blob: 94460e33d8b01a62b8be14afca238e9da2680555 [file] [log] [blame]
//! Resolution of early vs late bound lifetimes.
//!
//! Name resolution for lifetimes is performed on the AST and embedded into HIR. From this
//! information, typechecking needs to transform the lifetime parameters into bound lifetimes.
//! Lifetimes can be early-bound or late-bound. Construction of typechecking terms needs to visit
//! the types in HIR to identify late-bound lifetimes and assign their Debruijn indices. This file
//! is also responsible for assigning their semantics to implicit lifetimes in trait objects.
use rustc_ast::walk_list;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefIdMap, LocalDefId};
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{GenericArg, GenericParam, GenericParamKind, HirIdMap, LifetimeName, Node};
use rustc_middle::bug;
use rustc_middle::hir::map::Map;
use rustc_middle::hir::nested_filter;
use rustc_middle::middle::resolve_lifetime::*;
use rustc_middle::ty::{self, GenericParamDefKind, TyCtxt};
use rustc_span::def_id::DefId;
use rustc_span::symbol::{sym, Ident};
use rustc_span::Span;
use std::borrow::Cow;
use std::fmt;
use std::mem::take;
trait RegionExt {
fn early(hir_map: Map<'_>, index: &mut u32, param: &GenericParam<'_>) -> (LocalDefId, Region);
fn late(index: u32, hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region);
fn id(&self) -> Option<DefId>;
fn shifted(self, amount: u32) -> Region;
fn shifted_out_to_binder(self, binder: ty::DebruijnIndex) -> Region;
fn subst<'a, L>(self, params: L, map: &NamedRegionMap) -> Option<Region>
where
L: Iterator<Item = &'a hir::Lifetime>;
}
impl RegionExt for Region {
fn early(hir_map: Map<'_>, index: &mut u32, param: &GenericParam<'_>) -> (LocalDefId, Region) {
let i = *index;
*index += 1;
let def_id = hir_map.local_def_id(param.hir_id);
debug!("Region::early: index={} def_id={:?}", i, def_id);
(def_id, Region::EarlyBound(i, def_id.to_def_id()))
}
fn late(idx: u32, hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region) {
let depth = ty::INNERMOST;
let def_id = hir_map.local_def_id(param.hir_id);
debug!(
"Region::late: idx={:?}, param={:?} depth={:?} def_id={:?}",
idx, param, depth, def_id,
);
(def_id, Region::LateBound(depth, idx, def_id.to_def_id()))
}
fn id(&self) -> Option<DefId> {
match *self {
Region::Static => None,
Region::EarlyBound(_, id) | Region::LateBound(_, _, id) | Region::Free(_, id) => {
Some(id)
}
}
}
fn shifted(self, amount: u32) -> Region {
match self {
Region::LateBound(debruijn, idx, id) => {
Region::LateBound(debruijn.shifted_in(amount), idx, id)
}
_ => self,
}
}
fn shifted_out_to_binder(self, binder: ty::DebruijnIndex) -> Region {
match self {
Region::LateBound(debruijn, index, id) => {
Region::LateBound(debruijn.shifted_out_to_binder(binder), index, id)
}
_ => self,
}
}
fn subst<'a, L>(self, mut params: L, map: &NamedRegionMap) -> Option<Region>
where
L: Iterator<Item = &'a hir::Lifetime>,
{
if let Region::EarlyBound(index, _) = self {
params.nth(index as usize).and_then(|lifetime| map.defs.get(&lifetime.hir_id).cloned())
} else {
Some(self)
}
}
}
/// Maps the id of each lifetime reference to the lifetime decl
/// that it corresponds to.
///
/// FIXME. This struct gets converted to a `ResolveLifetimes` for
/// actual use. It has the same data, but indexed by `LocalDefId`. This
/// is silly.
#[derive(Debug, Default)]
struct NamedRegionMap {
// maps from every use of a named (not anonymous) lifetime to a
// `Region` describing how that region is bound
defs: HirIdMap<Region>,
// Maps relevant hir items to the bound vars on them. These include:
// - function defs
// - function pointers
// - closures
// - trait refs
// - bound types (like `T` in `for<'a> T<'a>: Foo`)
late_bound_vars: HirIdMap<Vec<ty::BoundVariableKind>>,
}
pub(crate) struct LifetimeContext<'a, 'tcx> {
pub(crate) tcx: TyCtxt<'tcx>,
map: &'a mut NamedRegionMap,
scope: ScopeRef<'a>,
/// Indicates that we only care about the definition of a trait. This should
/// be false if the `Item` we are resolving lifetimes for is not a trait or
/// we eventually need lifetimes resolve for trait items.
trait_definition_only: bool,
/// Cache for cross-crate per-definition object lifetime defaults.
xcrate_object_lifetime_defaults: DefIdMap<Vec<ObjectLifetimeDefault>>,
}
#[derive(Debug)]
enum Scope<'a> {
/// Declares lifetimes, and each can be early-bound or late-bound.
/// The `DebruijnIndex` of late-bound lifetimes starts at `1` and
/// it should be shifted by the number of `Binder`s in between the
/// declaration `Binder` and the location it's referenced from.
Binder {
/// We use an IndexMap here because we want these lifetimes in order
/// for diagnostics.
lifetimes: FxIndexMap<LocalDefId, Region>,
/// if we extend this scope with another scope, what is the next index
/// we should use for an early-bound region?
next_early_index: u32,
/// Whether or not this binder would serve as the parent
/// binder for opaque types introduced within. For example:
///
/// ```text
/// fn foo<'a>() -> impl for<'b> Trait<Item = impl Trait2<'a>>
/// ```
///
/// Here, the opaque types we create for the `impl Trait`
/// and `impl Trait2` references will both have the `foo` item
/// as their parent. When we get to `impl Trait2`, we find
/// that it is nested within the `for<>` binder -- this flag
/// allows us to skip that when looking for the parent binder
/// of the resulting opaque type.
opaque_type_parent: bool,
scope_type: BinderScopeType,
/// The late bound vars for a given item are stored by `HirId` to be
/// queried later. However, if we enter an elision scope, we have to
/// later append the elided bound vars to the list and need to know what
/// to append to.
hir_id: hir::HirId,
s: ScopeRef<'a>,
/// If this binder comes from a where clause, specify how it was created.
/// This is used to diagnose inaccessible lifetimes in APIT:
/// ```ignore (illustrative)
/// fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {}
/// ```
where_bound_origin: Option<hir::PredicateOrigin>,
},
/// Lifetimes introduced by a fn are scoped to the call-site for that fn,
/// if this is a fn body, otherwise the original definitions are used.
/// Unspecified lifetimes are inferred, unless an elision scope is nested,
/// e.g., `(&T, fn(&T) -> &T);` becomes `(&'_ T, for<'a> fn(&'a T) -> &'a T)`.
Body {
id: hir::BodyId,
s: ScopeRef<'a>,
},
/// A scope which either determines unspecified lifetimes or errors
/// on them (e.g., due to ambiguity).
Elision {
s: ScopeRef<'a>,
},
/// Use a specific lifetime (if `Some`) or leave it unset (to be
/// inferred in a function body or potentially error outside one),
/// for the default choice of lifetime in a trait object type.
ObjectLifetimeDefault {
lifetime: Option<Region>,
s: ScopeRef<'a>,
},
/// When we have nested trait refs, we concatenate late bound vars for inner
/// trait refs from outer ones. But we also need to include any HRTB
/// lifetimes encountered when identifying the trait that an associated type
/// is declared on.
Supertrait {
lifetimes: Vec<ty::BoundVariableKind>,
s: ScopeRef<'a>,
},
TraitRefBoundary {
s: ScopeRef<'a>,
},
Root,
}
#[derive(Copy, Clone, Debug)]
enum BinderScopeType {
/// Any non-concatenating binder scopes.
Normal,
/// Within a syntactic trait ref, there may be multiple poly trait refs that
/// are nested (under the `associated_type_bounds` feature). The binders of
/// the inner poly trait refs are extended from the outer poly trait refs
/// and don't increase the late bound depth. If you had
/// `T: for<'a> Foo<Bar: for<'b> Baz<'a, 'b>>`, then the `for<'b>` scope
/// would be `Concatenating`. This also used in trait refs in where clauses
/// where we have two binders `for<> T: for<> Foo` (I've intentionally left
/// out any lifetimes because they aren't needed to show the two scopes).
/// The inner `for<>` has a scope of `Concatenating`.
Concatenating,
}
// A helper struct for debugging scopes without printing parent scopes
struct TruncatedScopeDebug<'a>(&'a Scope<'a>);
impl<'a> fmt::Debug for TruncatedScopeDebug<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.0 {
Scope::Binder {
lifetimes,
next_early_index,
opaque_type_parent,
scope_type,
hir_id,
where_bound_origin,
s: _,
} => f
.debug_struct("Binder")
.field("lifetimes", lifetimes)
.field("next_early_index", next_early_index)
.field("opaque_type_parent", opaque_type_parent)
.field("scope_type", scope_type)
.field("hir_id", hir_id)
.field("where_bound_origin", where_bound_origin)
.field("s", &"..")
.finish(),
Scope::Body { id, s: _ } => {
f.debug_struct("Body").field("id", id).field("s", &"..").finish()
}
Scope::Elision { s: _ } => f.debug_struct("Elision").field("s", &"..").finish(),
Scope::ObjectLifetimeDefault { lifetime, s: _ } => f
.debug_struct("ObjectLifetimeDefault")
.field("lifetime", lifetime)
.field("s", &"..")
.finish(),
Scope::Supertrait { lifetimes, s: _ } => f
.debug_struct("Supertrait")
.field("lifetimes", lifetimes)
.field("s", &"..")
.finish(),
Scope::TraitRefBoundary { s: _ } => f.debug_struct("TraitRefBoundary").finish(),
Scope::Root => f.debug_struct("Root").finish(),
}
}
}
type ScopeRef<'a> = &'a Scope<'a>;
const ROOT_SCOPE: ScopeRef<'static> = &Scope::Root;
pub fn provide(providers: &mut ty::query::Providers) {
*providers = ty::query::Providers {
resolve_lifetimes_trait_definition,
resolve_lifetimes,
named_region_map: |tcx, id| resolve_lifetimes_for(tcx, id).defs.get(&id),
is_late_bound_map,
object_lifetime_defaults: |tcx, id| match tcx.hir().find_by_def_id(id) {
Some(Node::Item(item)) => compute_object_lifetime_defaults(tcx, item),
_ => None,
},
late_bound_vars_map: |tcx, id| resolve_lifetimes_for(tcx, id).late_bound_vars.get(&id),
..*providers
};
}
/// Like `resolve_lifetimes`, but does not resolve lifetimes for trait items.
/// Also does not generate any diagnostics.
///
/// This is ultimately a subset of the `resolve_lifetimes` work. It effectively
/// resolves lifetimes only within the trait "header" -- that is, the trait
/// and supertrait list. In contrast, `resolve_lifetimes` resolves all the
/// lifetimes within the trait and its items. There is room to refactor this,
/// for example to resolve lifetimes for each trait item in separate queries,
/// but it's convenient to do the entire trait at once because the lifetimes
/// from the trait definition are in scope within the trait items as well.
///
/// The reason for this separate call is to resolve what would otherwise
/// be a cycle. Consider this example:
///
/// ```ignore UNSOLVED (maybe @jackh726 knows what lifetime parameter to give Sub)
/// trait Base<'a> {
/// type BaseItem;
/// }
/// trait Sub<'b>: for<'a> Base<'a> {
/// type SubItem: Sub<BaseItem = &'b u32>;
/// }
/// ```
///
/// When we resolve `Sub` and all its items, we also have to resolve `Sub<BaseItem = &'b u32>`.
/// To figure out the index of `'b`, we have to know about the supertraits
/// of `Sub` so that we can determine that the `for<'a>` will be in scope.
/// (This is because we -- currently at least -- flatten all the late-bound
/// lifetimes into a single binder.) This requires us to resolve the
/// *trait definition* of `Sub`; basically just enough lifetime information
/// to look at the supertraits.
#[tracing::instrument(level = "debug", skip(tcx))]
fn resolve_lifetimes_trait_definition(
tcx: TyCtxt<'_>,
local_def_id: LocalDefId,
) -> ResolveLifetimes {
convert_named_region_map(do_resolve(tcx, local_def_id, true))
}
/// Computes the `ResolveLifetimes` map that contains data for an entire `Item`.
/// You should not read the result of this query directly, but rather use
/// `named_region_map`, `is_late_bound_map`, etc.
#[tracing::instrument(level = "debug", skip(tcx))]
fn resolve_lifetimes(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> ResolveLifetimes {
convert_named_region_map(do_resolve(tcx, local_def_id, false))
}
fn do_resolve(
tcx: TyCtxt<'_>,
local_def_id: LocalDefId,
trait_definition_only: bool,
) -> NamedRegionMap {
let item = tcx.hir().expect_item(local_def_id);
let mut named_region_map =
NamedRegionMap { defs: Default::default(), late_bound_vars: Default::default() };
let mut visitor = LifetimeContext {
tcx,
map: &mut named_region_map,
scope: ROOT_SCOPE,
trait_definition_only,
xcrate_object_lifetime_defaults: Default::default(),
};
visitor.visit_item(item);
named_region_map
}
fn convert_named_region_map(named_region_map: NamedRegionMap) -> ResolveLifetimes {
let mut rl = ResolveLifetimes::default();
for (hir_id, v) in named_region_map.defs {
let map = rl.defs.entry(hir_id.owner).or_default();
map.insert(hir_id.local_id, v);
}
for (hir_id, v) in named_region_map.late_bound_vars {
let map = rl.late_bound_vars.entry(hir_id.owner).or_default();
map.insert(hir_id.local_id, v);
}
debug!(?rl.defs);
rl
}
/// Given `any` owner (structs, traits, trait methods, etc.), does lifetime resolution.
/// There are two important things this does.
/// First, we have to resolve lifetimes for
/// the entire *`Item`* that contains this owner, because that's the largest "scope"
/// where we can have relevant lifetimes.
/// Second, if we are asking for lifetimes in a trait *definition*, we use `resolve_lifetimes_trait_definition`
/// instead of `resolve_lifetimes`, which does not descend into the trait items and does not emit diagnostics.
/// This allows us to avoid cycles. Importantly, if we ask for lifetimes for lifetimes that have an owner
/// other than the trait itself (like the trait methods or associated types), then we just use the regular
/// `resolve_lifetimes`.
fn resolve_lifetimes_for<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &'tcx ResolveLifetimes {
let item_id = item_for(tcx, def_id);
if item_id == def_id {
let item = tcx.hir().item(hir::ItemId { def_id: item_id });
match item.kind {
hir::ItemKind::Trait(..) => tcx.resolve_lifetimes_trait_definition(item_id),
_ => tcx.resolve_lifetimes(item_id),
}
} else {
tcx.resolve_lifetimes(item_id)
}
}
/// Finds the `Item` that contains the given `LocalDefId`
fn item_for(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> LocalDefId {
match tcx.hir().find_by_def_id(local_def_id) {
Some(Node::Item(item)) => {
return item.def_id;
}
_ => {}
}
let item = {
let hir_id = tcx.hir().local_def_id_to_hir_id(local_def_id);
let mut parent_iter = tcx.hir().parent_iter(hir_id);
loop {
let node = parent_iter.next().map(|n| n.1);
match node {
Some(hir::Node::Item(item)) => break item.def_id,
Some(hir::Node::Crate(_)) | None => bug!("Called `item_for` on an Item."),
_ => {}
}
}
};
item
}
/// In traits, there is an implicit `Self` type parameter which comes before the generics.
/// We have to account for this when computing the index of the other generic parameters.
/// This function returns whether there is such an implicit parameter defined on the given item.
fn sub_items_have_self_param(node: &hir::ItemKind<'_>) -> bool {
matches!(*node, hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..))
}
fn late_region_as_bound_region<'tcx>(tcx: TyCtxt<'tcx>, region: &Region) -> ty::BoundVariableKind {
match region {
Region::LateBound(_, _, def_id) => {
let name = tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id.expect_local()));
ty::BoundVariableKind::Region(ty::BrNamed(*def_id, name))
}
_ => bug!("{:?} is not a late region", region),
}
}
impl<'a, 'tcx> LifetimeContext<'a, 'tcx> {
/// Returns the binders in scope and the type of `Binder` that should be created for a poly trait ref.
fn poly_trait_ref_binder_info(&mut self) -> (Vec<ty::BoundVariableKind>, BinderScopeType) {
let mut scope = self.scope;
let mut supertrait_lifetimes = vec![];
loop {
match scope {
Scope::Body { .. } | Scope::Root => {
break (vec![], BinderScopeType::Normal);
}
Scope::Elision { s, .. } | Scope::ObjectLifetimeDefault { s, .. } => {
scope = s;
}
Scope::Supertrait { s, lifetimes } => {
supertrait_lifetimes = lifetimes.clone();
scope = s;
}
Scope::TraitRefBoundary { .. } => {
// We should only see super trait lifetimes if there is a `Binder` above
assert!(supertrait_lifetimes.is_empty());
break (vec![], BinderScopeType::Normal);
}
Scope::Binder { hir_id, .. } => {
// Nested poly trait refs have the binders concatenated
let mut full_binders =
self.map.late_bound_vars.entry(*hir_id).or_default().clone();
full_binders.extend(supertrait_lifetimes.into_iter());
break (full_binders, BinderScopeType::Concatenating);
}
}
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for LifetimeContext<'a, 'tcx> {
type NestedFilter = nested_filter::All;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
// We want to nest trait/impl items in their parent, but nothing else.
fn visit_nested_item(&mut self, _: hir::ItemId) {}
fn visit_trait_item_ref(&mut self, ii: &'tcx hir::TraitItemRef) {
if !self.trait_definition_only {
intravisit::walk_trait_item_ref(self, ii)
}
}
fn visit_nested_body(&mut self, body: hir::BodyId) {
let body = self.tcx.hir().body(body);
self.with(Scope::Body { id: body.id(), s: self.scope }, |this| {
this.visit_body(body);
});
}
fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) {
if let hir::ExprKind::Closure(hir::Closure {
binder, bound_generic_params, fn_decl, ..
}) = e.kind
{
if let &hir::ClosureBinder::For { span: for_sp, .. } = binder {
fn span_of_infer(ty: &hir::Ty<'_>) -> Option<Span> {
struct V(Option<Span>);
impl<'v> Visitor<'v> for V {
fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
match t.kind {
_ if self.0.is_some() => (),
hir::TyKind::Infer => {
self.0 = Some(t.span);
}
_ => intravisit::walk_ty(self, t),
}
}
}
let mut v = V(None);
v.visit_ty(ty);
v.0
}
let infer_in_rt_sp = match fn_decl.output {
hir::FnRetTy::DefaultReturn(sp) => Some(sp),
hir::FnRetTy::Return(ty) => span_of_infer(ty),
};
let infer_spans = fn_decl
.inputs
.into_iter()
.filter_map(span_of_infer)
.chain(infer_in_rt_sp)
.collect::<Vec<_>>();
if !infer_spans.is_empty() {
self.tcx.sess
.struct_span_err(
infer_spans,
"implicit types in closure signatures are forbidden when `for<...>` is present",
)
.span_label(for_sp, "`for<...>` is here")
.emit();
}
}
let next_early_index = self.next_early_index();
let (lifetimes, binders): (FxIndexMap<LocalDefId, Region>, Vec<_>) =
bound_generic_params
.iter()
.filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. }))
.enumerate()
.map(|(late_bound_idx, param)| {
let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param);
let r = late_region_as_bound_region(self.tcx, &pair.1);
(pair, r)
})
.unzip();
self.map.late_bound_vars.insert(e.hir_id, binders);
let scope = Scope::Binder {
hir_id: e.hir_id,
lifetimes,
s: self.scope,
next_early_index,
opaque_type_parent: false,
scope_type: BinderScopeType::Normal,
where_bound_origin: None,
};
self.with(scope, |this| {
// a closure has no bounds, so everything
// contained within is scoped within its binder.
intravisit::walk_expr(this, e)
});
} else {
intravisit::walk_expr(self, e)
}
}
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
match &item.kind {
hir::ItemKind::Impl(hir::Impl { of_trait, .. }) => {
if let Some(of_trait) = of_trait {
self.map.late_bound_vars.insert(of_trait.hir_ref_id, Vec::default());
}
}
_ => {}
}
match item.kind {
hir::ItemKind::Fn(_, ref generics, _) => {
self.visit_early_late(None, item.hir_id(), generics, |this| {
intravisit::walk_item(this, item);
});
}
hir::ItemKind::ExternCrate(_)
| hir::ItemKind::Use(..)
| hir::ItemKind::Macro(..)
| hir::ItemKind::Mod(..)
| hir::ItemKind::ForeignMod { .. }
| hir::ItemKind::GlobalAsm(..) => {
// These sorts of items have no lifetime parameters at all.
intravisit::walk_item(self, item);
}
hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => {
// No lifetime parameters, but implied 'static.
self.with(Scope::Elision { s: self.scope }, |this| {
intravisit::walk_item(this, item)
});
}
hir::ItemKind::OpaqueTy(hir::OpaqueTy { .. }) => {
// Opaque types are visited when we visit the
// `TyKind::OpaqueDef`, so that they have the lifetimes from
// their parent opaque_ty in scope.
//
// The core idea here is that since OpaqueTys are generated with the impl Trait as
// their owner, we can keep going until we find the Item that owns that. We then
// conservatively add all resolved lifetimes. Otherwise we run into problems in
// cases like `type Foo<'a> = impl Bar<As = impl Baz + 'a>`.
for (_hir_id, node) in
self.tcx.hir().parent_iter(self.tcx.hir().local_def_id_to_hir_id(item.def_id))
{
match node {
hir::Node::Item(parent_item) => {
let resolved_lifetimes: &ResolveLifetimes =
self.tcx.resolve_lifetimes(item_for(self.tcx, parent_item.def_id));
// We need to add *all* deps, since opaque tys may want them from *us*
for (&owner, defs) in resolved_lifetimes.defs.iter() {
defs.iter().for_each(|(&local_id, region)| {
self.map.defs.insert(hir::HirId { owner, local_id }, *region);
});
}
for (&owner, late_bound_vars) in
resolved_lifetimes.late_bound_vars.iter()
{
late_bound_vars.iter().for_each(|(&local_id, late_bound_vars)| {
self.map.late_bound_vars.insert(
hir::HirId { owner, local_id },
late_bound_vars.clone(),
);
});
}
break;
}
hir::Node::Crate(_) => bug!("No Item about an OpaqueTy"),
_ => {}
}
}
}
hir::ItemKind::TyAlias(_, ref generics)
| hir::ItemKind::Enum(_, ref generics)
| hir::ItemKind::Struct(_, ref generics)
| hir::ItemKind::Union(_, ref generics)
| hir::ItemKind::Trait(_, _, ref generics, ..)
| hir::ItemKind::TraitAlias(ref generics, ..)
| hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => {
// These kinds of items have only early-bound lifetime parameters.
let mut index = if sub_items_have_self_param(&item.kind) {
1 // Self comes before lifetimes
} else {
0
};
let mut non_lifetime_count = 0;
let lifetimes = generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
Some(Region::early(self.tcx.hir(), &mut index, param))
}
GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
non_lifetime_count += 1;
None
}
})
.collect();
self.map.late_bound_vars.insert(item.hir_id(), vec![]);
let scope = Scope::Binder {
hir_id: item.hir_id(),
lifetimes,
next_early_index: index + non_lifetime_count,
opaque_type_parent: true,
scope_type: BinderScopeType::Normal,
s: ROOT_SCOPE,
where_bound_origin: None,
};
self.with(scope, |this| {
let scope = Scope::TraitRefBoundary { s: this.scope };
this.with(scope, |this| {
intravisit::walk_item(this, item);
});
});
}
}
}
fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
match item.kind {
hir::ForeignItemKind::Fn(_, _, ref generics) => {
self.visit_early_late(None, item.hir_id(), generics, |this| {
intravisit::walk_foreign_item(this, item);
})
}
hir::ForeignItemKind::Static(..) => {
intravisit::walk_foreign_item(self, item);
}
hir::ForeignItemKind::Type => {
intravisit::walk_foreign_item(self, item);
}
}
}
#[tracing::instrument(level = "debug", skip(self))]
fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
match ty.kind {
hir::TyKind::BareFn(ref c) => {
let next_early_index = self.next_early_index();
let (lifetimes, binders): (FxIndexMap<LocalDefId, Region>, Vec<_>) = c
.generic_params
.iter()
.filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. }))
.enumerate()
.map(|(late_bound_idx, param)| {
let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param);
let r = late_region_as_bound_region(self.tcx, &pair.1);
(pair, r)
})
.unzip();
self.map.late_bound_vars.insert(ty.hir_id, binders);
let scope = Scope::Binder {
hir_id: ty.hir_id,
lifetimes,
s: self.scope,
next_early_index,
opaque_type_parent: false,
scope_type: BinderScopeType::Normal,
where_bound_origin: None,
};
self.with(scope, |this| {
// a bare fn has no bounds, so everything
// contained within is scoped within its binder.
intravisit::walk_ty(this, ty);
});
}
hir::TyKind::TraitObject(bounds, ref lifetime, _) => {
debug!(?bounds, ?lifetime, "TraitObject");
let scope = Scope::TraitRefBoundary { s: self.scope };
self.with(scope, |this| {
for bound in bounds {
this.visit_poly_trait_ref(bound, hir::TraitBoundModifier::None);
}
});
match lifetime.name {
LifetimeName::ImplicitObjectLifetimeDefault => {
// If the user does not write *anything*, we
// use the object lifetime defaulting
// rules. So e.g., `Box<dyn Debug>` becomes
// `Box<dyn Debug + 'static>`.
self.resolve_object_lifetime_default(lifetime)
}
LifetimeName::Infer => {
// If the user writes `'_`, we use the *ordinary* elision
// rules. So the `'_` in e.g., `Box<dyn Debug + '_>` will be
// resolved the same as the `'_` in `&'_ Foo`.
//
// cc #48468
}
LifetimeName::Param(..) | LifetimeName::Static => {
// If the user wrote an explicit name, use that.
self.visit_lifetime(lifetime);
}
LifetimeName::Error => {}
}
}
hir::TyKind::Rptr(ref lifetime_ref, ref mt) => {
self.visit_lifetime(lifetime_ref);
let scope = Scope::ObjectLifetimeDefault {
lifetime: self.map.defs.get(&lifetime_ref.hir_id).cloned(),
s: self.scope,
};
self.with(scope, |this| this.visit_ty(&mt.ty));
}
hir::TyKind::OpaqueDef(item_id, lifetimes) => {
// Resolve the lifetimes in the bounds to the lifetime defs in the generics.
// `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
// `type MyAnonTy<'b> = impl MyTrait<'b>;`
// ^ ^ this gets resolved in the scope of
// the opaque_ty generics
let opaque_ty = self.tcx.hir().item(item_id);
let (generics, bounds) = match opaque_ty.kind {
hir::ItemKind::OpaqueTy(hir::OpaqueTy {
origin: hir::OpaqueTyOrigin::TyAlias,
..
}) => {
intravisit::walk_ty(self, ty);
// Elided lifetimes are not allowed in non-return
// position impl Trait
let scope = Scope::TraitRefBoundary { s: self.scope };
self.with(scope, |this| {
let scope = Scope::Elision { s: this.scope };
this.with(scope, |this| {
intravisit::walk_item(this, opaque_ty);
})
});
return;
}
hir::ItemKind::OpaqueTy(hir::OpaqueTy {
origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
ref generics,
bounds,
..
}) => (generics, bounds),
ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
};
// Resolve the lifetimes that are applied to the opaque type.
// These are resolved in the current scope.
// `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
// `fn foo<'a>() -> MyAnonTy<'a> { ... }`
// ^ ^this gets resolved in the current scope
for lifetime in lifetimes {
let hir::GenericArg::Lifetime(lifetime) = lifetime else {
continue
};
self.visit_lifetime(lifetime);
// Check for predicates like `impl for<'a> Trait<impl OtherTrait<'a>>`
// and ban them. Type variables instantiated inside binders aren't
// well-supported at the moment, so this doesn't work.
// In the future, this should be fixed and this error should be removed.
let def = self.map.defs.get(&lifetime.hir_id).cloned();
let Some(Region::LateBound(_, _, def_id)) = def else {
continue
};
let Some(def_id) = def_id.as_local() else {
continue
};
let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
// Ensure that the parent of the def is an item, not HRTB
let parent_id = self.tcx.hir().get_parent_node(hir_id);
if !parent_id.is_owner() {
if !self.trait_definition_only {
struct_span_err!(
self.tcx.sess,
lifetime.span,
E0657,
"`impl Trait` can only capture lifetimes \
bound at the fn or impl level"
)
.emit();
}
self.uninsert_lifetime_on_error(lifetime, def.unwrap());
}
if let hir::Node::Item(hir::Item {
kind: hir::ItemKind::OpaqueTy { .. }, ..
}) = self.tcx.hir().get(parent_id)
{
if !self.trait_definition_only {
let mut err = self.tcx.sess.struct_span_err(
lifetime.span,
"higher kinded lifetime bounds on nested opaque types are not supported yet",
);
err.span_note(self.tcx.def_span(def_id), "lifetime declared here");
err.emit();
}
self.uninsert_lifetime_on_error(lifetime, def.unwrap());
}
}
// We want to start our early-bound indices at the end of the parent scope,
// not including any parent `impl Trait`s.
let mut index = self.next_early_index_for_opaque_type();
debug!(?index);
let mut lifetimes = FxIndexMap::default();
let mut non_lifetime_count = 0;
debug!(?generics.params);
for param in generics.params {
match param.kind {
GenericParamKind::Lifetime { .. } => {
let (def_id, reg) = Region::early(self.tcx.hir(), &mut index, &param);
lifetimes.insert(def_id, reg);
}
GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
non_lifetime_count += 1;
}
}
}
let next_early_index = index + non_lifetime_count;
self.map.late_bound_vars.insert(ty.hir_id, vec![]);
let scope = Scope::Binder {
hir_id: ty.hir_id,
lifetimes,
next_early_index,
s: self.scope,
opaque_type_parent: false,
scope_type: BinderScopeType::Normal,
where_bound_origin: None,
};
self.with(scope, |this| {
let scope = Scope::TraitRefBoundary { s: this.scope };
this.with(scope, |this| {
this.visit_generics(generics);
for bound in bounds {
this.visit_param_bound(bound);
}
})
});
}
_ => intravisit::walk_ty(self, ty),
}
}
fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
use self::hir::TraitItemKind::*;
match trait_item.kind {
Fn(_, _) => {
let tcx = self.tcx;
self.visit_early_late(
Some(tcx.hir().get_parent_item(trait_item.hir_id())),
trait_item.hir_id(),
&trait_item.generics,
|this| intravisit::walk_trait_item(this, trait_item),
);
}
Type(bounds, ref ty) => {
let generics = &trait_item.generics;
let mut index = self.next_early_index();
debug!("visit_ty: index = {}", index);
let mut non_lifetime_count = 0;
let lifetimes = generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
Some(Region::early(self.tcx.hir(), &mut index, param))
}
GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
non_lifetime_count += 1;
None
}
})
.collect();
self.map.late_bound_vars.insert(trait_item.hir_id(), vec![]);
let scope = Scope::Binder {
hir_id: trait_item.hir_id(),
lifetimes,
next_early_index: index + non_lifetime_count,
s: self.scope,
opaque_type_parent: true,
scope_type: BinderScopeType::Normal,
where_bound_origin: None,
};
self.with(scope, |this| {
let scope = Scope::TraitRefBoundary { s: this.scope };
this.with(scope, |this| {
this.visit_generics(generics);
for bound in bounds {
this.visit_param_bound(bound);
}
if let Some(ty) = ty {
this.visit_ty(ty);
}
})
});
}
Const(_, _) => {
// Only methods and types support generics.
assert!(trait_item.generics.params.is_empty());
intravisit::walk_trait_item(self, trait_item);
}
}
}
fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
use self::hir::ImplItemKind::*;
match impl_item.kind {
Fn(..) => {
let tcx = self.tcx;
self.visit_early_late(
Some(tcx.hir().get_parent_item(impl_item.hir_id())),
impl_item.hir_id(),
&impl_item.generics,
|this| intravisit::walk_impl_item(this, impl_item),
);
}
TyAlias(ref ty) => {
let generics = &impl_item.generics;
let mut index = self.next_early_index();
let mut non_lifetime_count = 0;
debug!("visit_ty: index = {}", index);
let lifetimes: FxIndexMap<LocalDefId, Region> = generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
Some(Region::early(self.tcx.hir(), &mut index, param))
}
GenericParamKind::Const { .. } | GenericParamKind::Type { .. } => {
non_lifetime_count += 1;
None
}
})
.collect();
self.map.late_bound_vars.insert(ty.hir_id, vec![]);
let scope = Scope::Binder {
hir_id: ty.hir_id,
lifetimes,
next_early_index: index + non_lifetime_count,
s: self.scope,
opaque_type_parent: true,
scope_type: BinderScopeType::Normal,
where_bound_origin: None,
};
self.with(scope, |this| {
let scope = Scope::TraitRefBoundary { s: this.scope };
this.with(scope, |this| {
this.visit_generics(generics);
this.visit_ty(ty);
})
});
}
Const(_, _) => {
// Only methods and types support generics.
assert!(impl_item.generics.params.is_empty());
intravisit::walk_impl_item(self, impl_item);
}
}
}
#[tracing::instrument(level = "debug", skip(self))]
fn visit_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
match lifetime_ref.name {
hir::LifetimeName::Static => self.insert_lifetime(lifetime_ref, Region::Static),
hir::LifetimeName::Param(param_def_id, _) => {
self.resolve_lifetime_ref(param_def_id, lifetime_ref)
}
// If we've already reported an error, just ignore `lifetime_ref`.
hir::LifetimeName::Error => {}
// Those will be resolved by typechecking.
hir::LifetimeName::ImplicitObjectLifetimeDefault | hir::LifetimeName::Infer => {}
}
}
fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, _: hir::HirId) {
for (i, segment) in path.segments.iter().enumerate() {
let depth = path.segments.len() - i - 1;
if let Some(ref args) = segment.args {
self.visit_segment_args(path.res, depth, args);
}
}
}
fn visit_fn(
&mut self,
fk: intravisit::FnKind<'tcx>,
fd: &'tcx hir::FnDecl<'tcx>,
body_id: hir::BodyId,
_: Span,
_: hir::HirId,
) {
let output = match fd.output {
hir::FnRetTy::DefaultReturn(_) => None,
hir::FnRetTy::Return(ref ty) => Some(&**ty),
};
self.visit_fn_like_elision(&fd.inputs, output, matches!(fk, intravisit::FnKind::Closure));
intravisit::walk_fn_kind(self, fk);
self.visit_nested_body(body_id)
}
fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
let scope = Scope::TraitRefBoundary { s: self.scope };
self.with(scope, |this| {
for param in generics.params {
match param.kind {
GenericParamKind::Lifetime { .. } => {}
GenericParamKind::Type { ref default, .. } => {
if let Some(ref ty) = default {
this.visit_ty(&ty);
}
}
GenericParamKind::Const { ref ty, default } => {
this.visit_ty(&ty);
if let Some(default) = default {
this.visit_body(this.tcx.hir().body(default.body));
}
}
}
}
for predicate in generics.predicates {
match predicate {
&hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
ref bounded_ty,
bounds,
ref bound_generic_params,
origin,
..
}) => {
let (lifetimes, binders): (FxIndexMap<LocalDefId, Region>, Vec<_>) =
bound_generic_params
.iter()
.filter(|param| {
matches!(param.kind, GenericParamKind::Lifetime { .. })
})
.enumerate()
.map(|(late_bound_idx, param)| {
let pair =
Region::late(late_bound_idx as u32, this.tcx.hir(), param);
let r = late_region_as_bound_region(this.tcx, &pair.1);
(pair, r)
})
.unzip();
this.map.late_bound_vars.insert(bounded_ty.hir_id, binders.clone());
let next_early_index = this.next_early_index();
// Even if there are no lifetimes defined here, we still wrap it in a binder
// scope. If there happens to be a nested poly trait ref (an error), that
// will be `Concatenating` anyways, so we don't have to worry about the depth
// being wrong.
let scope = Scope::Binder {
hir_id: bounded_ty.hir_id,
lifetimes,
s: this.scope,
next_early_index,
opaque_type_parent: false,
scope_type: BinderScopeType::Normal,
where_bound_origin: Some(origin),
};
this.with(scope, |this| {
this.visit_ty(&bounded_ty);
walk_list!(this, visit_param_bound, bounds);
})
}
&hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
ref lifetime,
bounds,
..
}) => {
this.visit_lifetime(lifetime);
walk_list!(this, visit_param_bound, bounds);
if lifetime.name != hir::LifetimeName::Static {
for bound in bounds {
let hir::GenericBound::Outlives(ref lt) = bound else {
continue;
};
if lt.name != hir::LifetimeName::Static {
continue;
}
this.insert_lifetime(lt, Region::Static);
this.tcx
.sess
.struct_span_warn(
lifetime.span,
&format!(
"unnecessary lifetime parameter `{}`",
lifetime.name.ident(),
),
)
.help(&format!(
"you can use the `'static` lifetime directly, in place of `{}`",
lifetime.name.ident(),
))
.emit();
}
}
}
&hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
ref lhs_ty,
ref rhs_ty,
..
}) => {
this.visit_ty(lhs_ty);
this.visit_ty(rhs_ty);
}
}
}
})
}
fn visit_param_bound(&mut self, bound: &'tcx hir::GenericBound<'tcx>) {
match bound {
hir::GenericBound::LangItemTrait(_, _, hir_id, _) => {
// FIXME(jackh726): This is pretty weird. `LangItemTrait` doesn't go
// through the regular poly trait ref code, so we don't get another
// chance to introduce a binder. For now, I'm keeping the existing logic
// of "if there isn't a Binder scope above us, add one", but I
// imagine there's a better way to go about this.
let (binders, scope_type) = self.poly_trait_ref_binder_info();
self.map.late_bound_vars.insert(*hir_id, binders);
let scope = Scope::Binder {
hir_id: *hir_id,
lifetimes: FxIndexMap::default(),
s: self.scope,
next_early_index: self.next_early_index(),
opaque_type_parent: false,
scope_type,
where_bound_origin: None,
};
self.with(scope, |this| {
intravisit::walk_param_bound(this, bound);
});
}
_ => intravisit::walk_param_bound(self, bound),
}
}
fn visit_poly_trait_ref(
&mut self,
trait_ref: &'tcx hir::PolyTraitRef<'tcx>,
_modifier: hir::TraitBoundModifier,
) {
debug!("visit_poly_trait_ref(trait_ref={:?})", trait_ref);
let next_early_index = self.next_early_index();
let (mut binders, scope_type) = self.poly_trait_ref_binder_info();
let initial_bound_vars = binders.len() as u32;
let mut lifetimes: FxIndexMap<LocalDefId, Region> = FxIndexMap::default();
let binders_iter = trait_ref
.bound_generic_params
.iter()
.filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. }))
.enumerate()
.map(|(late_bound_idx, param)| {
let pair =
Region::late(initial_bound_vars + late_bound_idx as u32, self.tcx.hir(), param);
let r = late_region_as_bound_region(self.tcx, &pair.1);
lifetimes.insert(pair.0, pair.1);
r
});
binders.extend(binders_iter);
debug!(?binders);
self.map.late_bound_vars.insert(trait_ref.trait_ref.hir_ref_id, binders);
// Always introduce a scope here, even if this is in a where clause and
// we introduced the binders around the bounded Ty. In that case, we
// just reuse the concatenation functionality also present in nested trait
// refs.
let scope = Scope::Binder {
hir_id: trait_ref.trait_ref.hir_ref_id,
lifetimes,
s: self.scope,
next_early_index,
opaque_type_parent: false,
scope_type,
where_bound_origin: None,
};
self.with(scope, |this| {
walk_list!(this, visit_generic_param, trait_ref.bound_generic_params);
this.visit_trait_ref(&trait_ref.trait_ref);
});
}
}
fn compute_object_lifetime_defaults<'tcx>(
tcx: TyCtxt<'tcx>,
item: &hir::Item<'_>,
) -> Option<&'tcx [ObjectLifetimeDefault]> {
match item.kind {
hir::ItemKind::Struct(_, ref generics)
| hir::ItemKind::Union(_, ref generics)
| hir::ItemKind::Enum(_, ref generics)
| hir::ItemKind::OpaqueTy(hir::OpaqueTy {
ref generics,
origin: hir::OpaqueTyOrigin::TyAlias,
..
})
| hir::ItemKind::TyAlias(_, ref generics)
| hir::ItemKind::Trait(_, _, ref generics, ..) => {
let result = object_lifetime_defaults_for_item(tcx, generics);
// Debugging aid.
let attrs = tcx.hir().attrs(item.hir_id());
if tcx.sess.contains_name(attrs, sym::rustc_object_lifetime_default) {
let object_lifetime_default_reprs: String = result
.iter()
.map(|set| match *set {
Set1::Empty => "BaseDefault".into(),
Set1::One(Region::Static) => "'static".into(),
Set1::One(Region::EarlyBound(mut i, _)) => generics
.params
.iter()
.find_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
if i == 0 {
return Some(param.name.ident().to_string().into());
}
i -= 1;
None
}
_ => None,
})
.unwrap(),
Set1::One(_) => bug!(),
Set1::Many => "Ambiguous".into(),
})
.collect::<Vec<Cow<'static, str>>>()
.join(",");
tcx.sess.span_err(item.span, &object_lifetime_default_reprs);
}
Some(result)
}
_ => None,
}
}
/// Scan the bounds and where-clauses on parameters to extract bounds
/// of the form `T:'a` so as to determine the `ObjectLifetimeDefault`
/// for each type parameter.
fn object_lifetime_defaults_for_item<'tcx>(
tcx: TyCtxt<'tcx>,
generics: &hir::Generics<'_>,
) -> &'tcx [ObjectLifetimeDefault] {
fn add_bounds(set: &mut Set1<hir::LifetimeName>, bounds: &[hir::GenericBound<'_>]) {
for bound in bounds {
if let hir::GenericBound::Outlives(ref lifetime) = *bound {
set.insert(lifetime.name.normalize_to_macros_2_0());
}
}
}
let process_param = |param: &hir::GenericParam<'_>| match param.kind {
GenericParamKind::Lifetime { .. } => None,
GenericParamKind::Type { .. } => {
let mut set = Set1::Empty;
let param_def_id = tcx.hir().local_def_id(param.hir_id);
for predicate in generics.predicates {
// Look for `type: ...` where clauses.
let hir::WherePredicate::BoundPredicate(ref data) = *predicate else { continue };
// Ignore `for<'a> type: ...` as they can change what
// lifetimes mean (although we could "just" handle it).
if !data.bound_generic_params.is_empty() {
continue;
}
let res = match data.bounded_ty.kind {
hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => path.res,
_ => continue,
};
if res == Res::Def(DefKind::TyParam, param_def_id.to_def_id()) {
add_bounds(&mut set, &data.bounds);
}
}
Some(match set {
Set1::Empty => Set1::Empty,
Set1::One(name) => {
if name == hir::LifetimeName::Static {
Set1::One(Region::Static)
} else {
generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
let param_def_id = tcx.hir().local_def_id(param.hir_id);
Some((
param_def_id,
hir::LifetimeName::Param(param_def_id, param.name),
))
}
_ => None,
})
.enumerate()
.find(|&(_, (_, lt_name))| lt_name == name)
.map_or(Set1::Many, |(i, (def_id, _))| {
Set1::One(Region::EarlyBound(i as u32, def_id.to_def_id()))
})
}
}
Set1::Many => Set1::Many,
})
}
GenericParamKind::Const { .. } => {
// Generic consts don't impose any constraints.
//
// We still store a dummy value here to allow generic parameters
// in an arbitrary order.
Some(Set1::Empty)
}
};
tcx.arena.alloc_from_iter(generics.params.iter().filter_map(process_param))
}
impl<'a, 'tcx> LifetimeContext<'a, 'tcx> {
fn with<F>(&mut self, wrap_scope: Scope<'_>, f: F)
where
F: for<'b> FnOnce(&mut LifetimeContext<'b, 'tcx>),
{
let LifetimeContext { tcx, map, .. } = self;
let xcrate_object_lifetime_defaults = take(&mut self.xcrate_object_lifetime_defaults);
let mut this = LifetimeContext {
tcx: *tcx,
map,
scope: &wrap_scope,
trait_definition_only: self.trait_definition_only,
xcrate_object_lifetime_defaults,
};
let span = tracing::debug_span!("scope", scope = ?TruncatedScopeDebug(&this.scope));
{
let _enter = span.enter();
f(&mut this);
}
self.xcrate_object_lifetime_defaults = this.xcrate_object_lifetime_defaults;
}
/// Visits self by adding a scope and handling recursive walk over the contents with `walk`.
///
/// Handles visiting fns and methods. These are a bit complicated because we must distinguish
/// early- vs late-bound lifetime parameters. We do this by checking which lifetimes appear
/// within type bounds; those are early bound lifetimes, and the rest are late bound.
///
/// For example:
///
/// fn foo<'a,'b,'c,T:Trait<'b>>(...)
///
/// Here `'a` and `'c` are late bound but `'b` is early bound. Note that early- and late-bound
/// lifetimes may be interspersed together.
///
/// If early bound lifetimes are present, we separate them into their own list (and likewise
/// for late bound). They will be numbered sequentially, starting from the lowest index that is
/// already in scope (for a fn item, that will be 0, but for a method it might not be). Late
/// bound lifetimes are resolved by name and associated with a binder ID (`binder_id`), so the
/// ordering is not important there.
fn visit_early_late<F>(
&mut self,
parent_id: Option<LocalDefId>,
hir_id: hir::HirId,
generics: &'tcx hir::Generics<'tcx>,
walk: F,
) where
F: for<'b, 'c> FnOnce(&'b mut LifetimeContext<'c, 'tcx>),
{
// Find the start of nested early scopes, e.g., in methods.
let mut next_early_index = 0;
if let Some(parent_id) = parent_id {
let parent = self.tcx.hir().expect_item(parent_id);
if sub_items_have_self_param(&parent.kind) {
next_early_index += 1; // Self comes before lifetimes
}
match parent.kind {
hir::ItemKind::Trait(_, _, ref generics, ..)
| hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => {
next_early_index += generics.params.len() as u32;
}
_ => {}
}
}
let mut non_lifetime_count = 0;
let mut named_late_bound_vars = 0;
let lifetimes: FxIndexMap<LocalDefId, Region> = generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
if self.tcx.is_late_bound(param.hir_id) {
let late_bound_idx = named_late_bound_vars;
named_late_bound_vars += 1;
Some(Region::late(late_bound_idx, self.tcx.hir(), param))
} else {
Some(Region::early(self.tcx.hir(), &mut next_early_index, param))
}
}
GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
non_lifetime_count += 1;
None
}
})
.collect();
let next_early_index = next_early_index + non_lifetime_count;
let binders: Vec<_> = generics
.params
.iter()
.filter(|param| {
matches!(param.kind, GenericParamKind::Lifetime { .. })
&& self.tcx.is_late_bound(param.hir_id)
})
.enumerate()
.map(|(late_bound_idx, param)| {
let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param);
late_region_as_bound_region(self.tcx, &pair.1)
})
.collect();
self.map.late_bound_vars.insert(hir_id, binders);
let scope = Scope::Binder {
hir_id,
lifetimes,
next_early_index,
s: self.scope,
opaque_type_parent: true,
scope_type: BinderScopeType::Normal,
where_bound_origin: None,
};
self.with(scope, walk);
}
fn next_early_index_helper(&self, only_opaque_type_parent: bool) -> u32 {
let mut scope = self.scope;
loop {
match *scope {
Scope::Root => return 0,
Scope::Binder { next_early_index, opaque_type_parent, .. }
if (!only_opaque_type_parent || opaque_type_parent) =>
{
return next_early_index;
}
Scope::Binder { s, .. }
| Scope::Body { s, .. }
| Scope::Elision { s, .. }
| Scope::ObjectLifetimeDefault { s, .. }
| Scope::Supertrait { s, .. }
| Scope::TraitRefBoundary { s, .. } => scope = s,
}
}
}
/// Returns the next index one would use for an early-bound-region
/// if extending the current scope.
fn next_early_index(&self) -> u32 {
self.next_early_index_helper(true)
}
/// Returns the next index one would use for an `impl Trait` that
/// is being converted into an opaque type alias `impl Trait`. This will be the
/// next early index from the enclosing item, for the most
/// part. See the `opaque_type_parent` field for more info.
fn next_early_index_for_opaque_type(&self) -> u32 {
self.next_early_index_helper(false)
}
#[tracing::instrument(level = "debug", skip(self))]
fn resolve_lifetime_ref(
&mut self,
region_def_id: LocalDefId,
lifetime_ref: &'tcx hir::Lifetime,
) {
// Walk up the scope chain, tracking the number of fn scopes
// that we pass through, until we find a lifetime with the
// given name or we run out of scopes.
// search.
let mut late_depth = 0;
let mut scope = self.scope;
let mut outermost_body = None;
let result = loop {
match *scope {
Scope::Body { id, s } => {
outermost_body = Some(id);
scope = s;
}
Scope::Root => {
break None;
}
Scope::Binder { ref lifetimes, scope_type, s, where_bound_origin, .. } => {
if let Some(&def) = lifetimes.get(&region_def_id) {
break Some(def.shifted(late_depth));
}
match scope_type {
BinderScopeType::Normal => late_depth += 1,
BinderScopeType::Concatenating => {}
}
// Fresh lifetimes in APIT used to be allowed in async fns and forbidden in
// regular fns.
if let Some(hir::PredicateOrigin::ImplTrait) = where_bound_origin
&& let hir::LifetimeName::Param(_, hir::ParamName::Fresh) = lifetime_ref.name
&& let hir::IsAsync::NotAsync = self.tcx.asyncness(lifetime_ref.hir_id.owner)
&& !self.tcx.features().anonymous_lifetime_in_impl_trait
{
rustc_session::parse::feature_err(
&self.tcx.sess.parse_sess,
sym::anonymous_lifetime_in_impl_trait,
lifetime_ref.span,
"anonymous lifetimes in `impl Trait` are unstable",
).emit();
return;
}
scope = s;
}
Scope::Elision { s, .. }
| Scope::ObjectLifetimeDefault { s, .. }
| Scope::Supertrait { s, .. }
| Scope::TraitRefBoundary { s, .. } => {
scope = s;
}
}
};
if let Some(mut def) = result {
if let Region::EarlyBound(..) = def {
// Do not free early-bound regions, only late-bound ones.
} else if let Some(body_id) = outermost_body {
let fn_id = self.tcx.hir().body_owner(body_id);
match self.tcx.hir().get(fn_id) {
Node::Item(&hir::Item { kind: hir::ItemKind::Fn(..), .. })
| Node::TraitItem(&hir::TraitItem {
kind: hir::TraitItemKind::Fn(..), ..
})
| Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) => {
let scope = self.tcx.hir().local_def_id(fn_id);
def = Region::Free(scope.to_def_id(), def.id().unwrap());
}
_ => {}
}
}
self.insert_lifetime(lifetime_ref, def);
return;
}
// We may fail to resolve higher-ranked lifetimes that are mentionned by APIT.
// AST-based resolution does not care for impl-trait desugaring, which are the
// responibility of lowering. This may create a mismatch between the resolution
// AST found (`region_def_id`) which points to HRTB, and what HIR allows.
// ```
// fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {}
// ```
//
// In such case, walk back the binders to diagnose it properly.
let mut scope = self.scope;
loop {
match *scope {
Scope::Binder {
where_bound_origin: Some(hir::PredicateOrigin::ImplTrait), ..
} => {
let mut err = self.tcx.sess.struct_span_err(
lifetime_ref.span,
"`impl Trait` can only mention lifetimes bound at the fn or impl level",
);
err.span_note(self.tcx.def_span(region_def_id), "lifetime declared here");
err.emit();
return;
}
Scope::Root => break,
Scope::Binder { s, .. }
| Scope::Body { s, .. }
| Scope::Elision { s, .. }
| Scope::ObjectLifetimeDefault { s, .. }
| Scope::Supertrait { s, .. }
| Scope::TraitRefBoundary { s, .. } => {
scope = s;
}
}
}
self.tcx.sess.delay_span_bug(
lifetime_ref.span,
&format!("Could not resolve {:?} in scope {:#?}", lifetime_ref, self.scope,),
);
}
fn visit_segment_args(
&mut self,
res: Res,
depth: usize,
generic_args: &'tcx hir::GenericArgs<'tcx>,
) {
debug!(
"visit_segment_args(res={:?}, depth={:?}, generic_args={:?})",
res, depth, generic_args,
);
if generic_args.parenthesized {
self.visit_fn_like_elision(
generic_args.inputs(),
Some(generic_args.bindings[0].ty()),
false,
);
return;
}
for arg in generic_args.args {
if let hir::GenericArg::Lifetime(lt) = arg {
self.visit_lifetime(lt);
}
}
// Figure out if this is a type/trait segment,
// which requires object lifetime defaults.
let parent_def_id = |this: &mut Self, def_id: DefId| {
let def_key = this.tcx.def_key(def_id);
DefId { krate: def_id.krate, index: def_key.parent.expect("missing parent") }
};
let type_def_id = match res {
Res::Def(DefKind::AssocTy, def_id) if depth == 1 => Some(parent_def_id(self, def_id)),
Res::Def(DefKind::Variant, def_id) if depth == 0 => Some(parent_def_id(self, def_id)),
Res::Def(
DefKind::Struct
| DefKind::Union
| DefKind::Enum
| DefKind::TyAlias
| DefKind::Trait,
def_id,
) if depth == 0 => Some(def_id),
_ => None,
};
debug!("visit_segment_args: type_def_id={:?}", type_def_id);
// Compute a vector of defaults, one for each type parameter,
// per the rules given in RFCs 599 and 1156. Example:
//
// ```rust
// struct Foo<'a, T: 'a, U> { }
// ```
//
// If you have `Foo<'x, dyn Bar, dyn Baz>`, we want to default
// `dyn Bar` to `dyn Bar + 'x` (because of the `T: 'a` bound)
// and `dyn Baz` to `dyn Baz + 'static` (because there is no
// such bound).
//
// Therefore, we would compute `object_lifetime_defaults` to a
// vector like `['x, 'static]`. Note that the vector only
// includes type parameters.
let object_lifetime_defaults = type_def_id.map_or_else(Vec::new, |def_id| {
let in_body = {
let mut scope = self.scope;
loop {
match *scope {
Scope::Root => break false,
Scope::Body { .. } => break true,
Scope::Binder { s, .. }
| Scope::Elision { s, .. }
| Scope::ObjectLifetimeDefault { s, .. }
| Scope::Supertrait { s, .. }
| Scope::TraitRefBoundary { s, .. } => {
scope = s;
}
}
}
};
let map = &self.map;
let set_to_region = |set: &ObjectLifetimeDefault| match *set {
Set1::Empty => {
if in_body {
None
} else {
Some(Region::Static)
}
}
Set1::One(r) => {
let lifetimes = generic_args.args.iter().filter_map(|arg| match arg {
GenericArg::Lifetime(lt) => Some(lt),
_ => None,
});
r.subst(lifetimes, map)
}
Set1::Many => None,
};
if let Some(def_id) = def_id.as_local() {
let id = self.tcx.hir().local_def_id_to_hir_id(def_id);
self.tcx
.object_lifetime_defaults(id.owner)
.unwrap()
.iter()
.map(set_to_region)
.collect()
} else {
let tcx = self.tcx;
self.xcrate_object_lifetime_defaults
.entry(def_id)
.or_insert_with(|| {
tcx.generics_of(def_id)
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamDefKind::Type { object_lifetime_default, .. } => {
Some(object_lifetime_default)
}
GenericParamDefKind::Const { .. } => Some(Set1::Empty),
GenericParamDefKind::Lifetime => None,
})
.collect()
})
.iter()
.map(set_to_region)
.collect()
}
});
debug!("visit_segment_args: object_lifetime_defaults={:?}", object_lifetime_defaults);
let mut i = 0;
for arg in generic_args.args {
match arg {
GenericArg::Lifetime(_) => {}
GenericArg::Type(ty) => {
if let Some(&lt) = object_lifetime_defaults.get(i) {
let scope = Scope::ObjectLifetimeDefault { lifetime: lt, s: self.scope };
self.with(scope, |this| this.visit_ty(ty));
} else {
self.visit_ty(ty);
}
i += 1;
}
GenericArg::Const(ct) => {
self.visit_anon_const(&ct.value);
i += 1;
}
GenericArg::Infer(inf) => {
self.visit_id(inf.hir_id);
i += 1;
}
}
}
// Hack: when resolving the type `XX` in binding like `dyn
// Foo<'b, Item = XX>`, the current object-lifetime default
// would be to examine the trait `Foo` to check whether it has
// a lifetime bound declared on `Item`. e.g., if `Foo` is
// declared like so, then the default object lifetime bound in
// `XX` should be `'b`:
//
// ```rust
// trait Foo<'a> {
// type Item: 'a;
// }
// ```
//
// but if we just have `type Item;`, then it would be
// `'static`. However, we don't get all of this logic correct.
//
// Instead, we do something hacky: if there are no lifetime parameters
// to the trait, then we simply use a default object lifetime
// bound of `'static`, because there is no other possibility. On the other hand,
// if there ARE lifetime parameters, then we require the user to give an
// explicit bound for now.
//
// This is intended to leave room for us to implement the
// correct behavior in the future.
let has_lifetime_parameter =
generic_args.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)));
// Resolve lifetimes found in the bindings, so either in the type `XX` in `Item = XX` or
// in the trait ref `YY<...>` in `Item: YY<...>`.
for binding in generic_args.bindings {
let scope = Scope::ObjectLifetimeDefault {
lifetime: if has_lifetime_parameter { None } else { Some(Region::Static) },
s: self.scope,
};
if let Some(type_def_id) = type_def_id {
let lifetimes = LifetimeContext::supertrait_hrtb_lifetimes(
self.tcx,
type_def_id,
binding.ident,
);
self.with(scope, |this| {
let scope = Scope::Supertrait {
lifetimes: lifetimes.unwrap_or_default(),
s: this.scope,
};
this.with(scope, |this| this.visit_assoc_type_binding(binding));
});
} else {
self.with(scope, |this| this.visit_assoc_type_binding(binding));
}
}
}
/// Returns all the late-bound vars that come into scope from supertrait HRTBs, based on the
/// associated type name and starting trait.
/// For example, imagine we have
/// ```ignore (illustrative)
/// trait Foo<'a, 'b> {
/// type As;
/// }
/// trait Bar<'b>: for<'a> Foo<'a, 'b> {}
/// trait Bar: for<'b> Bar<'b> {}
/// ```
/// In this case, if we wanted to the supertrait HRTB lifetimes for `As` on
/// the starting trait `Bar`, we would return `Some(['b, 'a])`.
fn supertrait_hrtb_lifetimes(
tcx: TyCtxt<'tcx>,
def_id: DefId,
assoc_name: Ident,
) -> Option<Vec<ty::BoundVariableKind>> {
let trait_defines_associated_type_named = |trait_def_id: DefId| {
tcx.associated_items(trait_def_id)
.find_by_name_and_kind(tcx, assoc_name, ty::AssocKind::Type, trait_def_id)
.is_some()
};
use smallvec::{smallvec, SmallVec};
let mut stack: SmallVec<[(DefId, SmallVec<[ty::BoundVariableKind; 8]>); 8]> =
smallvec![(def_id, smallvec![])];
let mut visited: FxHashSet<DefId> = FxHashSet::default();
loop {
let Some((def_id, bound_vars)) = stack.pop() else {
break None;
};
// See issue #83753. If someone writes an associated type on a non-trait, just treat it as
// there being no supertrait HRTBs.
match tcx.def_kind(def_id) {
DefKind::Trait | DefKind::TraitAlias | DefKind::Impl => {}
_ => break None,
}
if trait_defines_associated_type_named(def_id) {
break Some(bound_vars.into_iter().collect());
}
let predicates =
tcx.super_predicates_that_define_assoc_type((def_id, Some(assoc_name)));
let obligations = predicates.predicates.iter().filter_map(|&(pred, _)| {
let bound_predicate = pred.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Trait(data) => {
// The order here needs to match what we would get from `subst_supertrait`
let pred_bound_vars = bound_predicate.bound_vars();
let mut all_bound_vars = bound_vars.clone();
all_bound_vars.extend(pred_bound_vars.iter());
let super_def_id = data.trait_ref.def_id;
Some((super_def_id, all_bound_vars))
}
_ => None,
}
});
let obligations = obligations.filter(|o| visited.insert(o.0));
stack.extend(obligations);
}
}
#[tracing::instrument(level = "debug", skip(self))]
fn visit_fn_like_elision(
&mut self,
inputs: &'tcx [hir::Ty<'tcx>],
output: Option<&'tcx hir::Ty<'tcx>>,
in_closure: bool,
) {
self.with(Scope::Elision { s: self.scope }, |this| {
for input in inputs {
this.visit_ty(input);
}
if !in_closure && let Some(output) = output {
this.visit_ty(output);
}
});
if in_closure && let Some(output) = output {
self.visit_ty(output);
}
}
fn resolve_object_lifetime_default(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
debug!("resolve_object_lifetime_default(lifetime_ref={:?})", lifetime_ref);
let mut late_depth = 0;
let mut scope = self.scope;
let lifetime = loop {
match *scope {
Scope::Binder { s, scope_type, .. } => {
match scope_type {
BinderScopeType::Normal => late_depth += 1,
BinderScopeType::Concatenating => {}
}
scope = s;
}
Scope::Root | Scope::Elision { .. } => break Region::Static,
Scope::Body { .. } | Scope::ObjectLifetimeDefault { lifetime: None, .. } => return,
Scope::ObjectLifetimeDefault { lifetime: Some(l), .. } => break l,
Scope::Supertrait { s, .. } | Scope::TraitRefBoundary { s, .. } => {
scope = s;
}
}
};
self.insert_lifetime(lifetime_ref, lifetime.shifted(late_depth));
}
#[tracing::instrument(level = "debug", skip(self))]
fn insert_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime, def: Region) {
debug!(
node = ?self.tcx.hir().node_to_string(lifetime_ref.hir_id),
span = ?self.tcx.sess.source_map().span_to_diagnostic_string(lifetime_ref.span)
);
self.map.defs.insert(lifetime_ref.hir_id, def);
}
/// Sometimes we resolve a lifetime, but later find that it is an
/// error (esp. around impl trait). In that case, we remove the
/// entry into `map.defs` so as not to confuse later code.
fn uninsert_lifetime_on_error(&mut self, lifetime_ref: &'tcx hir::Lifetime, bad_def: Region) {
let old_value = self.map.defs.remove(&lifetime_ref.hir_id);
assert_eq!(old_value, Some(bad_def));
}
}
/// Detects late-bound lifetimes and inserts them into
/// `late_bound`.
///
/// A region declared on a fn is **late-bound** if:
/// - it is constrained by an argument type;
/// - it does not appear in a where-clause.
///
/// "Constrained" basically means that it appears in any type but
/// not amongst the inputs to a projection. In other words, `<&'a
/// T as Trait<''b>>::Foo` does not constrain `'a` or `'b`.
fn is_late_bound_map(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option<&FxIndexSet<LocalDefId>> {
let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
let decl = tcx.hir().fn_decl_by_hir_id(hir_id)?;
let generics = tcx.hir().get_generics(def_id)?;
let mut late_bound = FxIndexSet::default();
let mut constrained_by_input = ConstrainedCollector::default();
for arg_ty in decl.inputs {
constrained_by_input.visit_ty(arg_ty);
}
let mut appears_in_output = AllCollector::default();
intravisit::walk_fn_ret_ty(&mut appears_in_output, &decl.output);
debug!(?constrained_by_input.regions);
// Walk the lifetimes that appear in where clauses.
//
// Subtle point: because we disallow nested bindings, we can just
// ignore binders here and scrape up all names we see.
let mut appears_in_where_clause = AllCollector::default();
appears_in_where_clause.visit_generics(generics);
debug!(?appears_in_where_clause.regions);
// Late bound regions are those that:
// - appear in the inputs
// - do not appear in the where-clauses
// - are not implicitly captured by `impl Trait`
for param in generics.params {
match param.kind {
hir::GenericParamKind::Lifetime { .. } => { /* fall through */ }
// Neither types nor consts are late-bound.
hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => continue,
}
let param_def_id = tcx.hir().local_def_id(param.hir_id);
// appears in the where clauses? early-bound.
if appears_in_where_clause.regions.contains(&param_def_id) {
continue;
}
// does not appear in the inputs, but appears in the return type? early-bound.
if !constrained_by_input.regions.contains(&param_def_id)
&& appears_in_output.regions.contains(&param_def_id)
{
continue;
}
debug!("lifetime {:?} with id {:?} is late-bound", param.name.ident(), param.hir_id);
let inserted = late_bound.insert(param_def_id);
assert!(inserted, "visited lifetime {:?} twice", param.hir_id);
}
debug!(?late_bound);
return Some(tcx.arena.alloc(late_bound));
#[derive(Default)]
struct ConstrainedCollector {
regions: FxHashSet<LocalDefId>,
}
impl<'v> Visitor<'v> for ConstrainedCollector {
fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
match ty.kind {
hir::TyKind::Path(
hir::QPath::Resolved(Some(_), _) | hir::QPath::TypeRelative(..),
) => {
// ignore lifetimes appearing in associated type
// projections, as they are not *constrained*
// (defined above)
}
hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
// consider only the lifetimes on the final
// segment; I am not sure it's even currently
// valid to have them elsewhere, but even if it
// is, those would be potentially inputs to
// projections
if let Some(last_segment) = path.segments.last() {
self.visit_path_segment(path.span, last_segment);
}
}
_ => {
intravisit::walk_ty(self, ty);
}
}
}
fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
if let hir::LifetimeName::Param(def_id, _) = lifetime_ref.name {
self.regions.insert(def_id);
}
}
}
#[derive(Default)]
struct AllCollector {
regions: FxHashSet<LocalDefId>,
}
impl<'v> Visitor<'v> for AllCollector {
fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
if let hir::LifetimeName::Param(def_id, _) = lifetime_ref.name {
self.regions.insert(def_id);
}
}
}
}