| self.ecx.expr_addr_of(e.span.with_ctxt(self.macsp.ctxt()), e))
.collect();
let pat = self.ecx.pat_ident(self.macsp, Ident::new(sym::args, self.macsp));
let arm = self.ecx.arm(self.macsp, pat, args_array);
let head = self.ecx.expr(self.macsp, ast::ExprKind::Tup(heads));
self.ecx.expr_match(self.macsp, head, vec![arm])
},
);
// Now create the fmt::Arguments struct with all our locals we created.
let (fn_name, fn_args) = if self.all_pieces_simple {
("new_v1", vec![pieces, args_slice])
} else {
// Build up the static array which will store our precompiled
// nonstandard placeholders, if there are any.
let fmt = self.ecx.expr_array_ref(self.macsp, self.pieces);
let path = self.ecx.std_path(&[sym::fmt, sym::UnsafeArg, sym::new]);
let unsafe_arg = self.ecx.expr_call_global(self.macsp, path, Vec::new());
let unsafe_expr = self.ecx.expr_block(P(ast::Block {
stmts: vec![self.ecx.stmt_expr(unsafe_arg)],
id: ast::DUMMY_NODE_ID,
rules: BlockCheckMode::Unsafe(UnsafeSource::CompilerGenerated),
span: self.macsp,
tokens: None,
could_be_bare_literal: false,
}));
("new_v1_formatted", vec![pieces, args_slice, fmt, unsafe_expr])
};
let path = self.ecx.std_path(&[sym::fmt, sym::Arguments, Symbol::intern(fn_name)]);
self.ecx.expr_call_global(self.macsp, path, fn_args)
}
fn format_arg(
ecx: &ExtCtxt<'_>,
macsp: Span,
mut sp: Span,
ty: &ArgumentType,
arg: P<ast::Expr>,
) -> P<ast::Expr> {
sp = ecx.with_def_site_ctxt(sp);
let trait_ = match *ty {
Placeholder(trait_) if trait_ == "<invalid>" => return DummyResult::raw_expr(sp, true),
Placeholder(trait_) => trait_,
Count => {
let path = ecx.std_path(&[sym::fmt, sym::ArgumentV1, sym::from_usize]);
return ecx.expr_call_global(macsp, path, vec![arg]);
}
};
let new_fn_name = match trait_ {
"Display" => "new_display",
"Debug" => "new_debug",
"LowerExp" => "new_lower_exp",
"UpperExp" => "new_upper_exp",
"Octal" => "new_octal",
"Pointer" => "new_pointer",
"Binary" => "new_binary",
"LowerHex" => "new_lower_hex",
"UpperHex" => "new_upper_hex",
_ => unreachable!(),
};
let path = ecx.std_path(&[sym::fmt, sym::ArgumentV1, Symbol::intern(new_fn_name)]);
ecx.expr_call_global(sp, path, vec![arg])
}
}
fn expand_format_args_impl<'cx>(
ecx: &'cx mut ExtCtxt<'_>,
mut sp: Span,
tts: TokenStream,
nl: bool,
) -> Box<dyn base::MacResult + 'cx> {
sp = ecx.with_def_site_ctxt(sp);
match parse_args(ecx, sp, tts) {
Ok((efmt, args, names)) => {
MacEager::expr(expand_preparsed_format_args(ecx, sp, efmt, args, names, nl))
}
Err(mut err) => {
err.emit();
DummyResult::any(sp)
}
}
}
pub fn expand_format_args<'cx>(
ecx: &'cx mut ExtCtxt<'_>,
sp: Span,
tts: TokenStream,
) -> Box<dyn base::MacResult + 'cx> {
expand_format_args_impl(ecx, sp, tts, false)
}
pub fn expand_format_args_nl<'cx>(
ecx: &'cx mut ExtCtxt<'_>,
sp: Span,
tts: TokenStream,
) -> Box<dyn base::MacResult + 'cx> {
expand_format_args_impl(ecx, sp, tts, true)
}
fn create_lints_for_named_arguments_used_positionally(cx: &mut Context<'_, '_>) {
for named_arg in &cx.unused_names_lint.positional_named_args {
let (position_sp_to_replace, position_sp_for_msg) = named_arg.get_positional_arg_spans(cx);
let msg = format!("named argument `{}` is not used by name", named_arg.replacement);
cx.ecx.buffered_early_lint.push(BufferedEarlyLint {
span: MultiSpan::from_span(named_arg.positional_named_arg_span),
msg: msg.clone(),
node_id: ast::CRATE_NODE_ID,
lint_id: LintId::of(&NAMED_ARGUMENTS_USED_POSITIONALLY),
diagnostic: BuiltinLintDiagnostics::NamedArgumentUsedPositionally {
position_sp_to_replace,
position_sp_for_msg,
named_arg_sp: named_arg.positional_named_arg_span,
named_arg_name: named_arg.replacement.to_string(),
is_formatting_arg: named_arg.ty != PositionalNamedArgType::Arg,
},
});
}
}
/// Take the various parts of `format_args!(efmt, args..., name=names...)`
/// and construct the appropriate formatting expression.
pub fn expand_preparsed_format_args(
ecx: &mut ExtCtxt<'_>,
sp: Span,
efmt: P<ast::Expr>,
args: Vec<FormatArg>,
names: FxHashMap<Symbol, (usize, Span)>,
append_newline: bool,
) -> P<ast::Expr> {
// NOTE: this verbose way of initializing `Vec<Vec<ArgumentType>>` is because
// `ArgumentType` does not derive `Clone`.
let arg_types: Vec<_> = (0..args.len()).map(|_| Vec::new()).collect();
let arg_unique_types: Vec<_> = (0..args.len()).map(|_| Vec::new()).collect();
let mut macsp = ecx.call_site();
macsp = ecx.with_def_site_ctxt(macsp);
let msg = "format argument must be a string literal";
let fmt_sp = efmt.span;
let efmt_kind_is_lit: bool = matches!(efmt.kind, ast::ExprKind::Lit(_));
let (fmt_str, fmt_style, fmt_span) = match expr_to_spanned_string(ecx, efmt, msg) {
Ok(mut fmt) if append_newline => {
fmt.0 = Symbol::intern(&format!("{}\n", fmt.0));
fmt
}
Ok(fmt) => fmt,
Err(err) => {
if let Some((mut err, suggested)) = err {
let sugg_fmt = match args.len() {
0 => "{}".to_string(),
_ => format!("{}{{}}", "{} ".repeat(args.len())),
};
if !suggested {
err.span_suggestion(
fmt_sp.shrink_to_lo(),
"you might be missing a string literal to format with",
format!("\"{}\", ", sugg_fmt),
Applicability::MaybeIncorrect,
);
}
err.emit();
}
return DummyResult::raw_expr(sp, true);
}
};
let str_style = match fmt_style {
ast::StrStyle::Cooked => None,
ast::StrStyle::Raw(raw) => Some(raw as usize),
};
let fmt_str = fmt_str.as_str(); // for the suggestions below
let fmt_snippet = ecx.source_map().span_to_snippet(fmt_sp).ok();
let mut parser = parse::Parser::new(
fmt_str,
str_style,
fmt_snippet,
append_newline,
parse::ParseMode::Format,
);
let mut unverified_pieces = Vec::new();
while let Some(piece) = parser.next() {
if !parser.errors.is_empty() {
break;
} else {
unverified_pieces.push(piece);
}
}
if !parser.errors.is_empty() {
let err = parser.errors.remove(0);
let sp = if efmt_kind_is_lit {
fmt_span.from_inner(InnerSpan::new(err.span.start, err.span.end))
} else {
// The format string could be another macro invocation, e.g.:
// format!(concat!("abc", "{}"), 4);
// However, `err.span` is an inner span relative to the *result* of
// the macro invocation, which is why we would get a nonsensical
// result calling `fmt_span.from_inner(err.span)` as above, and
// might even end up inside a multibyte character (issue #86085).
// Therefore, we conservatively report the error for the entire
// argument span here.
fmt_span
};
let mut e = ecx.struct_span_err(sp, &format!("invalid format string: {}", err.description));
e.span_label(sp, err.label + " in format string");
if let Some(note) = err.note {
e.note(&note);
}
if let Some((label, span)) = err.secondary_label {
if efmt_kind_is_lit {
e.span_label(fmt_span.from_inner(InnerSpan::new(span.start, span.end)), label);
}
}
if err.should_be_replaced_with_positional_argument {
let captured_arg_span =
fmt_span.from_inner(InnerSpan::new(err.span.start, err.span.end));
let positional_args = args.iter().filter(|arg| !arg.named).collect::<Vec<_>>();
if let Ok(arg) = ecx.source_map().span_to_snippet(captured_arg_span) {
let span = match positional_args.last() {
Some(arg) => arg.expr.span,
None => fmt_sp,
};
e.multipart_suggestion_verbose(
"consider using a positional formatting argument instead",
vec![
(captured_arg_span, positional_args.len().to_string()),
(span.shrink_to_hi(), format!(", {}", arg)),
],
Applicability::MachineApplicable,
);
}
}
e.emit();
return DummyResult::raw_expr(sp, true);
}
let arg_spans = parser
.arg_places
.iter()
.map(|span| fmt_span.from_inner(InnerSpan::new(span.start, span.end)))
.collect();
let named_pos: FxHashSet<usize> = names.values().cloned().map(|(i, _)| i).collect();
let mut cx = Context {
ecx,
args: args.into_iter().map(|arg| arg.expr).collect(),
num_captured_args: 0,
arg_types,
arg_unique_types,
names,
curarg: 0,
curpiece: 0,
arg_index_map: Vec::new(),
count_args: Vec::new(),
count_positions: FxHashMap::default(),
count_positions_count: 0,
count_args_index_offset: 0,
literal: String::new(),
pieces: Vec::with_capacity(unverified_pieces.len()),
str_pieces: Vec::with_capacity(unverified_pieces.len()),
all_pieces_simple: true,
macsp,
fmtsp: fmt_span,
invalid_refs: Vec::new(),
arg_spans,
arg_with_formatting: Vec::new(),
is_literal: parser.is_literal,
unused_names_lint: PositionalNamedArgsLint { positional_named_args: vec![] },
};
// This needs to happen *after* the Parser has consumed all pieces to create all the spans
let pieces = unverified_pieces
.into_iter()
.map(|mut piece| {
cx.verify_piece(&piece);
cx.resolve_name_inplace(&mut piece);
piece
})
.collect::<Vec<_>>();
let numbered_position_args = pieces.iter().any(|arg: &parse::Piece<'_>| match *arg {
parse::String(_) => false,
parse::NextArgument(arg) => matches!(arg.position, parse::Position::ArgumentIs(..)),
});
cx.build_index_map();
let mut arg_index_consumed = vec![0usize; cx.arg_index_map.len()];
for piece in pieces {
if let Some(piece) = cx.build_piece(&piece, &mut arg_index_consumed) {
let s = cx.build_literal_string();
cx.str_pieces.push(s);
cx.pieces.push(piece);
}
}
if !cx.literal.is_empty() {
let s = cx.build_literal_string();
cx.str_pieces.push(s);
}
if !cx.invalid_refs.is_empty() {
cx.report_invalid_references(numbered_position_args);
}
// Make sure that all arguments were used and all arguments have types.
let errs = cx
.arg_types
.iter()
.enumerate()
.filter(|(i, ty)| ty.is_empty() && !cx.count_positions.contains_key(&i))
.map(|(i, _)| {
let msg = if named_pos.contains(&i) {
// named argument
"named argument never used"
} else {
// positional argument
"argument never used"
};
(cx.args[i].span, msg)
})
.collect::<Vec<_>>();
let errs_len = errs.len();
if !errs.is_empty() {
let args_used = cx.arg_types.len() - errs_len;
let args_unused = errs_len;
let mut diag = {
if let [(sp, msg)] = &errs[..] {
let mut diag = cx.ecx.struct_span_err(*sp, *msg);
diag.span_label(*sp, *msg);
diag
} else {
let mut diag = cx.ecx.struct_span_err(
errs.iter().map(|&(sp, _)| sp).collect::<Vec<Span>>(),
"multiple unused formatting arguments",
);
diag.span_label(cx.fmtsp, "multiple missing formatting specifiers");
for (sp, msg) in errs {
diag.span_label(sp, msg);
}
diag
}
};
// Used to ensure we only report translations for *one* kind of foreign format.
let mut found_foreign = false;
// Decide if we want to look for foreign formatting directives.
if args_used < args_unused {
use super::format_foreign as foreign;
// The set of foreign substitutions we've explained. This prevents spamming the user
// with `%d should be written as {}` over and over again.
let mut explained = FxHashSet::default();
macro_rules! check_foreign {
($kind:ident) => {{
let mut show_doc_note = false;
let mut suggestions = vec![];
// account for `"` and account for raw strings `r#`
let padding = str_style.map(|i| i + 2).unwrap_or(1);
for sub in foreign::$kind::iter_subs(fmt_str, padding) {
let (trn, success) = match sub.translate() {
Ok(trn) => (trn, true),
Err(Some(msg)) => (msg, false),
// If it has no translation, don't call it out specifically.
_ => continue,
};
let pos = sub.position();
let sub = String::from(sub.as_str());
if explained.contains(&sub) {
continue;
}
explained.insert(sub.clone());
if !found_foreign {
found_foreign = true;
show_doc_note = true;
}
if let Some(inner_sp) = pos {
let sp = fmt_sp.from_inner(inner_sp);
if success {
suggestions.push((sp, trn));
} else {
diag.span_note(
sp,
&format!("format specifiers use curly braces, and {}", trn),
);
}
} else {
if success {
diag.help(&format!("`{}` should be written as `{}`", sub, trn));
} else {
diag.note(&format!(
"`{}` should use curly braces, and {}",
sub, trn
));
}
}
}
if show_doc_note {
diag.note(concat!(
stringify!($kind),
" formatting not supported; see the documentation for `std::fmt`",
));
}
if suggestions.len() > 0 {
diag.multipart_suggestion(
"format specifiers use curly braces",
suggestions,
Applicability::MachineApplicable,
);
}
}};
}
check_foreign!(printf);
if !found_foreign {
check_foreign!(shell);
}
}
if !found_foreign && errs_len == 1 {
diag.span_label(cx.fmtsp, "formatting specifier missing");
}
diag.emit();
} else if cx.invalid_refs.is_empty() && cx.ecx.sess.err_count() == 0 {
// Only check for unused named argument names if there are no other errors to avoid causing
// too much noise in output errors, such as when a named argument is entirely unused.
create_lints_for_named_arguments_used_positionally(&mut cx);
}
cx.into_expr()
}
fn may_contain_yield_point(e: &ast::Expr) -> bool {
struct MayContainYieldPoint(bool);
impl Visitor<'_> for MayContainYieldPoint {
fn visit_expr(&mut self, e: &ast::Expr) {
if let ast::ExprKind::Await(_) | ast::ExprKind::Yield(_) = e.kind {
self.0 = true;
} else {
visit::walk_expr(self, e);
}
}
fn visit_mac_call(&mut self, _: &ast::MacCall) {
self.0 = true;
}
fn visit_attribute(&mut self, _: &ast::Attribute) {
// Conservatively assume this may be a proc macro attribute in
// expression position.
self.0 = true;
}
fn visit_item(&mut self, _: &ast::Item) {
// Do not recurse into nested items.
}
}
let mut visitor = MayContainYieldPoint(false);
visitor.visit_expr(e);
visitor.0
}