blob: fc2e6652a3d72267811bf589cec5aa9fd18df404 [file] [log] [blame]
use rustc_hir::def::DefKind;
use rustc_middle::mir;
use rustc_middle::ty::{self, Ty, TyCtxt};
use std::borrow::Borrow;
use std::collections::hash_map::Entry;
use std::hash::Hash;
use rustc_data_structures::fx::FxHashMap;
use std::fmt;
use rustc_ast::Mutability;
use rustc_hir::def_id::DefId;
use rustc_middle::mir::AssertMessage;
use rustc_session::Limit;
use rustc_span::symbol::{sym, Symbol};
use rustc_target::abi::{Align, Size};
use rustc_target::spec::abi::Abi as CallAbi;
use crate::interpret::{
self, compile_time_machine, AllocId, ConstAllocation, Frame, ImmTy, InterpCx, InterpResult,
OpTy, PlaceTy, Pointer, Scalar, StackPopUnwind,
};
use super::error::*;
impl<'mir, 'tcx> InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>> {
/// "Intercept" a function call to a panic-related function
/// because we have something special to do for it.
/// If this returns successfully (`Ok`), the function should just be evaluated normally.
fn hook_special_const_fn(
&mut self,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx>],
) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
// All `#[rustc_do_not_const_check]` functions should be hooked here.
let def_id = instance.def_id();
if Some(def_id) == self.tcx.lang_items().const_eval_select() {
// redirect to const_eval_select_ct
if let Some(const_eval_select) = self.tcx.lang_items().const_eval_select_ct() {
return Ok(Some(
ty::Instance::resolve(
*self.tcx,
ty::ParamEnv::reveal_all(),
const_eval_select,
instance.substs,
)
.unwrap()
.unwrap(),
));
}
} else if Some(def_id) == self.tcx.lang_items().panic_display()
|| Some(def_id) == self.tcx.lang_items().begin_panic_fn()
{
// &str or &&str
assert!(args.len() == 1);
let mut msg_place = self.deref_operand(&args[0])?;
while msg_place.layout.ty.is_ref() {
msg_place = self.deref_operand(&msg_place.into())?;
}
let msg = Symbol::intern(self.read_str(&msg_place)?);
let span = self.find_closest_untracked_caller_location();
let (file, line, col) = self.location_triple_for_span(span);
return Err(ConstEvalErrKind::Panic { msg, file, line, col }.into());
} else if Some(def_id) == self.tcx.lang_items().panic_fmt() {
// For panic_fmt, call const_panic_fmt instead.
if let Some(const_panic_fmt) = self.tcx.lang_items().const_panic_fmt() {
return Ok(Some(
ty::Instance::resolve(
*self.tcx,
ty::ParamEnv::reveal_all(),
const_panic_fmt,
self.tcx.intern_substs(&[]),
)
.unwrap()
.unwrap(),
));
}
}
Ok(None)
}
}
/// Extra machine state for CTFE, and the Machine instance
pub struct CompileTimeInterpreter<'mir, 'tcx> {
/// For now, the number of terminators that can be evaluated before we throw a resource
/// exhaustion error.
///
/// Setting this to `0` disables the limit and allows the interpreter to run forever.
pub steps_remaining: usize,
/// The virtual call stack.
pub(crate) stack: Vec<Frame<'mir, 'tcx, AllocId, ()>>,
/// We need to make sure consts never point to anything mutable, even recursively. That is
/// relied on for pattern matching on consts with references.
/// To achieve this, two pieces have to work together:
/// * Interning makes everything outside of statics immutable.
/// * Pointers to allocations inside of statics can never leak outside, to a non-static global.
/// This boolean here controls the second part.
pub(super) can_access_statics: bool,
}
impl<'mir, 'tcx> CompileTimeInterpreter<'mir, 'tcx> {
pub(crate) fn new(const_eval_limit: Limit, can_access_statics: bool) -> Self {
CompileTimeInterpreter {
steps_remaining: const_eval_limit.0,
stack: Vec::new(),
can_access_statics,
}
}
}
impl<K: Hash + Eq, V> interpret::AllocMap<K, V> for FxHashMap<K, V> {
#[inline(always)]
fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
where
K: Borrow<Q>,
{
FxHashMap::contains_key(self, k)
}
#[inline(always)]
fn insert(&mut self, k: K, v: V) -> Option<V> {
FxHashMap::insert(self, k, v)
}
#[inline(always)]
fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
where
K: Borrow<Q>,
{
FxHashMap::remove(self, k)
}
#[inline(always)]
fn filter_map_collect<T>(&self, mut f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T> {
self.iter().filter_map(move |(k, v)| f(k, &*v)).collect()
}
#[inline(always)]
fn get_or<E>(&self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&V, E> {
match self.get(&k) {
Some(v) => Ok(v),
None => {
vacant()?;
bug!("The CTFE machine shouldn't ever need to extend the alloc_map when reading")
}
}
}
#[inline(always)]
fn get_mut_or<E>(&mut self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&mut V, E> {
match self.entry(k) {
Entry::Occupied(e) => Ok(e.into_mut()),
Entry::Vacant(e) => {
let v = vacant()?;
Ok(e.insert(v))
}
}
}
}
pub(crate) type CompileTimeEvalContext<'mir, 'tcx> =
InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>;
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum MemoryKind {
Heap,
}
impl fmt::Display for MemoryKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
MemoryKind::Heap => write!(f, "heap allocation"),
}
}
}
impl interpret::MayLeak for MemoryKind {
#[inline(always)]
fn may_leak(self) -> bool {
match self {
MemoryKind::Heap => false,
}
}
}
impl interpret::MayLeak for ! {
#[inline(always)]
fn may_leak(self) -> bool {
// `self` is uninhabited
self
}
}
impl<'mir, 'tcx: 'mir> CompileTimeEvalContext<'mir, 'tcx> {
fn guaranteed_eq(&mut self, a: Scalar, b: Scalar) -> InterpResult<'tcx, bool> {
Ok(match (a, b) {
// Comparisons between integers are always known.
(Scalar::Int { .. }, Scalar::Int { .. }) => a == b,
// Equality with integers can never be known for sure.
(Scalar::Int { .. }, Scalar::Ptr(..)) | (Scalar::Ptr(..), Scalar::Int { .. }) => false,
// FIXME: return `true` for when both sides are the same pointer, *except* that
// some things (like functions and vtables) do not have stable addresses
// so we need to be careful around them (see e.g. #73722).
(Scalar::Ptr(..), Scalar::Ptr(..)) => false,
})
}
fn guaranteed_ne(&mut self, a: Scalar, b: Scalar) -> InterpResult<'tcx, bool> {
Ok(match (a, b) {
// Comparisons between integers are always known.
(Scalar::Int(_), Scalar::Int(_)) => a != b,
// Comparisons of abstract pointers with null pointers are known if the pointer
// is in bounds, because if they are in bounds, the pointer can't be null.
// Inequality with integers other than null can never be known for sure.
(Scalar::Int(int), ptr @ Scalar::Ptr(..))
| (ptr @ Scalar::Ptr(..), Scalar::Int(int)) => {
int.is_null() && !self.scalar_may_be_null(ptr)?
}
// FIXME: return `true` for at least some comparisons where we can reliably
// determine the result of runtime inequality tests at compile-time.
// Examples include comparison of addresses in different static items.
(Scalar::Ptr(..), Scalar::Ptr(..)) => false,
})
}
}
impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for CompileTimeInterpreter<'mir, 'tcx> {
compile_time_machine!(<'mir, 'tcx>);
type MemoryKind = MemoryKind;
const PANIC_ON_ALLOC_FAIL: bool = false; // will be raised as a proper error
fn load_mir(
ecx: &InterpCx<'mir, 'tcx, Self>,
instance: ty::InstanceDef<'tcx>,
) -> InterpResult<'tcx, &'tcx mir::Body<'tcx>> {
match instance {
ty::InstanceDef::Item(def) => {
if ecx.tcx.is_ctfe_mir_available(def.did) {
Ok(ecx.tcx.mir_for_ctfe_opt_const_arg(def))
} else if ecx.tcx.def_kind(def.did) == DefKind::AssocConst {
let guar = ecx.tcx.sess.delay_span_bug(
rustc_span::DUMMY_SP,
"This is likely a const item that is missing from its impl",
);
throw_inval!(AlreadyReported(guar));
} else {
let path = ecx.tcx.def_path_str(def.did);
Err(ConstEvalErrKind::NeedsRfc(format!("calling extern function `{}`", path))
.into())
}
}
_ => Ok(ecx.tcx.instance_mir(instance)),
}
}
fn find_mir_or_eval_fn(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
instance: ty::Instance<'tcx>,
_abi: CallAbi,
args: &[OpTy<'tcx>],
_dest: &PlaceTy<'tcx>,
_ret: Option<mir::BasicBlock>,
_unwind: StackPopUnwind, // unwinding is not supported in consts
) -> InterpResult<'tcx, Option<(&'mir mir::Body<'tcx>, ty::Instance<'tcx>)>> {
debug!("find_mir_or_eval_fn: {:?}", instance);
// Only check non-glue functions
if let ty::InstanceDef::Item(def) = instance.def {
// Execution might have wandered off into other crates, so we cannot do a stability-
// sensitive check here. But we can at least rule out functions that are not const
// at all.
if !ecx.tcx.is_const_fn_raw(def.did) {
// allow calling functions inside a trait marked with #[const_trait].
if !ecx.tcx.is_const_default_method(def.did) {
// We certainly do *not* want to actually call the fn
// though, so be sure we return here.
throw_unsup_format!("calling non-const function `{}`", instance)
}
}
if let Some(new_instance) = ecx.hook_special_const_fn(instance, args)? {
// We call another const fn instead.
// However, we return the *original* instance to make backtraces work out
// (and we hope this does not confuse the FnAbi checks too much).
return Ok(Self::find_mir_or_eval_fn(
ecx,
new_instance,
_abi,
args,
_dest,
_ret,
_unwind,
)?
.map(|(body, _instance)| (body, instance)));
}
}
// This is a const fn. Call it.
Ok(Some((ecx.load_mir(instance.def, None)?, instance)))
}
fn call_intrinsic(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx>],
dest: &PlaceTy<'tcx, Self::Provenance>,
target: Option<mir::BasicBlock>,
_unwind: StackPopUnwind,
) -> InterpResult<'tcx> {
// Shared intrinsics.
if ecx.emulate_intrinsic(instance, args, dest, target)? {
return Ok(());
}
let intrinsic_name = ecx.tcx.item_name(instance.def_id());
// CTFE-specific intrinsics.
let Some(ret) = target else {
return Err(ConstEvalErrKind::NeedsRfc(format!(
"calling intrinsic `{}`",
intrinsic_name
))
.into());
};
match intrinsic_name {
sym::ptr_guaranteed_eq | sym::ptr_guaranteed_ne => {
let a = ecx.read_immediate(&args[0])?.to_scalar()?;
let b = ecx.read_immediate(&args[1])?.to_scalar()?;
let cmp = if intrinsic_name == sym::ptr_guaranteed_eq {
ecx.guaranteed_eq(a, b)?
} else {
ecx.guaranteed_ne(a, b)?
};
ecx.write_scalar(Scalar::from_bool(cmp), dest)?;
}
sym::const_allocate => {
let size = ecx.read_scalar(&args[0])?.to_machine_usize(ecx)?;
let align = ecx.read_scalar(&args[1])?.to_machine_usize(ecx)?;
let align = match Align::from_bytes(align) {
Ok(a) => a,
Err(err) => throw_ub_format!("align has to be a power of 2, {}", err),
};
let ptr = ecx.allocate_ptr(
Size::from_bytes(size as u64),
align,
interpret::MemoryKind::Machine(MemoryKind::Heap),
)?;
ecx.write_pointer(ptr, dest)?;
}
sym::const_deallocate => {
let ptr = ecx.read_pointer(&args[0])?;
let size = ecx.read_scalar(&args[1])?.to_machine_usize(ecx)?;
let align = ecx.read_scalar(&args[2])?.to_machine_usize(ecx)?;
let size = Size::from_bytes(size);
let align = match Align::from_bytes(align) {
Ok(a) => a,
Err(err) => throw_ub_format!("align has to be a power of 2, {}", err),
};
// If an allocation is created in an another const,
// we don't deallocate it.
let (alloc_id, _, _) = ecx.ptr_get_alloc_id(ptr)?;
let is_allocated_in_another_const = matches!(
ecx.tcx.try_get_global_alloc(alloc_id),
Some(interpret::GlobalAlloc::Memory(_))
);
if !is_allocated_in_another_const {
ecx.deallocate_ptr(
ptr,
Some((size, align)),
interpret::MemoryKind::Machine(MemoryKind::Heap),
)?;
}
}
_ => {
return Err(ConstEvalErrKind::NeedsRfc(format!(
"calling intrinsic `{}`",
intrinsic_name
))
.into());
}
}
ecx.go_to_block(ret);
Ok(())
}
fn assert_panic(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
msg: &AssertMessage<'tcx>,
_unwind: Option<mir::BasicBlock>,
) -> InterpResult<'tcx> {
use rustc_middle::mir::AssertKind::*;
// Convert `AssertKind<Operand>` to `AssertKind<Scalar>`.
let eval_to_int =
|op| ecx.read_immediate(&ecx.eval_operand(op, None)?).map(|x| x.to_const_int());
let err = match msg {
BoundsCheck { ref len, ref index } => {
let len = eval_to_int(len)?;
let index = eval_to_int(index)?;
BoundsCheck { len, index }
}
Overflow(op, l, r) => Overflow(*op, eval_to_int(l)?, eval_to_int(r)?),
OverflowNeg(op) => OverflowNeg(eval_to_int(op)?),
DivisionByZero(op) => DivisionByZero(eval_to_int(op)?),
RemainderByZero(op) => RemainderByZero(eval_to_int(op)?),
ResumedAfterReturn(generator_kind) => ResumedAfterReturn(*generator_kind),
ResumedAfterPanic(generator_kind) => ResumedAfterPanic(*generator_kind),
};
Err(ConstEvalErrKind::AssertFailure(err).into())
}
fn abort(_ecx: &mut InterpCx<'mir, 'tcx, Self>, msg: String) -> InterpResult<'tcx, !> {
Err(ConstEvalErrKind::Abort(msg).into())
}
fn binary_ptr_op(
_ecx: &InterpCx<'mir, 'tcx, Self>,
_bin_op: mir::BinOp,
_left: &ImmTy<'tcx>,
_right: &ImmTy<'tcx>,
) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> {
Err(ConstEvalErrKind::NeedsRfc("pointer arithmetic or comparison".to_string()).into())
}
fn before_terminator(ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
// The step limit has already been hit in a previous call to `before_terminator`.
if ecx.machine.steps_remaining == 0 {
return Ok(());
}
ecx.machine.steps_remaining -= 1;
if ecx.machine.steps_remaining == 0 {
throw_exhaust!(StepLimitReached)
}
Ok(())
}
#[inline(always)]
fn expose_ptr(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_ptr: Pointer<AllocId>,
) -> InterpResult<'tcx> {
Err(ConstEvalErrKind::NeedsRfc("exposing pointers".to_string()).into())
}
#[inline(always)]
fn init_frame_extra(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
frame: Frame<'mir, 'tcx>,
) -> InterpResult<'tcx, Frame<'mir, 'tcx>> {
// Enforce stack size limit. Add 1 because this is run before the new frame is pushed.
if !ecx.recursion_limit.value_within_limit(ecx.stack().len() + 1) {
throw_exhaust!(StackFrameLimitReached)
} else {
Ok(frame)
}
}
#[inline(always)]
fn stack<'a>(
ecx: &'a InterpCx<'mir, 'tcx, Self>,
) -> &'a [Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>] {
&ecx.machine.stack
}
#[inline(always)]
fn stack_mut<'a>(
ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
) -> &'a mut Vec<Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>> {
&mut ecx.machine.stack
}
fn before_access_global(
_tcx: TyCtxt<'tcx>,
machine: &Self,
alloc_id: AllocId,
alloc: ConstAllocation<'tcx>,
static_def_id: Option<DefId>,
is_write: bool,
) -> InterpResult<'tcx> {
let alloc = alloc.inner();
if is_write {
// Write access. These are never allowed, but we give a targeted error message.
if alloc.mutability == Mutability::Not {
Err(err_ub!(WriteToReadOnly(alloc_id)).into())
} else {
Err(ConstEvalErrKind::ModifiedGlobal.into())
}
} else {
// Read access. These are usually allowed, with some exceptions.
if machine.can_access_statics {
// Machine configuration allows us read from anything (e.g., `static` initializer).
Ok(())
} else if static_def_id.is_some() {
// Machine configuration does not allow us to read statics
// (e.g., `const` initializer).
// See const_eval::machine::MemoryExtra::can_access_statics for why
// this check is so important: if we could read statics, we could read pointers
// to mutable allocations *inside* statics. These allocations are not themselves
// statics, so pointers to them can get around the check in `validity.rs`.
Err(ConstEvalErrKind::ConstAccessesStatic.into())
} else {
// Immutable global, this read is fine.
// But make sure we never accept a read from something mutable, that would be
// unsound. The reason is that as the content of this allocation may be different
// now and at run-time, so if we permit reading now we might return the wrong value.
assert_eq!(alloc.mutability, Mutability::Not);
Ok(())
}
}
}
}
// Please do not add any code below the above `Machine` trait impl. I (oli-obk) plan more cleanups
// so we can end up having a file with just that impl, but for now, let's keep the impl discoverable
// at the bottom of this file.