| //! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on |
| //! how this works. |
| //! |
| //! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html |
| //! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html |
| |
| use crate::infer::outlives::env::OutlivesEnvironment; |
| use crate::infer::{CombinedSnapshot, InferOk}; |
| use crate::traits::select::IntercrateAmbiguityCause; |
| use crate::traits::util::impl_subject_and_oblig; |
| use crate::traits::SkipLeakCheck; |
| use crate::traits::{ |
| self, FulfillmentContext, Normalized, Obligation, ObligationCause, PredicateObligation, |
| PredicateObligations, SelectionContext, TraitEngineExt, |
| }; |
| use rustc_data_structures::fx::FxIndexSet; |
| use rustc_errors::Diagnostic; |
| use rustc_hir::def_id::{DefId, LOCAL_CRATE}; |
| use rustc_infer::infer::{InferCtxt, TyCtxtInferExt}; |
| use rustc_infer::traits::{util, TraitEngine}; |
| use rustc_middle::traits::specialization_graph::OverlapMode; |
| use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams}; |
| use rustc_middle::ty::subst::Subst; |
| use rustc_middle::ty::visit::TypeVisitable; |
| use rustc_middle::ty::{self, ImplSubject, Ty, TyCtxt, TypeVisitor}; |
| use rustc_span::symbol::sym; |
| use rustc_span::DUMMY_SP; |
| use std::fmt::Debug; |
| use std::iter; |
| use std::ops::ControlFlow; |
| |
| /// Whether we do the orphan check relative to this crate or |
| /// to some remote crate. |
| #[derive(Copy, Clone, Debug)] |
| enum InCrate { |
| Local, |
| Remote, |
| } |
| |
| #[derive(Debug, Copy, Clone)] |
| pub enum Conflict { |
| Upstream, |
| Downstream, |
| } |
| |
| pub struct OverlapResult<'tcx> { |
| pub impl_header: ty::ImplHeader<'tcx>, |
| pub intercrate_ambiguity_causes: FxIndexSet<IntercrateAmbiguityCause>, |
| |
| /// `true` if the overlap might've been permitted before the shift |
| /// to universes. |
| pub involves_placeholder: bool, |
| } |
| |
| pub fn add_placeholder_note(err: &mut Diagnostic) { |
| err.note( |
| "this behavior recently changed as a result of a bug fix; \ |
| see rust-lang/rust#56105 for details", |
| ); |
| } |
| |
| /// If there are types that satisfy both impls, invokes `on_overlap` |
| /// with a suitably-freshened `ImplHeader` with those types |
| /// substituted. Otherwise, invokes `no_overlap`. |
| #[instrument(skip(tcx, skip_leak_check, on_overlap, no_overlap), level = "debug")] |
| pub fn overlapping_impls<F1, F2, R>( |
| tcx: TyCtxt<'_>, |
| impl1_def_id: DefId, |
| impl2_def_id: DefId, |
| skip_leak_check: SkipLeakCheck, |
| overlap_mode: OverlapMode, |
| on_overlap: F1, |
| no_overlap: F2, |
| ) -> R |
| where |
| F1: FnOnce(OverlapResult<'_>) -> R, |
| F2: FnOnce() -> R, |
| { |
| // Before doing expensive operations like entering an inference context, do |
| // a quick check via fast_reject to tell if the impl headers could possibly |
| // unify. |
| let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsInfer }; |
| let impl1_ref = tcx.impl_trait_ref(impl1_def_id); |
| let impl2_ref = tcx.impl_trait_ref(impl2_def_id); |
| let may_overlap = match (impl1_ref, impl2_ref) { |
| (Some(a), Some(b)) => iter::zip(a.substs, b.substs) |
| .all(|(arg1, arg2)| drcx.generic_args_may_unify(arg1, arg2)), |
| (None, None) => { |
| let self_ty1 = tcx.type_of(impl1_def_id); |
| let self_ty2 = tcx.type_of(impl2_def_id); |
| drcx.types_may_unify(self_ty1, self_ty2) |
| } |
| _ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"), |
| }; |
| |
| if !may_overlap { |
| // Some types involved are definitely different, so the impls couldn't possibly overlap. |
| debug!("overlapping_impls: fast_reject early-exit"); |
| return no_overlap(); |
| } |
| |
| let overlaps = tcx.infer_ctxt().enter(|infcx| { |
| let selcx = &mut SelectionContext::intercrate(&infcx); |
| overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).is_some() |
| }); |
| |
| if !overlaps { |
| return no_overlap(); |
| } |
| |
| // In the case where we detect an error, run the check again, but |
| // this time tracking intercrate ambiguity causes for better |
| // diagnostics. (These take time and can lead to false errors.) |
| tcx.infer_ctxt().enter(|infcx| { |
| let selcx = &mut SelectionContext::intercrate(&infcx); |
| selcx.enable_tracking_intercrate_ambiguity_causes(); |
| on_overlap( |
| overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).unwrap(), |
| ) |
| }) |
| } |
| |
| fn with_fresh_ty_vars<'cx, 'tcx>( |
| selcx: &mut SelectionContext<'cx, 'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| impl_def_id: DefId, |
| ) -> ty::ImplHeader<'tcx> { |
| let tcx = selcx.tcx(); |
| let impl_substs = selcx.infcx().fresh_substs_for_item(DUMMY_SP, impl_def_id); |
| |
| let header = ty::ImplHeader { |
| impl_def_id, |
| self_ty: tcx.bound_type_of(impl_def_id).subst(tcx, impl_substs), |
| trait_ref: tcx.bound_impl_trait_ref(impl_def_id).map(|i| i.subst(tcx, impl_substs)), |
| predicates: tcx.predicates_of(impl_def_id).instantiate(tcx, impl_substs).predicates, |
| }; |
| |
| let Normalized { value: mut header, obligations } = |
| traits::normalize(selcx, param_env, ObligationCause::dummy(), header); |
| |
| header.predicates.extend(obligations.into_iter().map(|o| o.predicate)); |
| header |
| } |
| |
| /// Can both impl `a` and impl `b` be satisfied by a common type (including |
| /// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls. |
| fn overlap<'cx, 'tcx>( |
| selcx: &mut SelectionContext<'cx, 'tcx>, |
| skip_leak_check: SkipLeakCheck, |
| impl1_def_id: DefId, |
| impl2_def_id: DefId, |
| overlap_mode: OverlapMode, |
| ) -> Option<OverlapResult<'tcx>> { |
| debug!( |
| "overlap(impl1_def_id={:?}, impl2_def_id={:?}, overlap_mode={:?})", |
| impl1_def_id, impl2_def_id, overlap_mode |
| ); |
| |
| selcx.infcx().probe_maybe_skip_leak_check(skip_leak_check.is_yes(), |snapshot| { |
| overlap_within_probe(selcx, impl1_def_id, impl2_def_id, overlap_mode, snapshot) |
| }) |
| } |
| |
| fn overlap_within_probe<'cx, 'tcx>( |
| selcx: &mut SelectionContext<'cx, 'tcx>, |
| impl1_def_id: DefId, |
| impl2_def_id: DefId, |
| overlap_mode: OverlapMode, |
| snapshot: &CombinedSnapshot<'_, 'tcx>, |
| ) -> Option<OverlapResult<'tcx>> { |
| let infcx = selcx.infcx(); |
| |
| if overlap_mode.use_negative_impl() { |
| if negative_impl(selcx, impl1_def_id, impl2_def_id) |
| || negative_impl(selcx, impl2_def_id, impl1_def_id) |
| { |
| return None; |
| } |
| } |
| |
| // For the purposes of this check, we don't bring any placeholder |
| // types into scope; instead, we replace the generic types with |
| // fresh type variables, and hence we do our evaluations in an |
| // empty environment. |
| let param_env = ty::ParamEnv::empty(); |
| |
| let impl1_header = with_fresh_ty_vars(selcx, param_env, impl1_def_id); |
| let impl2_header = with_fresh_ty_vars(selcx, param_env, impl2_def_id); |
| |
| let obligations = equate_impl_headers(selcx, &impl1_header, &impl2_header)?; |
| debug!("overlap: unification check succeeded"); |
| |
| if overlap_mode.use_implicit_negative() { |
| if implicit_negative(selcx, param_env, &impl1_header, impl2_header, obligations) { |
| return None; |
| } |
| } |
| |
| // We disable the leak when when creating the `snapshot` by using |
| // `infcx.probe_maybe_disable_leak_check`. |
| if infcx.leak_check(true, snapshot).is_err() { |
| debug!("overlap: leak check failed"); |
| return None; |
| } |
| |
| let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes(); |
| debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes); |
| |
| let involves_placeholder = |
| matches!(selcx.infcx().region_constraints_added_in_snapshot(snapshot), Some(true)); |
| |
| let impl_header = selcx.infcx().resolve_vars_if_possible(impl1_header); |
| Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder }) |
| } |
| |
| fn equate_impl_headers<'cx, 'tcx>( |
| selcx: &mut SelectionContext<'cx, 'tcx>, |
| impl1_header: &ty::ImplHeader<'tcx>, |
| impl2_header: &ty::ImplHeader<'tcx>, |
| ) -> Option<PredicateObligations<'tcx>> { |
| // Do `a` and `b` unify? If not, no overlap. |
| debug!("equate_impl_headers(impl1_header={:?}, impl2_header={:?}", impl1_header, impl2_header); |
| selcx |
| .infcx() |
| .at(&ObligationCause::dummy(), ty::ParamEnv::empty()) |
| .eq_impl_headers(impl1_header, impl2_header) |
| .map(|infer_ok| infer_ok.obligations) |
| .ok() |
| } |
| |
| /// Given impl1 and impl2 check if both impls can be satisfied by a common type (including |
| /// where-clauses) If so, return false, otherwise return true, they are disjoint. |
| fn implicit_negative<'cx, 'tcx>( |
| selcx: &mut SelectionContext<'cx, 'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| impl1_header: &ty::ImplHeader<'tcx>, |
| impl2_header: ty::ImplHeader<'tcx>, |
| obligations: PredicateObligations<'tcx>, |
| ) -> bool { |
| // There's no overlap if obligations are unsatisfiable or if the obligation negated is |
| // satisfied. |
| // |
| // For example, given these two impl headers: |
| // |
| // `impl<'a> From<&'a str> for Box<dyn Error>` |
| // `impl<E> From<E> for Box<dyn Error> where E: Error` |
| // |
| // So we have: |
| // |
| // `Box<dyn Error>: From<&'?a str>` |
| // `Box<dyn Error>: From<?E>` |
| // |
| // After equating the two headers: |
| // |
| // `Box<dyn Error> = Box<dyn Error>` |
| // So, `?E = &'?a str` and then given the where clause `&'?a str: Error`. |
| // |
| // If the obligation `&'?a str: Error` holds, it means that there's overlap. If that doesn't |
| // hold we need to check if `&'?a str: !Error` holds, if doesn't hold there's overlap because |
| // at some point an impl for `&'?a str: Error` could be added. |
| debug!( |
| "implicit_negative(impl1_header={:?}, impl2_header={:?}, obligations={:?})", |
| impl1_header, impl2_header, obligations |
| ); |
| let infcx = selcx.infcx(); |
| let opt_failing_obligation = impl1_header |
| .predicates |
| .iter() |
| .copied() |
| .chain(impl2_header.predicates) |
| .map(|p| infcx.resolve_vars_if_possible(p)) |
| .map(|p| Obligation { |
| cause: ObligationCause::dummy(), |
| param_env, |
| recursion_depth: 0, |
| predicate: p, |
| }) |
| .chain(obligations) |
| .find(|o| !selcx.predicate_may_hold_fatal(o)); |
| |
| if let Some(failing_obligation) = opt_failing_obligation { |
| debug!("overlap: obligation unsatisfiable {:?}", failing_obligation); |
| true |
| } else { |
| false |
| } |
| } |
| |
| /// Given impl1 and impl2 check if both impls are never satisfied by a common type (including |
| /// where-clauses) If so, return true, they are disjoint and false otherwise. |
| fn negative_impl<'cx, 'tcx>( |
| selcx: &mut SelectionContext<'cx, 'tcx>, |
| impl1_def_id: DefId, |
| impl2_def_id: DefId, |
| ) -> bool { |
| debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id); |
| let tcx = selcx.infcx().tcx; |
| |
| // Create an infcx, taking the predicates of impl1 as assumptions: |
| tcx.infer_ctxt().enter(|infcx| { |
| // create a parameter environment corresponding to a (placeholder) instantiation of impl1 |
| let impl_env = tcx.param_env(impl1_def_id); |
| let subject1 = match traits::fully_normalize( |
| &infcx, |
| FulfillmentContext::new(), |
| ObligationCause::dummy(), |
| impl_env, |
| tcx.impl_subject(impl1_def_id), |
| ) { |
| Ok(s) => s, |
| Err(err) => bug!("failed to fully normalize {:?}: {:?}", impl1_def_id, err), |
| }; |
| |
| // Attempt to prove that impl2 applies, given all of the above. |
| let selcx = &mut SelectionContext::new(&infcx); |
| let impl2_substs = infcx.fresh_substs_for_item(DUMMY_SP, impl2_def_id); |
| let (subject2, obligations) = |
| impl_subject_and_oblig(selcx, impl_env, impl2_def_id, impl2_substs); |
| |
| !equate(&infcx, impl_env, subject1, subject2, obligations) |
| }) |
| } |
| |
| fn equate<'cx, 'tcx>( |
| infcx: &InferCtxt<'cx, 'tcx>, |
| impl_env: ty::ParamEnv<'tcx>, |
| subject1: ImplSubject<'tcx>, |
| subject2: ImplSubject<'tcx>, |
| obligations: impl Iterator<Item = PredicateObligation<'tcx>>, |
| ) -> bool { |
| // do the impls unify? If not, not disjoint. |
| let Ok(InferOk { obligations: more_obligations, .. }) = |
| infcx.at(&ObligationCause::dummy(), impl_env).eq(subject1, subject2) |
| else { |
| debug!("explicit_disjoint: {:?} does not unify with {:?}", subject1, subject2); |
| return true; |
| }; |
| |
| let selcx = &mut SelectionContext::new(&infcx); |
| let opt_failing_obligation = obligations |
| .into_iter() |
| .chain(more_obligations) |
| .find(|o| negative_impl_exists(selcx, impl_env, o)); |
| |
| if let Some(failing_obligation) = opt_failing_obligation { |
| debug!("overlap: obligation unsatisfiable {:?}", failing_obligation); |
| false |
| } else { |
| true |
| } |
| } |
| |
| /// Try to prove that a negative impl exist for the given obligation and its super predicates. |
| #[instrument(level = "debug", skip(selcx))] |
| fn negative_impl_exists<'cx, 'tcx>( |
| selcx: &SelectionContext<'cx, 'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| o: &PredicateObligation<'tcx>, |
| ) -> bool { |
| let infcx = &selcx.infcx().fork(); |
| |
| if resolve_negative_obligation(infcx, param_env, o) { |
| return true; |
| } |
| |
| // Try to prove a negative obligation exists for super predicates |
| for o in util::elaborate_predicates(infcx.tcx, iter::once(o.predicate)) { |
| if resolve_negative_obligation(infcx, param_env, &o) { |
| return true; |
| } |
| } |
| |
| false |
| } |
| |
| #[instrument(level = "debug", skip(infcx))] |
| fn resolve_negative_obligation<'cx, 'tcx>( |
| infcx: &InferCtxt<'cx, 'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| o: &PredicateObligation<'tcx>, |
| ) -> bool { |
| let tcx = infcx.tcx; |
| |
| let Some(o) = o.flip_polarity(tcx) else { |
| return false; |
| }; |
| |
| let mut fulfillment_cx = <dyn TraitEngine<'tcx>>::new(infcx.tcx); |
| fulfillment_cx.register_predicate_obligation(infcx, o); |
| |
| let errors = fulfillment_cx.select_all_or_error(infcx); |
| |
| if !errors.is_empty() { |
| return false; |
| } |
| |
| // FIXME -- also add "assumed to be well formed" types into the `outlives_env` |
| let outlives_env = OutlivesEnvironment::new(param_env); |
| infcx.process_registered_region_obligations(outlives_env.region_bound_pairs(), param_env); |
| |
| infcx.resolve_regions(&outlives_env).is_empty() |
| } |
| |
| pub fn trait_ref_is_knowable<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| trait_ref: ty::TraitRef<'tcx>, |
| ) -> Option<Conflict> { |
| debug!("trait_ref_is_knowable(trait_ref={:?})", trait_ref); |
| if orphan_check_trait_ref(tcx, trait_ref, InCrate::Remote).is_ok() { |
| // A downstream or cousin crate is allowed to implement some |
| // substitution of this trait-ref. |
| return Some(Conflict::Downstream); |
| } |
| |
| if trait_ref_is_local_or_fundamental(tcx, trait_ref) { |
| // This is a local or fundamental trait, so future-compatibility |
| // is no concern. We know that downstream/cousin crates are not |
| // allowed to implement a substitution of this trait ref, which |
| // means impls could only come from dependencies of this crate, |
| // which we already know about. |
| return None; |
| } |
| |
| // This is a remote non-fundamental trait, so if another crate |
| // can be the "final owner" of a substitution of this trait-ref, |
| // they are allowed to implement it future-compatibly. |
| // |
| // However, if we are a final owner, then nobody else can be, |
| // and if we are an intermediate owner, then we don't care |
| // about future-compatibility, which means that we're OK if |
| // we are an owner. |
| if orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok() { |
| debug!("trait_ref_is_knowable: orphan check passed"); |
| None |
| } else { |
| debug!("trait_ref_is_knowable: nonlocal, nonfundamental, unowned"); |
| Some(Conflict::Upstream) |
| } |
| } |
| |
| pub fn trait_ref_is_local_or_fundamental<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| trait_ref: ty::TraitRef<'tcx>, |
| ) -> bool { |
| trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental) |
| } |
| |
| pub enum OrphanCheckErr<'tcx> { |
| NonLocalInputType(Vec<(Ty<'tcx>, bool /* Is this the first input type? */)>), |
| UncoveredTy(Ty<'tcx>, Option<Ty<'tcx>>), |
| } |
| |
| /// Checks the coherence orphan rules. `impl_def_id` should be the |
| /// `DefId` of a trait impl. To pass, either the trait must be local, or else |
| /// two conditions must be satisfied: |
| /// |
| /// 1. All type parameters in `Self` must be "covered" by some local type constructor. |
| /// 2. Some local type must appear in `Self`. |
| pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> { |
| debug!("orphan_check({:?})", impl_def_id); |
| |
| // We only except this routine to be invoked on implementations |
| // of a trait, not inherent implementations. |
| let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap(); |
| debug!("orphan_check: trait_ref={:?}", trait_ref); |
| |
| // If the *trait* is local to the crate, ok. |
| if trait_ref.def_id.is_local() { |
| debug!("trait {:?} is local to current crate", trait_ref.def_id); |
| return Ok(()); |
| } |
| |
| orphan_check_trait_ref(tcx, trait_ref, InCrate::Local) |
| } |
| |
| /// Checks whether a trait-ref is potentially implementable by a crate. |
| /// |
| /// The current rule is that a trait-ref orphan checks in a crate C: |
| /// |
| /// 1. Order the parameters in the trait-ref in subst order - Self first, |
| /// others linearly (e.g., `<U as Foo<V, W>>` is U < V < W). |
| /// 2. Of these type parameters, there is at least one type parameter |
| /// in which, walking the type as a tree, you can reach a type local |
| /// to C where all types in-between are fundamental types. Call the |
| /// first such parameter the "local key parameter". |
| /// - e.g., `Box<LocalType>` is OK, because you can visit LocalType |
| /// going through `Box`, which is fundamental. |
| /// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for |
| /// the same reason. |
| /// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's |
| /// not local), `Vec<LocalType>` is bad, because `Vec<->` is between |
| /// the local type and the type parameter. |
| /// 3. Before this local type, no generic type parameter of the impl must |
| /// be reachable through fundamental types. |
| /// - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental. |
| /// - while `impl<T> Trait<LocalType> for Box<T>` results in an error, as `T` is |
| /// reachable through the fundamental type `Box`. |
| /// 4. Every type in the local key parameter not known in C, going |
| /// through the parameter's type tree, must appear only as a subtree of |
| /// a type local to C, with only fundamental types between the type |
| /// local to C and the local key parameter. |
| /// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`) |
| /// is bad, because the only local type with `T` as a subtree is |
| /// `LocalType<T>`, and `Vec<->` is between it and the type parameter. |
| /// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because |
| /// the second occurrence of `T` is not a subtree of *any* local type. |
| /// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of |
| /// `LocalType<Vec<T>>`, which is local and has no types between it and |
| /// the type parameter. |
| /// |
| /// The orphan rules actually serve several different purposes: |
| /// |
| /// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where |
| /// every type local to one crate is unknown in the other) can't implement |
| /// the same trait-ref. This follows because it can be seen that no such |
| /// type can orphan-check in 2 such crates. |
| /// |
| /// To check that a local impl follows the orphan rules, we check it in |
| /// InCrate::Local mode, using type parameters for the "generic" types. |
| /// |
| /// 2. They ground negative reasoning for coherence. If a user wants to |
| /// write both a conditional blanket impl and a specific impl, we need to |
| /// make sure they do not overlap. For example, if we write |
| /// ```ignore (illustrative) |
| /// impl<T> IntoIterator for Vec<T> |
| /// impl<T: Iterator> IntoIterator for T |
| /// ``` |
| /// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0. |
| /// We can observe that this holds in the current crate, but we need to make |
| /// sure this will also hold in all unknown crates (both "independent" crates, |
| /// which we need for link-safety, and also child crates, because we don't want |
| /// child crates to get error for impl conflicts in a *dependency*). |
| /// |
| /// For that, we only allow negative reasoning if, for every assignment to the |
| /// inference variables, every unknown crate would get an orphan error if they |
| /// try to implement this trait-ref. To check for this, we use InCrate::Remote |
| /// mode. That is sound because we already know all the impls from known crates. |
| /// |
| /// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can |
| /// add "non-blanket" impls without breaking negative reasoning in dependent |
| /// crates. This is the "rebalancing coherence" (RFC 1023) restriction. |
| /// |
| /// For that, we only a allow crate to perform negative reasoning on |
| /// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2). |
| /// |
| /// Because we never perform negative reasoning generically (coherence does |
| /// not involve type parameters), this can be interpreted as doing the full |
| /// orphan check (using InCrate::Local mode), substituting non-local known |
| /// types for all inference variables. |
| /// |
| /// This allows for crates to future-compatibly add impls as long as they |
| /// can't apply to types with a key parameter in a child crate - applying |
| /// the rules, this basically means that every type parameter in the impl |
| /// must appear behind a non-fundamental type (because this is not a |
| /// type-system requirement, crate owners might also go for "semantic |
| /// future-compatibility" involving things such as sealed traits, but |
| /// the above requirement is sufficient, and is necessary in "open world" |
| /// cases). |
| /// |
| /// Note that this function is never called for types that have both type |
| /// parameters and inference variables. |
| fn orphan_check_trait_ref<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| trait_ref: ty::TraitRef<'tcx>, |
| in_crate: InCrate, |
| ) -> Result<(), OrphanCheckErr<'tcx>> { |
| debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})", trait_ref, in_crate); |
| |
| if trait_ref.needs_infer() && trait_ref.needs_subst() { |
| bug!( |
| "can't orphan check a trait ref with both params and inference variables {:?}", |
| trait_ref |
| ); |
| } |
| |
| let mut checker = OrphanChecker::new(tcx, in_crate); |
| match trait_ref.visit_with(&mut checker) { |
| ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)), |
| ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(ty)) => { |
| // Does there exist some local type after the `ParamTy`. |
| checker.search_first_local_ty = true; |
| if let Some(OrphanCheckEarlyExit::LocalTy(local_ty)) = |
| trait_ref.visit_with(&mut checker).break_value() |
| { |
| Err(OrphanCheckErr::UncoveredTy(ty, Some(local_ty))) |
| } else { |
| Err(OrphanCheckErr::UncoveredTy(ty, None)) |
| } |
| } |
| ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(_)) => Ok(()), |
| } |
| } |
| |
| struct OrphanChecker<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| in_crate: InCrate, |
| in_self_ty: bool, |
| /// Ignore orphan check failures and exclusively search for the first |
| /// local type. |
| search_first_local_ty: bool, |
| non_local_tys: Vec<(Ty<'tcx>, bool)>, |
| } |
| |
| impl<'tcx> OrphanChecker<'tcx> { |
| fn new(tcx: TyCtxt<'tcx>, in_crate: InCrate) -> Self { |
| OrphanChecker { |
| tcx, |
| in_crate, |
| in_self_ty: true, |
| search_first_local_ty: false, |
| non_local_tys: Vec::new(), |
| } |
| } |
| |
| fn found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> { |
| self.non_local_tys.push((t, self.in_self_ty)); |
| ControlFlow::CONTINUE |
| } |
| |
| fn found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> { |
| if self.search_first_local_ty { |
| ControlFlow::CONTINUE |
| } else { |
| ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(t)) |
| } |
| } |
| |
| fn def_id_is_local(&mut self, def_id: DefId) -> bool { |
| match self.in_crate { |
| InCrate::Local => def_id.is_local(), |
| InCrate::Remote => false, |
| } |
| } |
| } |
| |
| enum OrphanCheckEarlyExit<'tcx> { |
| ParamTy(Ty<'tcx>), |
| LocalTy(Ty<'tcx>), |
| } |
| |
| impl<'tcx> TypeVisitor<'tcx> for OrphanChecker<'tcx> { |
| type BreakTy = OrphanCheckEarlyExit<'tcx>; |
| fn visit_region(&mut self, _r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> { |
| ControlFlow::CONTINUE |
| } |
| |
| fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> { |
| let result = match *ty.kind() { |
| ty::Bool |
| | ty::Char |
| | ty::Int(..) |
| | ty::Uint(..) |
| | ty::Float(..) |
| | ty::Str |
| | ty::FnDef(..) |
| | ty::FnPtr(_) |
| | ty::Array(..) |
| | ty::Slice(..) |
| | ty::RawPtr(..) |
| | ty::Never |
| | ty::Tuple(..) |
| | ty::Projection(..) => self.found_non_local_ty(ty), |
| |
| ty::Param(..) => self.found_param_ty(ty), |
| |
| ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match self.in_crate { |
| InCrate::Local => self.found_non_local_ty(ty), |
| // The inference variable might be unified with a local |
| // type in that remote crate. |
| InCrate::Remote => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)), |
| }, |
| |
| // For fundamental types, we just look inside of them. |
| ty::Ref(_, ty, _) => ty.visit_with(self), |
| ty::Adt(def, substs) => { |
| if self.def_id_is_local(def.did()) { |
| ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) |
| } else if def.is_fundamental() { |
| substs.visit_with(self) |
| } else { |
| self.found_non_local_ty(ty) |
| } |
| } |
| ty::Foreign(def_id) => { |
| if self.def_id_is_local(def_id) { |
| ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) |
| } else { |
| self.found_non_local_ty(ty) |
| } |
| } |
| ty::Dynamic(tt, ..) => { |
| let principal = tt.principal().map(|p| p.def_id()); |
| if principal.map_or(false, |p| self.def_id_is_local(p)) { |
| ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) |
| } else { |
| self.found_non_local_ty(ty) |
| } |
| } |
| ty::Error(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)), |
| ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) => { |
| self.tcx.sess.delay_span_bug( |
| DUMMY_SP, |
| format!("ty_is_local invoked on closure or generator: {:?}", ty), |
| ); |
| ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) |
| } |
| ty::Opaque(..) => { |
| // This merits some explanation. |
| // Normally, opaque types are not involved when performing |
| // coherence checking, since it is illegal to directly |
| // implement a trait on an opaque type. However, we might |
| // end up looking at an opaque type during coherence checking |
| // if an opaque type gets used within another type (e.g. as |
| // the type of a field) when checking for auto trait or `Sized` |
| // impls. This requires us to decide whether or not an opaque |
| // type should be considered 'local' or not. |
| // |
| // We choose to treat all opaque types as non-local, even |
| // those that appear within the same crate. This seems |
| // somewhat surprising at first, but makes sense when |
| // you consider that opaque types are supposed to hide |
| // the underlying type *within the same crate*. When an |
| // opaque type is used from outside the module |
| // where it is declared, it should be impossible to observe |
| // anything about it other than the traits that it implements. |
| // |
| // The alternative would be to look at the underlying type |
| // to determine whether or not the opaque type itself should |
| // be considered local. However, this could make it a breaking change |
| // to switch the underlying ('defining') type from a local type |
| // to a remote type. This would violate the rule that opaque |
| // types should be completely opaque apart from the traits |
| // that they implement, so we don't use this behavior. |
| self.found_non_local_ty(ty) |
| } |
| }; |
| // A bit of a hack, the `OrphanChecker` is only used to visit a `TraitRef`, so |
| // the first type we visit is always the self type. |
| self.in_self_ty = false; |
| result |
| } |
| |
| // FIXME: Constants should participate in orphan checking. |
| fn visit_const(&mut self, _c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> { |
| ControlFlow::CONTINUE |
| } |
| } |