blob: 002abb152f7597a788fa4cbb954febfa6e94d00e [file] [log] [blame]
use crate::diagnostics::error::{span_err, throw_span_err, DiagnosticDeriveError};
use proc_macro::Span;
use proc_macro2::TokenStream;
use quote::{format_ident, quote, ToTokens};
use std::collections::{BTreeSet, HashMap};
use std::str::FromStr;
use syn::{spanned::Spanned, Attribute, Meta, Type, TypeTuple};
use synstructure::{BindingInfo, Structure};
/// Checks whether the type name of `ty` matches `name`.
///
/// Given some struct at `a::b::c::Foo`, this will return true for `c::Foo`, `b::c::Foo`, or
/// `a::b::c::Foo`. This reasonably allows qualified names to be used in the macro.
pub(crate) fn type_matches_path(ty: &Type, name: &[&str]) -> bool {
if let Type::Path(ty) = ty {
ty.path
.segments
.iter()
.map(|s| s.ident.to_string())
.rev()
.zip(name.iter().rev())
.all(|(x, y)| &x.as_str() == y)
} else {
false
}
}
/// Checks whether the type `ty` is `()`.
pub(crate) fn type_is_unit(ty: &Type) -> bool {
if let Type::Tuple(TypeTuple { elems, .. }) = ty { elems.is_empty() } else { false }
}
/// Reports a type error for field with `attr`.
pub(crate) fn report_type_error(
attr: &Attribute,
ty_name: &str,
) -> Result<!, DiagnosticDeriveError> {
let name = attr.path.segments.last().unwrap().ident.to_string();
let meta = attr.parse_meta()?;
throw_span_err!(
attr.span().unwrap(),
&format!(
"the `#[{}{}]` attribute can only be applied to fields of type {}",
name,
match meta {
Meta::Path(_) => "",
Meta::NameValue(_) => " = ...",
Meta::List(_) => "(...)",
},
ty_name
)
);
}
/// Reports an error if the field's type does not match `path`.
fn report_error_if_not_applied_to_ty(
attr: &Attribute,
info: &FieldInfo<'_>,
path: &[&str],
ty_name: &str,
) -> Result<(), DiagnosticDeriveError> {
if !type_matches_path(&info.ty, path) {
report_type_error(attr, ty_name)?;
}
Ok(())
}
/// Reports an error if the field's type is not `Applicability`.
pub(crate) fn report_error_if_not_applied_to_applicability(
attr: &Attribute,
info: &FieldInfo<'_>,
) -> Result<(), DiagnosticDeriveError> {
report_error_if_not_applied_to_ty(
attr,
info,
&["rustc_errors", "Applicability"],
"`Applicability`",
)
}
/// Reports an error if the field's type is not `Span`.
pub(crate) fn report_error_if_not_applied_to_span(
attr: &Attribute,
info: &FieldInfo<'_>,
) -> Result<(), DiagnosticDeriveError> {
if !type_matches_path(&info.ty, &["rustc_span", "Span"])
&& !type_matches_path(&info.ty, &["rustc_errors", "MultiSpan"])
{
report_type_error(attr, "`Span` or `MultiSpan`")?;
}
Ok(())
}
/// Inner type of a field and type of wrapper.
pub(crate) enum FieldInnerTy<'ty> {
/// Field is wrapped in a `Option<$inner>`.
Option(&'ty Type),
/// Field is wrapped in a `Vec<$inner>`.
Vec(&'ty Type),
/// Field isn't wrapped in an outer type.
None,
}
impl<'ty> FieldInnerTy<'ty> {
/// Returns inner type for a field, if there is one.
///
/// - If `ty` is an `Option`, returns `FieldInnerTy::Option { inner: (inner type) }`.
/// - If `ty` is a `Vec`, returns `FieldInnerTy::Vec { inner: (inner type) }`.
/// - Otherwise returns `None`.
pub(crate) fn from_type(ty: &'ty Type) -> Self {
let variant: &dyn Fn(&'ty Type) -> FieldInnerTy<'ty> =
if type_matches_path(ty, &["std", "option", "Option"]) {
&FieldInnerTy::Option
} else if type_matches_path(ty, &["std", "vec", "Vec"]) {
&FieldInnerTy::Vec
} else {
return FieldInnerTy::None;
};
if let Type::Path(ty_path) = ty {
let path = &ty_path.path;
let ty = path.segments.iter().last().unwrap();
if let syn::PathArguments::AngleBracketed(bracketed) = &ty.arguments {
if bracketed.args.len() == 1 {
if let syn::GenericArgument::Type(ty) = &bracketed.args[0] {
return variant(ty);
}
}
}
}
unreachable!();
}
/// Returns `Option` containing inner type if there is one.
pub(crate) fn inner_type(&self) -> Option<&'ty Type> {
match self {
FieldInnerTy::Option(inner) | FieldInnerTy::Vec(inner) => Some(inner),
FieldInnerTy::None => None,
}
}
/// Surrounds `inner` with destructured wrapper type, exposing inner type as `binding`.
pub(crate) fn with(&self, binding: impl ToTokens, inner: impl ToTokens) -> TokenStream {
match self {
FieldInnerTy::Option(..) => quote! {
if let Some(#binding) = #binding {
#inner
}
},
FieldInnerTy::Vec(..) => quote! {
for #binding in #binding {
#inner
}
},
FieldInnerTy::None => quote! { #inner },
}
}
}
/// Field information passed to the builder. Deliberately omits attrs to discourage the
/// `generate_*` methods from walking the attributes themselves.
pub(crate) struct FieldInfo<'a> {
pub(crate) binding: &'a BindingInfo<'a>,
pub(crate) ty: &'a Type,
pub(crate) span: &'a proc_macro2::Span,
}
/// Small helper trait for abstracting over `Option` fields that contain a value and a `Span`
/// for error reporting if they are set more than once.
pub(crate) trait SetOnce<T> {
fn set_once(&mut self, _: (T, Span));
fn value(self) -> Option<T>;
}
impl<T> SetOnce<T> for Option<(T, Span)> {
fn set_once(&mut self, (value, span): (T, Span)) {
match self {
None => {
*self = Some((value, span));
}
Some((_, prev_span)) => {
span_err(span, "specified multiple times")
.span_note(*prev_span, "previously specified here")
.emit();
}
}
}
fn value(self) -> Option<T> {
self.map(|(v, _)| v)
}
}
pub(crate) trait HasFieldMap {
/// Returns the binding for the field with the given name, if it exists on the type.
fn get_field_binding(&self, field: &String) -> Option<&TokenStream>;
/// In the strings in the attributes supplied to this macro, we want callers to be able to
/// reference fields in the format string. For example:
///
/// ```ignore (not-usage-example)
/// /// Suggest `==` when users wrote `===`.
/// #[suggestion(slug = "parser-not-javascript-eq", code = "{lhs} == {rhs}")]
/// struct NotJavaScriptEq {
/// #[primary_span]
/// span: Span,
/// lhs: Ident,
/// rhs: Ident,
/// }
/// ```
///
/// We want to automatically pick up that `{lhs}` refers `self.lhs` and `{rhs}` refers to
/// `self.rhs`, then generate this call to `format!`:
///
/// ```ignore (not-usage-example)
/// format!("{lhs} == {rhs}", lhs = self.lhs, rhs = self.rhs)
/// ```
///
/// This function builds the entire call to `format!`.
fn build_format(&self, input: &str, span: proc_macro2::Span) -> TokenStream {
// This set is used later to generate the final format string. To keep builds reproducible,
// the iteration order needs to be deterministic, hence why we use a `BTreeSet` here
// instead of a `HashSet`.
let mut referenced_fields: BTreeSet<String> = BTreeSet::new();
// At this point, we can start parsing the format string.
let mut it = input.chars().peekable();
// Once the start of a format string has been found, process the format string and spit out
// the referenced fields. Leaves `it` sitting on the closing brace of the format string, so
// the next call to `it.next()` retrieves the next character.
while let Some(c) = it.next() {
if c == '{' && *it.peek().unwrap_or(&'\0') != '{' {
let mut eat_argument = || -> Option<String> {
let mut result = String::new();
// Format specifiers look like:
//
// format := '{' [ argument ] [ ':' format_spec ] '}' .
//
// Therefore, we only need to eat until ':' or '}' to find the argument.
while let Some(c) = it.next() {
result.push(c);
let next = *it.peek().unwrap_or(&'\0');
if next == '}' {
break;
} else if next == ':' {
// Eat the ':' character.
assert_eq!(it.next().unwrap(), ':');
break;
}
}
// Eat until (and including) the matching '}'
while it.next()? != '}' {
continue;
}
Some(result)
};
if let Some(referenced_field) = eat_argument() {
referenced_fields.insert(referenced_field);
}
}
}
// At this point, `referenced_fields` contains a set of the unique fields that were
// referenced in the format string. Generate the corresponding "x = self.x" format
// string parameters:
let args = referenced_fields.into_iter().map(|field: String| {
let field_ident = format_ident!("{}", field);
let value = match self.get_field_binding(&field) {
Some(value) => value.clone(),
// This field doesn't exist. Emit a diagnostic.
None => {
span_err(
span.unwrap(),
&format!("`{}` doesn't refer to a field on this type", field),
)
.emit();
quote! {
"{#field}"
}
}
};
quote! {
#field_ident = #value
}
});
quote! {
format!(#input #(,#args)*)
}
}
}
/// `Applicability` of a suggestion - mirrors `rustc_errors::Applicability` - and used to represent
/// the user's selection of applicability if specified in an attribute.
pub(crate) enum Applicability {
MachineApplicable,
MaybeIncorrect,
HasPlaceholders,
Unspecified,
}
impl FromStr for Applicability {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"machine-applicable" => Ok(Applicability::MachineApplicable),
"maybe-incorrect" => Ok(Applicability::MaybeIncorrect),
"has-placeholders" => Ok(Applicability::HasPlaceholders),
"unspecified" => Ok(Applicability::Unspecified),
_ => Err(()),
}
}
}
impl quote::ToTokens for Applicability {
fn to_tokens(&self, tokens: &mut TokenStream) {
tokens.extend(match self {
Applicability::MachineApplicable => {
quote! { rustc_errors::Applicability::MachineApplicable }
}
Applicability::MaybeIncorrect => {
quote! { rustc_errors::Applicability::MaybeIncorrect }
}
Applicability::HasPlaceholders => {
quote! { rustc_errors::Applicability::HasPlaceholders }
}
Applicability::Unspecified => {
quote! { rustc_errors::Applicability::Unspecified }
}
});
}
}
/// Build the mapping of field names to fields. This allows attributes to peek values from
/// other fields.
pub(crate) fn build_field_mapping<'a>(structure: &Structure<'a>) -> HashMap<String, TokenStream> {
let mut fields_map = HashMap::new();
let ast = structure.ast();
if let syn::Data::Struct(syn::DataStruct { fields, .. }) = &ast.data {
for field in fields.iter() {
if let Some(ident) = &field.ident {
fields_map.insert(ident.to_string(), quote! { &self.#ident });
}
}
}
fields_map
}