blob: 351d62feed949270ad9b92ecec25e49f9ea74bba [file] [log] [blame]
use super::*;
extern crate test;
use std::hint::black_box;
use test::Bencher;
#[test]
fn test_new_filled() {
for i in 0..128 {
let idx_buf = BitSet::new_filled(i);
let elems: Vec<usize> = idx_buf.iter().collect();
let expected: Vec<usize> = (0..i).collect();
assert_eq!(elems, expected);
}
}
#[test]
fn bitset_iter_works() {
let mut bitset: BitSet<usize> = BitSet::new_empty(100);
bitset.insert(1);
bitset.insert(10);
bitset.insert(19);
bitset.insert(62);
bitset.insert(63);
bitset.insert(64);
bitset.insert(65);
bitset.insert(66);
bitset.insert(99);
assert_eq!(bitset.iter().collect::<Vec<_>>(), [1, 10, 19, 62, 63, 64, 65, 66, 99]);
}
#[test]
fn bitset_iter_works_2() {
let mut bitset: BitSet<usize> = BitSet::new_empty(320);
bitset.insert(0);
bitset.insert(127);
bitset.insert(191);
bitset.insert(255);
bitset.insert(319);
assert_eq!(bitset.iter().collect::<Vec<_>>(), [0, 127, 191, 255, 319]);
}
#[test]
fn bitset_clone_from() {
let mut a: BitSet<usize> = BitSet::new_empty(10);
a.insert(4);
a.insert(7);
a.insert(9);
let mut b = BitSet::new_empty(2);
b.clone_from(&a);
assert_eq!(b.domain_size(), 10);
assert_eq!(b.iter().collect::<Vec<_>>(), [4, 7, 9]);
b.clone_from(&BitSet::new_empty(40));
assert_eq!(b.domain_size(), 40);
assert_eq!(b.iter().collect::<Vec<_>>(), []);
}
#[test]
fn union_two_sets() {
let mut set1: BitSet<usize> = BitSet::new_empty(65);
let mut set2: BitSet<usize> = BitSet::new_empty(65);
assert!(set1.insert(3));
assert!(!set1.insert(3));
assert!(set2.insert(5));
assert!(set2.insert(64));
assert!(set1.union(&set2));
assert!(!set1.union(&set2));
assert!(set1.contains(3));
assert!(!set1.contains(4));
assert!(set1.contains(5));
assert!(!set1.contains(63));
assert!(set1.contains(64));
}
#[test]
fn hybrid_bitset() {
let mut sparse038: HybridBitSet<usize> = HybridBitSet::new_empty(256);
assert!(sparse038.is_empty());
assert!(sparse038.insert(0));
assert!(sparse038.insert(1));
assert!(sparse038.insert(8));
assert!(sparse038.insert(3));
assert!(!sparse038.insert(3));
assert!(sparse038.remove(1));
assert!(!sparse038.is_empty());
assert_eq!(sparse038.iter().collect::<Vec<_>>(), [0, 3, 8]);
for i in 0..256 {
if i == 0 || i == 3 || i == 8 {
assert!(sparse038.contains(i));
} else {
assert!(!sparse038.contains(i));
}
}
let mut sparse01358 = sparse038.clone();
assert!(sparse01358.insert(1));
assert!(sparse01358.insert(5));
assert_eq!(sparse01358.iter().collect::<Vec<_>>(), [0, 1, 3, 5, 8]);
let mut dense10 = HybridBitSet::new_empty(256);
for i in 0..10 {
assert!(dense10.insert(i));
}
assert!(!dense10.is_empty());
assert_eq!(dense10.iter().collect::<Vec<_>>(), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
let mut dense256 = HybridBitSet::new_empty(256);
assert!(dense256.is_empty());
dense256.insert_all();
assert!(!dense256.is_empty());
for i in 0..256 {
assert!(dense256.contains(i));
}
assert!(sparse038.superset(&sparse038)); // sparse + sparse (self)
assert!(sparse01358.superset(&sparse038)); // sparse + sparse
assert!(dense10.superset(&sparse038)); // dense + sparse
assert!(dense10.superset(&dense10)); // dense + dense (self)
assert!(dense256.superset(&dense10)); // dense + dense
let mut hybrid = sparse038.clone();
assert!(!sparse01358.union(&hybrid)); // no change
assert!(hybrid.union(&sparse01358));
assert!(hybrid.superset(&sparse01358) && sparse01358.superset(&hybrid));
assert!(!dense256.union(&dense10));
// dense / sparse where dense superset sparse
assert!(!dense10.clone().union(&sparse01358));
assert!(sparse01358.clone().union(&dense10));
assert!(dense10.clone().intersect(&sparse01358));
assert!(!sparse01358.clone().intersect(&dense10));
assert!(dense10.clone().subtract(&sparse01358));
assert!(sparse01358.clone().subtract(&dense10));
// dense / sparse where sparse superset dense
let dense038 = sparse038.to_dense();
assert!(!sparse01358.clone().union(&dense038));
assert!(dense038.clone().union(&sparse01358));
assert!(sparse01358.clone().intersect(&dense038));
assert!(!dense038.clone().intersect(&sparse01358));
assert!(sparse01358.clone().subtract(&dense038));
assert!(dense038.clone().subtract(&sparse01358));
let mut dense = dense10.clone();
assert!(dense.union(&dense256));
assert!(dense.superset(&dense256) && dense256.superset(&dense));
assert!(hybrid.union(&dense256));
assert!(hybrid.superset(&dense256) && dense256.superset(&hybrid));
assert!(!dense10.clone().intersect(&dense256));
assert!(dense256.clone().intersect(&dense10));
assert!(dense10.clone().subtract(&dense256));
assert!(dense256.clone().subtract(&dense10));
assert_eq!(dense256.iter().count(), 256);
let mut dense0 = dense256;
for i in 0..256 {
assert!(dense0.remove(i));
}
assert!(!dense0.remove(0));
assert!(dense0.is_empty());
}
#[test]
fn chunked_bitset() {
let mut b0 = ChunkedBitSet::<usize>::new_empty(0);
let b0b = b0.clone();
assert_eq!(b0, ChunkedBitSet { domain_size: 0, chunks: Box::new([]), marker: PhantomData });
// There are no valid insert/remove/contains operations on a 0-domain
// bitset, but we can test `union`.
b0.assert_valid();
assert!(!b0.union(&b0b));
assert_eq!(b0.chunks(), vec![]);
assert_eq!(b0.count(), 0);
b0.assert_valid();
//-----------------------------------------------------------------------
let mut b1 = ChunkedBitSet::<usize>::new_empty(1);
assert_eq!(
b1,
ChunkedBitSet { domain_size: 1, chunks: Box::new([Zeros(1)]), marker: PhantomData }
);
b1.assert_valid();
assert!(!b1.contains(0));
assert_eq!(b1.count(), 0);
assert!(b1.insert(0));
assert!(b1.contains(0));
assert_eq!(b1.count(), 1);
assert_eq!(b1.chunks(), [Ones(1)]);
assert!(!b1.insert(0));
assert!(b1.remove(0));
assert!(!b1.contains(0));
assert_eq!(b1.count(), 0);
assert_eq!(b1.chunks(), [Zeros(1)]);
b1.assert_valid();
//-----------------------------------------------------------------------
let mut b100 = ChunkedBitSet::<usize>::new_filled(100);
assert_eq!(
b100,
ChunkedBitSet { domain_size: 100, chunks: Box::new([Ones(100)]), marker: PhantomData }
);
b100.assert_valid();
for i in 0..100 {
assert!(b100.contains(i));
}
assert_eq!(b100.count(), 100);
assert!(b100.remove(3));
assert!(b100.insert(3));
assert_eq!(b100.chunks(), vec![Ones(100)]);
assert!(
b100.remove(20) && b100.remove(30) && b100.remove(40) && b100.remove(99) && b100.insert(30)
);
assert_eq!(b100.count(), 97);
assert!(!b100.contains(20) && b100.contains(30) && !b100.contains(99) && b100.contains(50));
assert_eq!(
b100.chunks(),
vec![Mixed(
100,
97,
#[rustfmt::skip]
Rc::new([
0b11111111_11111111_11111110_11111111_11111111_11101111_11111111_11111111,
0b00000000_00000000_00000000_00000111_11111111_11111111_11111111_11111111,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
])
)],
);
b100.assert_valid();
let mut num_removed = 0;
for i in 0..100 {
if b100.remove(i) {
num_removed += 1;
}
}
assert_eq!(num_removed, 97);
assert_eq!(b100.chunks(), vec![Zeros(100)]);
b100.assert_valid();
//-----------------------------------------------------------------------
let mut b2548 = ChunkedBitSet::<usize>::new_empty(2548);
assert_eq!(
b2548,
ChunkedBitSet {
domain_size: 2548,
chunks: Box::new([Zeros(2048), Zeros(500)]),
marker: PhantomData,
}
);
b2548.assert_valid();
b2548.insert(14);
b2548.remove(14);
assert_eq!(b2548.chunks(), vec![Zeros(2048), Zeros(500)]);
b2548.insert_all();
for i in 0..2548 {
assert!(b2548.contains(i));
}
assert_eq!(b2548.count(), 2548);
assert_eq!(b2548.chunks(), vec![Ones(2048), Ones(500)]);
b2548.assert_valid();
//-----------------------------------------------------------------------
let mut b4096 = ChunkedBitSet::<usize>::new_empty(4096);
assert_eq!(
b4096,
ChunkedBitSet {
domain_size: 4096,
chunks: Box::new([Zeros(2048), Zeros(2048)]),
marker: PhantomData,
}
);
b4096.assert_valid();
for i in 0..4096 {
assert!(!b4096.contains(i));
}
assert!(b4096.insert(0) && b4096.insert(4095) && !b4096.insert(4095));
assert!(
b4096.contains(0) && !b4096.contains(2047) && !b4096.contains(2048) && b4096.contains(4095)
);
assert_eq!(
b4096.chunks(),
#[rustfmt::skip]
vec![
Mixed(2048, 1, Rc::new([
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
])),
Mixed(2048, 1, Rc::new([
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x8000_0000_0000_0000
])),
],
);
assert_eq!(b4096.count(), 2);
b4096.assert_valid();
//-----------------------------------------------------------------------
let mut b10000 = ChunkedBitSet::<usize>::new_empty(10000);
assert_eq!(
b10000,
ChunkedBitSet {
domain_size: 10000,
chunks: Box::new([Zeros(2048), Zeros(2048), Zeros(2048), Zeros(2048), Zeros(1808),]),
marker: PhantomData,
}
);
b10000.assert_valid();
assert!(b10000.insert(3000) && b10000.insert(5000));
assert_eq!(
b10000.chunks(),
#[rustfmt::skip]
vec![
Zeros(2048),
Mixed(2048, 1, Rc::new([
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x0100_0000_0000_0000, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
])),
Mixed(2048, 1, Rc::new([
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x0100, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
])),
Zeros(2048),
Zeros(1808),
],
);
let mut b10000b = ChunkedBitSet::<usize>::new_empty(10000);
b10000b.clone_from(&b10000);
assert_eq!(b10000, b10000b);
for i in 6000..7000 {
b10000b.insert(i);
}
assert_eq!(b10000b.count(), 1002);
b10000b.assert_valid();
b10000b.clone_from(&b10000);
assert_eq!(b10000b.count(), 2);
for i in 2000..8000 {
b10000b.insert(i);
}
b10000.union(&b10000b);
assert_eq!(b10000.count(), 6000);
b10000.union(&b10000b);
assert_eq!(b10000.count(), 6000);
b10000.assert_valid();
b10000b.assert_valid();
}
fn with_elements_chunked(elements: &[usize], domain_size: usize) -> ChunkedBitSet<usize> {
let mut s = ChunkedBitSet::new_empty(domain_size);
for &e in elements {
assert!(s.insert(e));
}
s
}
fn with_elements_standard(elements: &[usize], domain_size: usize) -> BitSet<usize> {
let mut s = BitSet::new_empty(domain_size);
for &e in elements {
assert!(s.insert(e));
}
s
}
#[test]
fn chunked_bitset_into_bitset_operations() {
let a = vec![1, 5, 7, 11, 15, 2000, 3000];
let b = vec![3, 4, 11, 3000, 4000];
let aub = vec![1, 3, 4, 5, 7, 11, 15, 2000, 3000, 4000];
let aib = vec![11, 3000];
let b = with_elements_chunked(&b, 9876);
let mut union = with_elements_standard(&a, 9876);
assert!(union.union(&b));
assert!(!union.union(&b));
assert!(union.iter().eq(aub.iter().copied()));
let mut intersection = with_elements_standard(&a, 9876);
assert!(intersection.intersect(&b));
assert!(!intersection.intersect(&b));
assert!(intersection.iter().eq(aib.iter().copied()));
}
#[test]
fn chunked_bitset_iter() {
fn check_iter(bit: &ChunkedBitSet<usize>, vec: &Vec<usize>) {
// Test collecting via both `.next()` and `.fold()` calls, to make sure both are correct
let mut collect_next = Vec::new();
let mut bit_iter = bit.iter();
while let Some(item) = bit_iter.next() {
collect_next.push(item);
}
assert_eq!(vec, &collect_next);
let collect_fold = bit.iter().fold(Vec::new(), |mut v, item| {
v.push(item);
v
});
assert_eq!(vec, &collect_fold);
}
// Empty
let vec: Vec<usize> = Vec::new();
let bit = with_elements_chunked(&vec, 9000);
check_iter(&bit, &vec);
// Filled
let n = 10000;
let vec: Vec<usize> = (0..n).collect();
let bit = with_elements_chunked(&vec, n);
check_iter(&bit, &vec);
// Filled with trailing zeros
let n = 10000;
let vec: Vec<usize> = (0..n).collect();
let bit = with_elements_chunked(&vec, 2 * n);
check_iter(&bit, &vec);
// Mixed
let n = 12345;
let vec: Vec<usize> = vec![0, 1, 2, 2010, 2047, 2099, 6000, 6002, 6004];
let bit = with_elements_chunked(&vec, n);
check_iter(&bit, &vec);
}
#[test]
fn grow() {
let mut set: GrowableBitSet<usize> = GrowableBitSet::with_capacity(65);
for index in 0..65 {
assert!(set.insert(index));
assert!(!set.insert(index));
}
set.ensure(128);
// Check if the bits set before growing are still set
for index in 0..65 {
assert!(set.contains(index));
}
// Check if the new bits are all un-set
for index in 65..128 {
assert!(!set.contains(index));
}
// Check that we can set all new bits without running out of bounds
for index in 65..128 {
assert!(set.insert(index));
assert!(!set.insert(index));
}
}
#[test]
fn matrix_intersection() {
let mut matrix: BitMatrix<usize, usize> = BitMatrix::new(200, 200);
// (*) Elements reachable from both 2 and 65.
matrix.insert(2, 3);
matrix.insert(2, 6);
matrix.insert(2, 10); // (*)
matrix.insert(2, 64); // (*)
matrix.insert(2, 65);
matrix.insert(2, 130);
matrix.insert(2, 160); // (*)
matrix.insert(64, 133);
matrix.insert(65, 2);
matrix.insert(65, 8);
matrix.insert(65, 10); // (*)
matrix.insert(65, 64); // (*)
matrix.insert(65, 68);
matrix.insert(65, 133);
matrix.insert(65, 160); // (*)
let intersection = matrix.intersect_rows(2, 64);
assert!(intersection.is_empty());
let intersection = matrix.intersect_rows(2, 65);
assert_eq!(intersection, &[10, 64, 160]);
}
#[test]
fn matrix_iter() {
let mut matrix: BitMatrix<usize, usize> = BitMatrix::new(64, 100);
matrix.insert(3, 22);
matrix.insert(3, 75);
matrix.insert(2, 99);
matrix.insert(4, 0);
matrix.union_rows(3, 5);
matrix.insert_all_into_row(6);
let expected = [99];
let mut iter = expected.iter();
for i in matrix.iter(2) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [22, 75];
let mut iter = expected.iter();
assert_eq!(matrix.count(3), expected.len());
for i in matrix.iter(3) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [0];
let mut iter = expected.iter();
assert_eq!(matrix.count(4), expected.len());
for i in matrix.iter(4) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [22, 75];
let mut iter = expected.iter();
assert_eq!(matrix.count(5), expected.len());
for i in matrix.iter(5) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
assert_eq!(matrix.count(6), 100);
let mut count = 0;
for (idx, i) in matrix.iter(6).enumerate() {
assert_eq!(idx, i);
count += 1;
}
assert_eq!(count, 100);
if let Some(i) = matrix.iter(7).next() {
panic!("expected no elements in row, but contains element {:?}", i);
}
}
#[test]
fn sparse_matrix_iter() {
let mut matrix: SparseBitMatrix<usize, usize> = SparseBitMatrix::new(100);
matrix.insert(3, 22);
matrix.insert(3, 75);
matrix.insert(2, 99);
matrix.insert(4, 0);
matrix.union_rows(3, 5);
let expected = [99];
let mut iter = expected.iter();
for i in matrix.iter(2) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [22, 75];
let mut iter = expected.iter();
for i in matrix.iter(3) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [0];
let mut iter = expected.iter();
for i in matrix.iter(4) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
let expected = [22, 75];
let mut iter = expected.iter();
for i in matrix.iter(5) {
let j = *iter.next().unwrap();
assert_eq!(i, j);
}
assert!(iter.next().is_none());
}
#[test]
fn sparse_matrix_operations() {
let mut matrix: SparseBitMatrix<usize, usize> = SparseBitMatrix::new(100);
matrix.insert(3, 22);
matrix.insert(3, 75);
matrix.insert(2, 99);
matrix.insert(4, 0);
let mut disjoint: HybridBitSet<usize> = HybridBitSet::new_empty(100);
disjoint.insert(33);
let mut superset = HybridBitSet::new_empty(100);
superset.insert(22);
superset.insert(75);
superset.insert(33);
let mut subset = HybridBitSet::new_empty(100);
subset.insert(22);
// SparseBitMatrix::remove
{
let mut matrix = matrix.clone();
matrix.remove(3, 22);
assert!(!matrix.row(3).unwrap().contains(22));
matrix.remove(0, 0);
assert!(matrix.row(0).is_none());
}
// SparseBitMatrix::clear
{
let mut matrix = matrix.clone();
matrix.clear(3);
assert!(!matrix.row(3).unwrap().contains(75));
matrix.clear(0);
assert!(matrix.row(0).is_none());
}
// SparseBitMatrix::intersect_row
{
let mut matrix = matrix.clone();
assert!(!matrix.intersect_row(3, &superset));
assert!(matrix.intersect_row(3, &subset));
matrix.intersect_row(0, &disjoint);
assert!(matrix.row(0).is_none());
}
// SparseBitMatrix::subtract_row
{
let mut matrix = matrix.clone();
assert!(!matrix.subtract_row(3, &disjoint));
assert!(matrix.subtract_row(3, &subset));
assert!(matrix.subtract_row(3, &superset));
matrix.intersect_row(0, &disjoint);
assert!(matrix.row(0).is_none());
}
// SparseBitMatrix::union_row
{
let mut matrix = matrix.clone();
assert!(!matrix.union_row(3, &subset));
assert!(matrix.union_row(3, &disjoint));
matrix.union_row(0, &disjoint);
assert!(matrix.row(0).is_some());
}
}
#[test]
fn dense_insert_range() {
#[track_caller]
fn check<R>(domain: usize, range: R)
where
R: RangeBounds<usize> + Clone + IntoIterator<Item = usize> + std::fmt::Debug,
{
let mut set = BitSet::new_empty(domain);
set.insert_range(range.clone());
for i in set.iter() {
assert!(range.contains(&i));
}
for i in range.clone() {
assert!(set.contains(i), "{} in {:?}, inserted {:?}", i, set, range);
}
}
check(300, 10..10);
check(300, WORD_BITS..WORD_BITS * 2);
check(300, WORD_BITS - 1..WORD_BITS * 2);
check(300, WORD_BITS - 1..WORD_BITS);
check(300, 10..100);
check(300, 10..30);
check(300, 0..5);
check(300, 0..250);
check(300, 200..250);
check(300, 10..=10);
check(300, WORD_BITS..=WORD_BITS * 2);
check(300, WORD_BITS - 1..=WORD_BITS * 2);
check(300, WORD_BITS - 1..=WORD_BITS);
check(300, 10..=100);
check(300, 10..=30);
check(300, 0..=5);
check(300, 0..=250);
check(300, 200..=250);
for i in 0..WORD_BITS * 2 {
for j in i..WORD_BITS * 2 {
check(WORD_BITS * 2, i..j);
check(WORD_BITS * 2, i..=j);
check(300, i..j);
check(300, i..=j);
}
}
}
#[test]
fn dense_last_set_before() {
fn easy(set: &BitSet<usize>, needle: impl RangeBounds<usize>) -> Option<usize> {
let mut last_leq = None;
for e in set.iter() {
if needle.contains(&e) {
last_leq = Some(e);
}
}
last_leq
}
#[track_caller]
fn cmp(set: &BitSet<usize>, needle: impl RangeBounds<usize> + Clone + std::fmt::Debug) {
assert_eq!(
set.last_set_in(needle.clone()),
easy(set, needle.clone()),
"{:?} in {:?}",
needle,
set
);
}
let mut set = BitSet::new_empty(300);
cmp(&set, 50..=50);
set.insert(WORD_BITS);
cmp(&set, WORD_BITS..=WORD_BITS);
set.insert(WORD_BITS - 1);
cmp(&set, 0..=WORD_BITS - 1);
cmp(&set, 0..=5);
cmp(&set, 10..100);
set.insert(100);
cmp(&set, 100..110);
cmp(&set, 99..100);
cmp(&set, 99..=100);
for i in 0..=WORD_BITS * 2 {
for j in i..=WORD_BITS * 2 {
for k in 0..WORD_BITS * 2 {
let mut set = BitSet::new_empty(300);
cmp(&set, i..j);
cmp(&set, i..=j);
set.insert(k);
cmp(&set, i..j);
cmp(&set, i..=j);
}
}
}
}
/// Merge dense hybrid set into empty sparse hybrid set.
#[bench]
fn union_hybrid_sparse_empty_to_dense(b: &mut Bencher) {
let mut pre_dense: HybridBitSet<usize> = HybridBitSet::new_empty(256);
for i in 0..10 {
assert!(pre_dense.insert(i));
}
let pre_sparse: HybridBitSet<usize> = HybridBitSet::new_empty(256);
b.iter(|| {
let dense = pre_dense.clone();
let mut sparse = pre_sparse.clone();
sparse.union(&dense);
})
}
/// Merge dense hybrid set into full hybrid set with same indices.
#[bench]
fn union_hybrid_sparse_full_to_dense(b: &mut Bencher) {
let mut pre_dense: HybridBitSet<usize> = HybridBitSet::new_empty(256);
for i in 0..10 {
assert!(pre_dense.insert(i));
}
let mut pre_sparse: HybridBitSet<usize> = HybridBitSet::new_empty(256);
for i in 0..SPARSE_MAX {
assert!(pre_sparse.insert(i));
}
b.iter(|| {
let dense = pre_dense.clone();
let mut sparse = pre_sparse.clone();
sparse.union(&dense);
})
}
/// Merge dense hybrid set into full hybrid set with indices over the whole domain.
#[bench]
fn union_hybrid_sparse_domain_to_dense(b: &mut Bencher) {
let mut pre_dense: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX * 64);
for i in 0..10 {
assert!(pre_dense.insert(i));
}
let mut pre_sparse: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX * 64);
for i in 0..SPARSE_MAX {
assert!(pre_sparse.insert(i * 64));
}
b.iter(|| {
let dense = pre_dense.clone();
let mut sparse = pre_sparse.clone();
sparse.union(&dense);
})
}
/// Merge dense hybrid set into empty hybrid set where the domain is very small.
#[bench]
fn union_hybrid_sparse_empty_small_domain(b: &mut Bencher) {
let mut pre_dense: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX);
for i in 0..SPARSE_MAX {
assert!(pre_dense.insert(i));
}
let pre_sparse: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX);
b.iter(|| {
let dense = pre_dense.clone();
let mut sparse = pre_sparse.clone();
sparse.union(&dense);
})
}
/// Merge dense hybrid set into full hybrid set where the domain is very small.
#[bench]
fn union_hybrid_sparse_full_small_domain(b: &mut Bencher) {
let mut pre_dense: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX);
for i in 0..SPARSE_MAX {
assert!(pre_dense.insert(i));
}
let mut pre_sparse: HybridBitSet<usize> = HybridBitSet::new_empty(SPARSE_MAX);
for i in 0..SPARSE_MAX {
assert!(pre_sparse.insert(i));
}
b.iter(|| {
let dense = pre_dense.clone();
let mut sparse = pre_sparse.clone();
sparse.union(&dense);
})
}
#[bench]
fn bench_insert(b: &mut Bencher) {
let mut bs = BitSet::new_filled(99999usize);
b.iter(|| {
black_box(bs.insert(black_box(100u32)));
});
}
#[bench]
fn bench_remove(b: &mut Bencher) {
let mut bs = BitSet::new_filled(99999usize);
b.iter(|| {
black_box(bs.remove(black_box(100u32)));
});
}
#[bench]
fn bench_iter(b: &mut Bencher) {
let bs = BitSet::new_filled(99999usize);
b.iter(|| {
bs.iter().map(|b: usize| black_box(b)).for_each(drop);
});
}
#[bench]
fn bench_intersect(b: &mut Bencher) {
let mut ba: BitSet<u32> = BitSet::new_filled(99999usize);
let bb = BitSet::new_filled(99999usize);
b.iter(|| {
ba.intersect(black_box(&bb));
});
}