blob: 556ef466cd11aad35bfb521bcb48e57026c92773 [file] [log] [blame]
use crate::infer::{InferCtxt, TyOrConstInferVar};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::obligation_forest::ProcessResult;
use rustc_data_structures::obligation_forest::{Error, ForestObligation, Outcome};
use rustc_data_structures::obligation_forest::{ObligationForest, ObligationProcessor};
use rustc_infer::traits::ProjectionCacheKey;
use rustc_infer::traits::{SelectionError, TraitEngine, TraitEngineExt as _, TraitObligation};
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::ty::abstract_const::NotConstEvaluatable;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::ToPredicate;
use rustc_middle::ty::{self, Binder, Const, Ty, TypeVisitable};
use std::marker::PhantomData;
use super::const_evaluatable;
use super::project::{self, ProjectAndUnifyResult};
use super::select::SelectionContext;
use super::wf;
use super::CodeAmbiguity;
use super::CodeProjectionError;
use super::CodeSelectionError;
use super::EvaluationResult;
use super::Unimplemented;
use super::{FulfillmentError, FulfillmentErrorCode};
use super::{ObligationCause, PredicateObligation};
use crate::traits::error_reporting::InferCtxtExt as _;
use crate::traits::project::PolyProjectionObligation;
use crate::traits::project::ProjectionCacheKeyExt as _;
use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
impl<'tcx> ForestObligation for PendingPredicateObligation<'tcx> {
/// Note that we include both the `ParamEnv` and the `Predicate`,
/// as the `ParamEnv` can influence whether fulfillment succeeds
/// or fails.
type CacheKey = ty::ParamEnvAnd<'tcx, ty::Predicate<'tcx>>;
fn as_cache_key(&self) -> Self::CacheKey {
self.obligation.param_env.and(self.obligation.predicate)
}
}
/// The fulfillment context is used to drive trait resolution. It
/// consists of a list of obligations that must be (eventually)
/// satisfied. The job is to track which are satisfied, which yielded
/// errors, and which are still pending. At any point, users can call
/// `select_where_possible`, and the fulfillment context will try to do
/// selection, retaining only those obligations that remain
/// ambiguous. This may be helpful in pushing type inference
/// along. Once all type inference constraints have been generated, the
/// method `select_all_or_error` can be used to report any remaining
/// ambiguous cases as errors.
pub struct FulfillmentContext<'tcx> {
// A list of all obligations that have been registered with this
// fulfillment context.
predicates: ObligationForest<PendingPredicateObligation<'tcx>>,
relationships: FxHashMap<ty::TyVid, ty::FoundRelationships>,
// Is it OK to register obligations into this infcx inside
// an infcx snapshot?
//
// The "primary fulfillment" in many cases in typeck lives
// outside of any snapshot, so any use of it inside a snapshot
// will lead to trouble and therefore is checked against, but
// other fulfillment contexts sometimes do live inside of
// a snapshot (they don't *straddle* a snapshot, so there
// is no trouble there).
usable_in_snapshot: bool,
}
#[derive(Clone, Debug)]
pub struct PendingPredicateObligation<'tcx> {
pub obligation: PredicateObligation<'tcx>,
// This is far more often read than modified, meaning that we
// should mostly optimize for reading speed, while modifying is not as relevant.
//
// For whatever reason using a boxed slice is slower than using a `Vec` here.
pub stalled_on: Vec<TyOrConstInferVar<'tcx>>,
}
// `PendingPredicateObligation` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(PendingPredicateObligation<'_>, 72);
impl<'a, 'tcx> FulfillmentContext<'tcx> {
/// Creates a new fulfillment context.
pub fn new() -> FulfillmentContext<'tcx> {
FulfillmentContext {
predicates: ObligationForest::new(),
relationships: FxHashMap::default(),
usable_in_snapshot: false,
}
}
pub fn new_in_snapshot() -> FulfillmentContext<'tcx> {
FulfillmentContext {
predicates: ObligationForest::new(),
relationships: FxHashMap::default(),
usable_in_snapshot: true,
}
}
/// Attempts to select obligations using `selcx`.
fn select(&mut self, selcx: &mut SelectionContext<'a, 'tcx>) -> Vec<FulfillmentError<'tcx>> {
let span = debug_span!("select", obligation_forest_size = ?self.predicates.len());
let _enter = span.enter();
// Process pending obligations.
let outcome: Outcome<_, _> =
self.predicates.process_obligations(&mut FulfillProcessor { selcx });
// FIXME: if we kept the original cache key, we could mark projection
// obligations as complete for the projection cache here.
let errors: Vec<FulfillmentError<'tcx>> =
outcome.errors.into_iter().map(to_fulfillment_error).collect();
debug!(
"select({} predicates remaining, {} errors) done",
self.predicates.len(),
errors.len()
);
errors
}
}
impl<'tcx> TraitEngine<'tcx> for FulfillmentContext<'tcx> {
/// "Normalize" a projection type `<SomeType as SomeTrait>::X` by
/// creating a fresh type variable `$0` as well as a projection
/// predicate `<SomeType as SomeTrait>::X == $0`. When the
/// inference engine runs, it will attempt to find an impl of
/// `SomeTrait` or a where-clause that lets us unify `$0` with
/// something concrete. If this fails, we'll unify `$0` with
/// `projection_ty` again.
#[tracing::instrument(level = "debug", skip(self, infcx, param_env, cause))]
fn normalize_projection_type(
&mut self,
infcx: &InferCtxt<'_, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
) -> Ty<'tcx> {
debug_assert!(!projection_ty.has_escaping_bound_vars());
// FIXME(#20304) -- cache
let mut selcx = SelectionContext::new(infcx);
let mut obligations = vec![];
let normalized_ty = project::normalize_projection_type(
&mut selcx,
param_env,
projection_ty,
cause,
0,
&mut obligations,
);
self.register_predicate_obligations(infcx, obligations);
debug!(?normalized_ty);
normalized_ty.ty().unwrap()
}
fn register_predicate_obligation(
&mut self,
infcx: &InferCtxt<'_, 'tcx>,
obligation: PredicateObligation<'tcx>,
) {
// this helps to reduce duplicate errors, as well as making
// debug output much nicer to read and so on.
let obligation = infcx.resolve_vars_if_possible(obligation);
debug!(?obligation, "register_predicate_obligation");
assert!(!infcx.is_in_snapshot() || self.usable_in_snapshot);
super::relationships::update(self, infcx, &obligation);
self.predicates
.register_obligation(PendingPredicateObligation { obligation, stalled_on: vec![] });
}
fn select_all_or_error(&mut self, infcx: &InferCtxt<'_, 'tcx>) -> Vec<FulfillmentError<'tcx>> {
{
let errors = self.select_where_possible(infcx);
if !errors.is_empty() {
return errors;
}
}
self.predicates.to_errors(CodeAmbiguity).into_iter().map(to_fulfillment_error).collect()
}
fn select_where_possible(
&mut self,
infcx: &InferCtxt<'_, 'tcx>,
) -> Vec<FulfillmentError<'tcx>> {
let mut selcx = SelectionContext::new(infcx);
self.select(&mut selcx)
}
fn pending_obligations(&self) -> Vec<PredicateObligation<'tcx>> {
self.predicates.map_pending_obligations(|o| o.obligation.clone())
}
fn relationships(&mut self) -> &mut FxHashMap<ty::TyVid, ty::FoundRelationships> {
&mut self.relationships
}
}
struct FulfillProcessor<'a, 'b, 'tcx> {
selcx: &'a mut SelectionContext<'b, 'tcx>,
}
fn mk_pending(os: Vec<PredicateObligation<'_>>) -> Vec<PendingPredicateObligation<'_>> {
os.into_iter()
.map(|o| PendingPredicateObligation { obligation: o, stalled_on: vec![] })
.collect()
}
impl<'a, 'b, 'tcx> ObligationProcessor for FulfillProcessor<'a, 'b, 'tcx> {
type Obligation = PendingPredicateObligation<'tcx>;
type Error = FulfillmentErrorCode<'tcx>;
/// Identifies whether a predicate obligation needs processing.
///
/// This is always inlined, despite its size, because it has a single
/// callsite and it is called *very* frequently.
#[inline(always)]
fn needs_process_obligation(&self, pending_obligation: &Self::Obligation) -> bool {
// If we were stalled on some unresolved variables, first check whether
// any of them have been resolved; if not, don't bother doing more work
// yet.
match pending_obligation.stalled_on.len() {
// Match arms are in order of frequency, which matters because this
// code is so hot. 1 and 0 dominate; 2+ is fairly rare.
1 => {
let infer_var = pending_obligation.stalled_on[0];
self.selcx.infcx().ty_or_const_infer_var_changed(infer_var)
}
0 => {
// In this case we haven't changed, but wish to make a change.
true
}
_ => {
// This `for` loop was once a call to `all()`, but this lower-level
// form was a perf win. See #64545 for details.
(|| {
for &infer_var in &pending_obligation.stalled_on {
if self.selcx.infcx().ty_or_const_infer_var_changed(infer_var) {
return true;
}
}
false
})()
}
}
}
/// Processes a predicate obligation and returns either:
/// - `Changed(v)` if the predicate is true, presuming that `v` are also true
/// - `Unchanged` if we don't have enough info to be sure
/// - `Error(e)` if the predicate does not hold
///
/// This is called much less often than `needs_process_obligation`, so we
/// never inline it.
#[inline(never)]
#[instrument(level = "debug", skip(self, pending_obligation))]
fn process_obligation(
&mut self,
pending_obligation: &mut PendingPredicateObligation<'tcx>,
) -> ProcessResult<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>> {
pending_obligation.stalled_on.truncate(0);
let obligation = &mut pending_obligation.obligation;
debug!(?obligation, "pre-resolve");
if obligation.predicate.has_infer_types_or_consts() {
obligation.predicate =
self.selcx.infcx().resolve_vars_if_possible(obligation.predicate);
}
let obligation = &pending_obligation.obligation;
let infcx = self.selcx.infcx();
if obligation.predicate.has_projections() {
let mut obligations = Vec::new();
let predicate = crate::traits::project::try_normalize_with_depth_to(
self.selcx,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
obligation.predicate,
&mut obligations,
);
if predicate != obligation.predicate {
obligations.push(obligation.with(predicate));
return ProcessResult::Changed(mk_pending(obligations));
}
}
let binder = obligation.predicate.kind();
match binder.no_bound_vars() {
None => match binder.skip_binder() {
// Evaluation will discard candidates using the leak check.
// This means we need to pass it the bound version of our
// predicate.
ty::PredicateKind::Trait(trait_ref) => {
let trait_obligation = obligation.with(binder.rebind(trait_ref));
self.process_trait_obligation(
obligation,
trait_obligation,
&mut pending_obligation.stalled_on,
)
}
ty::PredicateKind::Projection(data) => {
let project_obligation = obligation.with(binder.rebind(data));
self.process_projection_obligation(
obligation,
project_obligation,
&mut pending_obligation.stalled_on,
)
}
ty::PredicateKind::RegionOutlives(_)
| ty::PredicateKind::TypeOutlives(_)
| ty::PredicateKind::WellFormed(_)
| ty::PredicateKind::ObjectSafe(_)
| ty::PredicateKind::ClosureKind(..)
| ty::PredicateKind::Subtype(_)
| ty::PredicateKind::Coerce(_)
| ty::PredicateKind::ConstEvaluatable(..)
| ty::PredicateKind::ConstEquate(..) => {
let pred =
ty::Binder::dummy(infcx.replace_bound_vars_with_placeholders(binder));
ProcessResult::Changed(mk_pending(vec![
obligation.with(pred.to_predicate(self.selcx.tcx())),
]))
}
ty::PredicateKind::TypeWellFormedFromEnv(..) => {
bug!("TypeWellFormedFromEnv is only used for Chalk")
}
},
Some(pred) => match pred {
ty::PredicateKind::Trait(data) => {
let trait_obligation = obligation.with(Binder::dummy(data));
self.process_trait_obligation(
obligation,
trait_obligation,
&mut pending_obligation.stalled_on,
)
}
ty::PredicateKind::RegionOutlives(data) => {
if infcx.considering_regions || data.has_placeholders() {
infcx.region_outlives_predicate(&obligation.cause, Binder::dummy(data));
}
ProcessResult::Changed(vec![])
}
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(t_a, r_b)) => {
if infcx.considering_regions {
infcx.register_region_obligation_with_cause(t_a, r_b, &obligation.cause);
}
ProcessResult::Changed(vec![])
}
ty::PredicateKind::Projection(ref data) => {
let project_obligation = obligation.with(Binder::dummy(*data));
self.process_projection_obligation(
obligation,
project_obligation,
&mut pending_obligation.stalled_on,
)
}
ty::PredicateKind::ObjectSafe(trait_def_id) => {
if !self.selcx.tcx().is_object_safe(trait_def_id) {
ProcessResult::Error(CodeSelectionError(Unimplemented))
} else {
ProcessResult::Changed(vec![])
}
}
ty::PredicateKind::ClosureKind(_, closure_substs, kind) => {
match self.selcx.infcx().closure_kind(closure_substs) {
Some(closure_kind) => {
if closure_kind.extends(kind) {
ProcessResult::Changed(vec![])
} else {
ProcessResult::Error(CodeSelectionError(Unimplemented))
}
}
None => ProcessResult::Unchanged,
}
}
ty::PredicateKind::WellFormed(arg) => {
match wf::obligations(
self.selcx.infcx(),
obligation.param_env,
obligation.cause.body_id,
obligation.recursion_depth + 1,
arg,
obligation.cause.span,
) {
None => {
pending_obligation.stalled_on =
vec![TyOrConstInferVar::maybe_from_generic_arg(arg).unwrap()];
ProcessResult::Unchanged
}
Some(os) => ProcessResult::Changed(mk_pending(os)),
}
}
ty::PredicateKind::Subtype(subtype) => {
match self.selcx.infcx().subtype_predicate(
&obligation.cause,
obligation.param_env,
Binder::dummy(subtype),
) {
None => {
// None means that both are unresolved.
pending_obligation.stalled_on = vec![
TyOrConstInferVar::maybe_from_ty(subtype.a).unwrap(),
TyOrConstInferVar::maybe_from_ty(subtype.b).unwrap(),
];
ProcessResult::Unchanged
}
Some(Ok(ok)) => ProcessResult::Changed(mk_pending(ok.obligations)),
Some(Err(err)) => {
let expected_found =
ExpectedFound::new(subtype.a_is_expected, subtype.a, subtype.b);
ProcessResult::Error(FulfillmentErrorCode::CodeSubtypeError(
expected_found,
err,
))
}
}
}
ty::PredicateKind::Coerce(coerce) => {
match self.selcx.infcx().coerce_predicate(
&obligation.cause,
obligation.param_env,
Binder::dummy(coerce),
) {
None => {
// None means that both are unresolved.
pending_obligation.stalled_on = vec![
TyOrConstInferVar::maybe_from_ty(coerce.a).unwrap(),
TyOrConstInferVar::maybe_from_ty(coerce.b).unwrap(),
];
ProcessResult::Unchanged
}
Some(Ok(ok)) => ProcessResult::Changed(mk_pending(ok.obligations)),
Some(Err(err)) => {
let expected_found = ExpectedFound::new(false, coerce.a, coerce.b);
ProcessResult::Error(FulfillmentErrorCode::CodeSubtypeError(
expected_found,
err,
))
}
}
}
ty::PredicateKind::ConstEvaluatable(uv) => {
match const_evaluatable::is_const_evaluatable(
self.selcx.infcx(),
uv,
obligation.param_env,
obligation.cause.span,
) {
Ok(()) => ProcessResult::Changed(vec![]),
Err(NotConstEvaluatable::MentionsInfer) => {
pending_obligation.stalled_on.clear();
pending_obligation.stalled_on.extend(
uv.substs
.iter()
.filter_map(TyOrConstInferVar::maybe_from_generic_arg),
);
ProcessResult::Unchanged
}
Err(
e @ NotConstEvaluatable::MentionsParam
| e @ NotConstEvaluatable::Error(_),
) => ProcessResult::Error(CodeSelectionError(
SelectionError::NotConstEvaluatable(e),
)),
}
}
ty::PredicateKind::ConstEquate(c1, c2) => {
debug!(?c1, ?c2, "equating consts");
let tcx = self.selcx.tcx();
if tcx.features().generic_const_exprs {
// FIXME: we probably should only try to unify abstract constants
// if the constants depend on generic parameters.
//
// Let's just see where this breaks :shrug:
if let (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b)) =
(c1.kind(), c2.kind())
{
if infcx.try_unify_abstract_consts(
a.shrink(),
b.shrink(),
obligation.param_env,
) {
return ProcessResult::Changed(vec![]);
}
}
}
let stalled_on = &mut pending_obligation.stalled_on;
let mut evaluate = |c: Const<'tcx>| {
if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
match self.selcx.infcx().try_const_eval_resolve(
obligation.param_env,
unevaluated,
c.ty(),
Some(obligation.cause.span),
) {
Ok(val) => Ok(val),
Err(e) => match e {
ErrorHandled::TooGeneric => {
stalled_on.extend(
unevaluated.substs.iter().filter_map(
TyOrConstInferVar::maybe_from_generic_arg,
),
);
Err(ErrorHandled::TooGeneric)
}
_ => Err(e),
},
}
} else {
Ok(c)
}
};
match (evaluate(c1), evaluate(c2)) {
(Ok(c1), Ok(c2)) => {
match self
.selcx
.infcx()
.at(&obligation.cause, obligation.param_env)
.eq(c1, c2)
{
Ok(_) => ProcessResult::Changed(vec![]),
Err(err) => ProcessResult::Error(
FulfillmentErrorCode::CodeConstEquateError(
ExpectedFound::new(true, c1, c2),
err,
),
),
}
}
(Err(ErrorHandled::Reported(reported)), _)
| (_, Err(ErrorHandled::Reported(reported))) => ProcessResult::Error(
CodeSelectionError(SelectionError::NotConstEvaluatable(
NotConstEvaluatable::Error(reported),
)),
),
(Err(ErrorHandled::Linted), _) | (_, Err(ErrorHandled::Linted)) => {
span_bug!(
obligation.cause.span(),
"ConstEquate: const_eval_resolve returned an unexpected error"
)
}
(Err(ErrorHandled::TooGeneric), _) | (_, Err(ErrorHandled::TooGeneric)) => {
if c1.has_infer_types_or_consts() || c2.has_infer_types_or_consts() {
ProcessResult::Unchanged
} else {
// Two different constants using generic parameters ~> error.
let expected_found = ExpectedFound::new(true, c1, c2);
ProcessResult::Error(FulfillmentErrorCode::CodeConstEquateError(
expected_found,
TypeError::ConstMismatch(expected_found),
))
}
}
}
}
ty::PredicateKind::TypeWellFormedFromEnv(..) => {
bug!("TypeWellFormedFromEnv is only used for Chalk")
}
},
}
}
fn process_backedge<'c, I>(
&mut self,
cycle: I,
_marker: PhantomData<&'c PendingPredicateObligation<'tcx>>,
) where
I: Clone + Iterator<Item = &'c PendingPredicateObligation<'tcx>>,
{
if self.selcx.coinductive_match(cycle.clone().map(|s| s.obligation.predicate)) {
debug!("process_child_obligations: coinductive match");
} else {
let cycle: Vec<_> = cycle.map(|c| c.obligation.clone()).collect();
self.selcx.infcx().report_overflow_error_cycle(&cycle);
}
}
}
impl<'a, 'b, 'tcx> FulfillProcessor<'a, 'b, 'tcx> {
#[instrument(level = "debug", skip(self, obligation, stalled_on))]
fn process_trait_obligation(
&mut self,
obligation: &PredicateObligation<'tcx>,
trait_obligation: TraitObligation<'tcx>,
stalled_on: &mut Vec<TyOrConstInferVar<'tcx>>,
) -> ProcessResult<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>> {
let infcx = self.selcx.infcx();
if obligation.predicate.is_global() {
// no type variables present, can use evaluation for better caching.
// FIXME: consider caching errors too.
if infcx.predicate_must_hold_considering_regions(obligation) {
debug!(
"selecting trait at depth {} evaluated to holds",
obligation.recursion_depth
);
return ProcessResult::Changed(vec![]);
}
}
match self.selcx.select(&trait_obligation) {
Ok(Some(impl_source)) => {
debug!("selecting trait at depth {} yielded Ok(Some)", obligation.recursion_depth);
ProcessResult::Changed(mk_pending(impl_source.nested_obligations()))
}
Ok(None) => {
debug!("selecting trait at depth {} yielded Ok(None)", obligation.recursion_depth);
// This is a bit subtle: for the most part, the
// only reason we can fail to make progress on
// trait selection is because we don't have enough
// information about the types in the trait.
stalled_on.clear();
stalled_on.extend(substs_infer_vars(
self.selcx,
trait_obligation.predicate.map_bound(|pred| pred.trait_ref.substs),
));
debug!(
"process_predicate: pending obligation {:?} now stalled on {:?}",
infcx.resolve_vars_if_possible(obligation.clone()),
stalled_on
);
ProcessResult::Unchanged
}
Err(selection_err) => {
debug!("selecting trait at depth {} yielded Err", obligation.recursion_depth);
ProcessResult::Error(CodeSelectionError(selection_err))
}
}
}
fn process_projection_obligation(
&mut self,
obligation: &PredicateObligation<'tcx>,
project_obligation: PolyProjectionObligation<'tcx>,
stalled_on: &mut Vec<TyOrConstInferVar<'tcx>>,
) -> ProcessResult<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>> {
let tcx = self.selcx.tcx();
if obligation.predicate.is_global() {
// no type variables present, can use evaluation for better caching.
// FIXME: consider caching errors too.
if self.selcx.infcx().predicate_must_hold_considering_regions(obligation) {
if let Some(key) = ProjectionCacheKey::from_poly_projection_predicate(
&mut self.selcx,
project_obligation.predicate,
) {
// If `predicate_must_hold_considering_regions` succeeds, then we've
// evaluated all sub-obligations. We can therefore mark the 'root'
// obligation as complete, and skip evaluating sub-obligations.
self.selcx
.infcx()
.inner
.borrow_mut()
.projection_cache()
.complete(key, EvaluationResult::EvaluatedToOk);
}
return ProcessResult::Changed(vec![]);
} else {
debug!("Does NOT hold: {:?}", obligation);
}
}
match project::poly_project_and_unify_type(self.selcx, &project_obligation) {
ProjectAndUnifyResult::Holds(os) => ProcessResult::Changed(mk_pending(os)),
ProjectAndUnifyResult::FailedNormalization => {
stalled_on.clear();
stalled_on.extend(substs_infer_vars(
self.selcx,
project_obligation.predicate.map_bound(|pred| pred.projection_ty.substs),
));
ProcessResult::Unchanged
}
// Let the caller handle the recursion
ProjectAndUnifyResult::Recursive => ProcessResult::Changed(mk_pending(vec![
project_obligation.with(project_obligation.predicate.to_predicate(tcx)),
])),
ProjectAndUnifyResult::MismatchedProjectionTypes(e) => {
ProcessResult::Error(CodeProjectionError(e))
}
}
}
}
/// Returns the set of inference variables contained in `substs`.
fn substs_infer_vars<'a, 'tcx>(
selcx: &mut SelectionContext<'a, 'tcx>,
substs: ty::Binder<'tcx, SubstsRef<'tcx>>,
) -> impl Iterator<Item = TyOrConstInferVar<'tcx>> {
selcx
.infcx()
.resolve_vars_if_possible(substs)
.skip_binder() // ok because this check doesn't care about regions
.iter()
.filter(|arg| arg.has_infer_types_or_consts())
.flat_map(|arg| {
let mut walker = arg.walk();
while let Some(c) = walker.next() {
if !c.has_infer_types_or_consts() {
walker.visited.remove(&c);
walker.skip_current_subtree();
}
}
walker.visited.into_iter()
})
.filter_map(TyOrConstInferVar::maybe_from_generic_arg)
}
fn to_fulfillment_error<'tcx>(
error: Error<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>>,
) -> FulfillmentError<'tcx> {
let mut iter = error.backtrace.into_iter();
let obligation = iter.next().unwrap().obligation;
// The root obligation is the last item in the backtrace - if there's only
// one item, then it's the same as the main obligation
let root_obligation = iter.next_back().map_or_else(|| obligation.clone(), |e| e.obligation);
FulfillmentError::new(obligation, error.error, root_obligation)
}