| //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements an idiom recognizer that transforms simple loops into a |
| // non-loop form. In cases that this kicks in, it can be a significant |
| // performance win. |
| // |
| // If compiling for code size we avoid idiom recognition if the resulting |
| // code could be larger than the code for the original loop. One way this could |
| // happen is if the loop is not removable after idiom recognition due to the |
| // presence of non-idiom instructions. The initial implementation of the |
| // heuristics applies to idioms in multi-block loops. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // TODO List: |
| // |
| // Future loop memory idioms to recognize: |
| // memcmp, strlen, etc. |
| // Future floating point idioms to recognize in -ffast-math mode: |
| // fpowi |
| // Future integer operation idioms to recognize: |
| // ctpop |
| // |
| // Beware that isel's default lowering for ctpop is highly inefficient for |
| // i64 and larger types when i64 is legal and the value has few bits set. It |
| // would be good to enhance isel to emit a loop for ctpop in this case. |
| // |
| // This could recognize common matrix multiplies and dot product idioms and |
| // replace them with calls to BLAS (if linked in??). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/CmpInstAnalysis.h" |
| #include "llvm/Analysis/LoopAccessAnalysis.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/MemorySSA.h" |
| #include "llvm/Analysis/MemorySSAUpdater.h" |
| #include "llvm/Analysis/MustExecute.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/InstructionCost.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/BuildLibCalls.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "loop-idiom" |
| |
| STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); |
| STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); |
| STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores"); |
| STATISTIC( |
| NumShiftUntilBitTest, |
| "Number of uncountable loops recognized as 'shift until bitttest' idiom"); |
| STATISTIC(NumShiftUntilZero, |
| "Number of uncountable loops recognized as 'shift until zero' idiom"); |
| |
| bool DisableLIRP::All; |
| static cl::opt<bool, true> |
| DisableLIRPAll("disable-" DEBUG_TYPE "-all", |
| cl::desc("Options to disable Loop Idiom Recognize Pass."), |
| cl::location(DisableLIRP::All), cl::init(false), |
| cl::ReallyHidden); |
| |
| bool DisableLIRP::Memset; |
| static cl::opt<bool, true> |
| DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", |
| cl::desc("Proceed with loop idiom recognize pass, but do " |
| "not convert loop(s) to memset."), |
| cl::location(DisableLIRP::Memset), cl::init(false), |
| cl::ReallyHidden); |
| |
| bool DisableLIRP::Memcpy; |
| static cl::opt<bool, true> |
| DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", |
| cl::desc("Proceed with loop idiom recognize pass, but do " |
| "not convert loop(s) to memcpy."), |
| cl::location(DisableLIRP::Memcpy), cl::init(false), |
| cl::ReallyHidden); |
| |
| static cl::opt<bool> UseLIRCodeSizeHeurs( |
| "use-lir-code-size-heurs", |
| cl::desc("Use loop idiom recognition code size heuristics when compiling" |
| "with -Os/-Oz"), |
| cl::init(true), cl::Hidden); |
| |
| namespace { |
| |
| class LoopIdiomRecognize { |
| Loop *CurLoop = nullptr; |
| AliasAnalysis *AA; |
| DominatorTree *DT; |
| LoopInfo *LI; |
| ScalarEvolution *SE; |
| TargetLibraryInfo *TLI; |
| const TargetTransformInfo *TTI; |
| const DataLayout *DL; |
| OptimizationRemarkEmitter &ORE; |
| bool ApplyCodeSizeHeuristics; |
| std::unique_ptr<MemorySSAUpdater> MSSAU; |
| |
| public: |
| explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, |
| LoopInfo *LI, ScalarEvolution *SE, |
| TargetLibraryInfo *TLI, |
| const TargetTransformInfo *TTI, MemorySSA *MSSA, |
| const DataLayout *DL, |
| OptimizationRemarkEmitter &ORE) |
| : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { |
| if (MSSA) |
| MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); |
| } |
| |
| bool runOnLoop(Loop *L); |
| |
| private: |
| using StoreList = SmallVector<StoreInst *, 8>; |
| using StoreListMap = MapVector<Value *, StoreList>; |
| |
| StoreListMap StoreRefsForMemset; |
| StoreListMap StoreRefsForMemsetPattern; |
| StoreList StoreRefsForMemcpy; |
| bool HasMemset; |
| bool HasMemsetPattern; |
| bool HasMemcpy; |
| |
| /// Return code for isLegalStore() |
| enum LegalStoreKind { |
| None = 0, |
| Memset, |
| MemsetPattern, |
| Memcpy, |
| UnorderedAtomicMemcpy, |
| DontUse // Dummy retval never to be used. Allows catching errors in retval |
| // handling. |
| }; |
| |
| /// \name Countable Loop Idiom Handling |
| /// @{ |
| |
| bool runOnCountableLoop(); |
| bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, |
| SmallVectorImpl<BasicBlock *> &ExitBlocks); |
| |
| void collectStores(BasicBlock *BB); |
| LegalStoreKind isLegalStore(StoreInst *SI); |
| enum class ForMemset { No, Yes }; |
| bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, |
| ForMemset For); |
| |
| template <typename MemInst> |
| bool processLoopMemIntrinsic( |
| BasicBlock *BB, |
| bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), |
| const SCEV *BECount); |
| bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); |
| bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); |
| |
| bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, |
| MaybeAlign StoreAlignment, Value *StoredVal, |
| Instruction *TheStore, |
| SmallPtrSetImpl<Instruction *> &Stores, |
| const SCEVAddRecExpr *Ev, const SCEV *BECount, |
| bool IsNegStride, bool IsLoopMemset = false); |
| bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); |
| bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, |
| const SCEV *StoreSize, MaybeAlign StoreAlign, |
| MaybeAlign LoadAlign, Instruction *TheStore, |
| Instruction *TheLoad, |
| const SCEVAddRecExpr *StoreEv, |
| const SCEVAddRecExpr *LoadEv, |
| const SCEV *BECount); |
| bool avoidLIRForMultiBlockLoop(bool IsMemset = false, |
| bool IsLoopMemset = false); |
| |
| /// @} |
| /// \name Noncountable Loop Idiom Handling |
| /// @{ |
| |
| bool runOnNoncountableLoop(); |
| |
| bool recognizePopcount(); |
| void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, |
| PHINode *CntPhi, Value *Var); |
| bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz |
| void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, |
| Instruction *CntInst, PHINode *CntPhi, |
| Value *Var, Instruction *DefX, |
| const DebugLoc &DL, bool ZeroCheck, |
| bool IsCntPhiUsedOutsideLoop); |
| |
| bool recognizeShiftUntilBitTest(); |
| bool recognizeShiftUntilZero(); |
| |
| /// @} |
| }; |
| |
| class LoopIdiomRecognizeLegacyPass : public LoopPass { |
| public: |
| static char ID; |
| |
| explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { |
| initializeLoopIdiomRecognizeLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM) override { |
| if (DisableLIRP::All) |
| return false; |
| |
| if (skipLoop(L)) |
| return false; |
| |
| AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| TargetLibraryInfo *TLI = |
| &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( |
| *L->getHeader()->getParent()); |
| const TargetTransformInfo *TTI = |
| &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( |
| *L->getHeader()->getParent()); |
| const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); |
| auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); |
| MemorySSA *MSSA = nullptr; |
| if (MSSAAnalysis) |
| MSSA = &MSSAAnalysis->getMSSA(); |
| |
| // For the old PM, we can't use OptimizationRemarkEmitter as an analysis |
| // pass. Function analyses need to be preserved across loop transformations |
| // but ORE cannot be preserved (see comment before the pass definition). |
| OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); |
| |
| LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE); |
| return LIR.runOnLoop(L); |
| } |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG. |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addPreserved<MemorySSAWrapperPass>(); |
| getLoopAnalysisUsage(AU); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char LoopIdiomRecognizeLegacyPass::ID = 0; |
| |
| PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, |
| LoopStandardAnalysisResults &AR, |
| LPMUpdater &) { |
| if (DisableLIRP::All) |
| return PreservedAnalyses::all(); |
| |
| const auto *DL = &L.getHeader()->getModule()->getDataLayout(); |
| |
| // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis |
| // pass. Function analyses need to be preserved across loop transformations |
| // but ORE cannot be preserved (see comment before the pass definition). |
| OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); |
| |
| LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, |
| AR.MSSA, DL, ORE); |
| if (!LIR.runOnLoop(&L)) |
| return PreservedAnalyses::all(); |
| |
| auto PA = getLoopPassPreservedAnalyses(); |
| if (AR.MSSA) |
| PA.preserve<MemorySSAAnalysis>(); |
| return PA; |
| } |
| |
| INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", |
| "Recognize loop idioms", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", |
| "Recognize loop idioms", false, false) |
| |
| Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } |
| |
| static void deleteDeadInstruction(Instruction *I) { |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| I->eraseFromParent(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of LoopIdiomRecognize |
| // |
| //===----------------------------------------------------------------------===// |
| |
| bool LoopIdiomRecognize::runOnLoop(Loop *L) { |
| CurLoop = L; |
| // If the loop could not be converted to canonical form, it must have an |
| // indirectbr in it, just give up. |
| if (!L->getLoopPreheader()) |
| return false; |
| |
| // Disable loop idiom recognition if the function's name is a common idiom. |
| StringRef Name = L->getHeader()->getParent()->getName(); |
| if (Name == "memset" || Name == "memcpy") |
| return false; |
| |
| // Determine if code size heuristics need to be applied. |
| ApplyCodeSizeHeuristics = |
| L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; |
| |
| HasMemset = TLI->has(LibFunc_memset); |
| HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); |
| HasMemcpy = TLI->has(LibFunc_memcpy); |
| |
| if (HasMemset || HasMemsetPattern || HasMemcpy) |
| if (SE->hasLoopInvariantBackedgeTakenCount(L)) |
| return runOnCountableLoop(); |
| |
| return runOnNoncountableLoop(); |
| } |
| |
| bool LoopIdiomRecognize::runOnCountableLoop() { |
| const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); |
| assert(!isa<SCEVCouldNotCompute>(BECount) && |
| "runOnCountableLoop() called on a loop without a predictable" |
| "backedge-taken count"); |
| |
| // If this loop executes exactly one time, then it should be peeled, not |
| // optimized by this pass. |
| if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) |
| if (BECst->getAPInt() == 0) |
| return false; |
| |
| SmallVector<BasicBlock *, 8> ExitBlocks; |
| CurLoop->getUniqueExitBlocks(ExitBlocks); |
| |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" |
| << CurLoop->getHeader()->getParent()->getName() |
| << "] Countable Loop %" << CurLoop->getHeader()->getName() |
| << "\n"); |
| |
| // The following transforms hoist stores/memsets into the loop pre-header. |
| // Give up if the loop has instructions that may throw. |
| SimpleLoopSafetyInfo SafetyInfo; |
| SafetyInfo.computeLoopSafetyInfo(CurLoop); |
| if (SafetyInfo.anyBlockMayThrow()) |
| return false; |
| |
| bool MadeChange = false; |
| |
| // Scan all the blocks in the loop that are not in subloops. |
| for (auto *BB : CurLoop->getBlocks()) { |
| // Ignore blocks in subloops. |
| if (LI->getLoopFor(BB) != CurLoop) |
| continue; |
| |
| MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); |
| } |
| return MadeChange; |
| } |
| |
| static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { |
| const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); |
| return ConstStride->getAPInt(); |
| } |
| |
| /// getMemSetPatternValue - If a strided store of the specified value is safe to |
| /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should |
| /// be passed in. Otherwise, return null. |
| /// |
| /// Note that we don't ever attempt to use memset_pattern8 or 4, because these |
| /// just replicate their input array and then pass on to memset_pattern16. |
| static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { |
| // FIXME: This could check for UndefValue because it can be merged into any |
| // other valid pattern. |
| |
| // If the value isn't a constant, we can't promote it to being in a constant |
| // array. We could theoretically do a store to an alloca or something, but |
| // that doesn't seem worthwhile. |
| Constant *C = dyn_cast<Constant>(V); |
| if (!C) |
| return nullptr; |
| |
| // Only handle simple values that are a power of two bytes in size. |
| uint64_t Size = DL->getTypeSizeInBits(V->getType()); |
| if (Size == 0 || (Size & 7) || (Size & (Size - 1))) |
| return nullptr; |
| |
| // Don't care enough about darwin/ppc to implement this. |
| if (DL->isBigEndian()) |
| return nullptr; |
| |
| // Convert to size in bytes. |
| Size /= 8; |
| |
| // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see |
| // if the top and bottom are the same (e.g. for vectors and large integers). |
| if (Size > 16) |
| return nullptr; |
| |
| // If the constant is exactly 16 bytes, just use it. |
| if (Size == 16) |
| return C; |
| |
| // Otherwise, we'll use an array of the constants. |
| unsigned ArraySize = 16 / Size; |
| ArrayType *AT = ArrayType::get(V->getType(), ArraySize); |
| return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); |
| } |
| |
| LoopIdiomRecognize::LegalStoreKind |
| LoopIdiomRecognize::isLegalStore(StoreInst *SI) { |
| // Don't touch volatile stores. |
| if (SI->isVolatile()) |
| return LegalStoreKind::None; |
| // We only want simple or unordered-atomic stores. |
| if (!SI->isUnordered()) |
| return LegalStoreKind::None; |
| |
| // Avoid merging nontemporal stores. |
| if (SI->getMetadata(LLVMContext::MD_nontemporal)) |
| return LegalStoreKind::None; |
| |
| Value *StoredVal = SI->getValueOperand(); |
| Value *StorePtr = SI->getPointerOperand(); |
| |
| // Don't convert stores of non-integral pointer types to memsets (which stores |
| // integers). |
| if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) |
| return LegalStoreKind::None; |
| |
| // Reject stores that are so large that they overflow an unsigned. |
| // When storing out scalable vectors we bail out for now, since the code |
| // below currently only works for constant strides. |
| TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); |
| if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) || |
| (SizeInBits.getFixedSize() >> 32) != 0) |
| return LegalStoreKind::None; |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided store. If we have something else, it's a |
| // random store we can't handle. |
| const SCEVAddRecExpr *StoreEv = |
| dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) |
| return LegalStoreKind::None; |
| |
| // Check to see if we have a constant stride. |
| if (!isa<SCEVConstant>(StoreEv->getOperand(1))) |
| return LegalStoreKind::None; |
| |
| // See if the store can be turned into a memset. |
| |
| // If the stored value is a byte-wise value (like i32 -1), then it may be |
| // turned into a memset of i8 -1, assuming that all the consecutive bytes |
| // are stored. A store of i32 0x01020304 can never be turned into a memset, |
| // but it can be turned into memset_pattern if the target supports it. |
| Value *SplatValue = isBytewiseValue(StoredVal, *DL); |
| |
| // Note: memset and memset_pattern on unordered-atomic is yet not supported |
| bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); |
| |
| // If we're allowed to form a memset, and the stored value would be |
| // acceptable for memset, use it. |
| if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && |
| // Verify that the stored value is loop invariant. If not, we can't |
| // promote the memset. |
| CurLoop->isLoopInvariant(SplatValue)) { |
| // It looks like we can use SplatValue. |
| return LegalStoreKind::Memset; |
| } |
| if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && |
| // Don't create memset_pattern16s with address spaces. |
| StorePtr->getType()->getPointerAddressSpace() == 0 && |
| getMemSetPatternValue(StoredVal, DL)) { |
| // It looks like we can use PatternValue! |
| return LegalStoreKind::MemsetPattern; |
| } |
| |
| // Otherwise, see if the store can be turned into a memcpy. |
| if (HasMemcpy && !DisableLIRP::Memcpy) { |
| // Check to see if the stride matches the size of the store. If so, then we |
| // know that every byte is touched in the loop. |
| APInt Stride = getStoreStride(StoreEv); |
| unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); |
| if (StoreSize != Stride && StoreSize != -Stride) |
| return LegalStoreKind::None; |
| |
| // The store must be feeding a non-volatile load. |
| LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); |
| |
| // Only allow non-volatile loads |
| if (!LI || LI->isVolatile()) |
| return LegalStoreKind::None; |
| // Only allow simple or unordered-atomic loads |
| if (!LI->isUnordered()) |
| return LegalStoreKind::None; |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided load. If we have something else, it's a |
| // random load we can't handle. |
| const SCEVAddRecExpr *LoadEv = |
| dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); |
| if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) |
| return LegalStoreKind::None; |
| |
| // The store and load must share the same stride. |
| if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) |
| return LegalStoreKind::None; |
| |
| // Success. This store can be converted into a memcpy. |
| UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); |
| return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy |
| : LegalStoreKind::Memcpy; |
| } |
| // This store can't be transformed into a memset/memcpy. |
| return LegalStoreKind::None; |
| } |
| |
| void LoopIdiomRecognize::collectStores(BasicBlock *BB) { |
| StoreRefsForMemset.clear(); |
| StoreRefsForMemsetPattern.clear(); |
| StoreRefsForMemcpy.clear(); |
| for (Instruction &I : *BB) { |
| StoreInst *SI = dyn_cast<StoreInst>(&I); |
| if (!SI) |
| continue; |
| |
| // Make sure this is a strided store with a constant stride. |
| switch (isLegalStore(SI)) { |
| case LegalStoreKind::None: |
| // Nothing to do |
| break; |
| case LegalStoreKind::Memset: { |
| // Find the base pointer. |
| Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); |
| StoreRefsForMemset[Ptr].push_back(SI); |
| } break; |
| case LegalStoreKind::MemsetPattern: { |
| // Find the base pointer. |
| Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); |
| StoreRefsForMemsetPattern[Ptr].push_back(SI); |
| } break; |
| case LegalStoreKind::Memcpy: |
| case LegalStoreKind::UnorderedAtomicMemcpy: |
| StoreRefsForMemcpy.push_back(SI); |
| break; |
| default: |
| assert(false && "unhandled return value"); |
| break; |
| } |
| } |
| } |
| |
| /// runOnLoopBlock - Process the specified block, which lives in a counted loop |
| /// with the specified backedge count. This block is known to be in the current |
| /// loop and not in any subloops. |
| bool LoopIdiomRecognize::runOnLoopBlock( |
| BasicBlock *BB, const SCEV *BECount, |
| SmallVectorImpl<BasicBlock *> &ExitBlocks) { |
| // We can only promote stores in this block if they are unconditionally |
| // executed in the loop. For a block to be unconditionally executed, it has |
| // to dominate all the exit blocks of the loop. Verify this now. |
| for (BasicBlock *ExitBlock : ExitBlocks) |
| if (!DT->dominates(BB, ExitBlock)) |
| return false; |
| |
| bool MadeChange = false; |
| // Look for store instructions, which may be optimized to memset/memcpy. |
| collectStores(BB); |
| |
| // Look for a single store or sets of stores with a common base, which can be |
| // optimized into a memset (memset_pattern). The latter most commonly happens |
| // with structs and handunrolled loops. |
| for (auto &SL : StoreRefsForMemset) |
| MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); |
| |
| for (auto &SL : StoreRefsForMemsetPattern) |
| MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); |
| |
| // Optimize the store into a memcpy, if it feeds an similarly strided load. |
| for (auto &SI : StoreRefsForMemcpy) |
| MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); |
| |
| MadeChange |= processLoopMemIntrinsic<MemCpyInst>( |
| BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); |
| MadeChange |= processLoopMemIntrinsic<MemSetInst>( |
| BB, &LoopIdiomRecognize::processLoopMemSet, BECount); |
| |
| return MadeChange; |
| } |
| |
| /// See if this store(s) can be promoted to a memset. |
| bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, |
| const SCEV *BECount, ForMemset For) { |
| // Try to find consecutive stores that can be transformed into memsets. |
| SetVector<StoreInst *> Heads, Tails; |
| SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; |
| |
| // Do a quadratic search on all of the given stores and find |
| // all of the pairs of stores that follow each other. |
| SmallVector<unsigned, 16> IndexQueue; |
| for (unsigned i = 0, e = SL.size(); i < e; ++i) { |
| assert(SL[i]->isSimple() && "Expected only non-volatile stores."); |
| |
| Value *FirstStoredVal = SL[i]->getValueOperand(); |
| Value *FirstStorePtr = SL[i]->getPointerOperand(); |
| const SCEVAddRecExpr *FirstStoreEv = |
| cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); |
| APInt FirstStride = getStoreStride(FirstStoreEv); |
| unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); |
| |
| // See if we can optimize just this store in isolation. |
| if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { |
| Heads.insert(SL[i]); |
| continue; |
| } |
| |
| Value *FirstSplatValue = nullptr; |
| Constant *FirstPatternValue = nullptr; |
| |
| if (For == ForMemset::Yes) |
| FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); |
| else |
| FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); |
| |
| assert((FirstSplatValue || FirstPatternValue) && |
| "Expected either splat value or pattern value."); |
| |
| IndexQueue.clear(); |
| // If a store has multiple consecutive store candidates, search Stores |
| // array according to the sequence: from i+1 to e, then from i-1 to 0. |
| // This is because usually pairing with immediate succeeding or preceding |
| // candidate create the best chance to find memset opportunity. |
| unsigned j = 0; |
| for (j = i + 1; j < e; ++j) |
| IndexQueue.push_back(j); |
| for (j = i; j > 0; --j) |
| IndexQueue.push_back(j - 1); |
| |
| for (auto &k : IndexQueue) { |
| assert(SL[k]->isSimple() && "Expected only non-volatile stores."); |
| Value *SecondStorePtr = SL[k]->getPointerOperand(); |
| const SCEVAddRecExpr *SecondStoreEv = |
| cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); |
| APInt SecondStride = getStoreStride(SecondStoreEv); |
| |
| if (FirstStride != SecondStride) |
| continue; |
| |
| Value *SecondStoredVal = SL[k]->getValueOperand(); |
| Value *SecondSplatValue = nullptr; |
| Constant *SecondPatternValue = nullptr; |
| |
| if (For == ForMemset::Yes) |
| SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); |
| else |
| SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); |
| |
| assert((SecondSplatValue || SecondPatternValue) && |
| "Expected either splat value or pattern value."); |
| |
| if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { |
| if (For == ForMemset::Yes) { |
| if (isa<UndefValue>(FirstSplatValue)) |
| FirstSplatValue = SecondSplatValue; |
| if (FirstSplatValue != SecondSplatValue) |
| continue; |
| } else { |
| if (isa<UndefValue>(FirstPatternValue)) |
| FirstPatternValue = SecondPatternValue; |
| if (FirstPatternValue != SecondPatternValue) |
| continue; |
| } |
| Tails.insert(SL[k]); |
| Heads.insert(SL[i]); |
| ConsecutiveChain[SL[i]] = SL[k]; |
| break; |
| } |
| } |
| } |
| |
| // We may run into multiple chains that merge into a single chain. We mark the |
| // stores that we transformed so that we don't visit the same store twice. |
| SmallPtrSet<Value *, 16> TransformedStores; |
| bool Changed = false; |
| |
| // For stores that start but don't end a link in the chain: |
| for (StoreInst *I : Heads) { |
| if (Tails.count(I)) |
| continue; |
| |
| // We found a store instr that starts a chain. Now follow the chain and try |
| // to transform it. |
| SmallPtrSet<Instruction *, 8> AdjacentStores; |
| StoreInst *HeadStore = I; |
| unsigned StoreSize = 0; |
| |
| // Collect the chain into a list. |
| while (Tails.count(I) || Heads.count(I)) { |
| if (TransformedStores.count(I)) |
| break; |
| AdjacentStores.insert(I); |
| |
| StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); |
| // Move to the next value in the chain. |
| I = ConsecutiveChain[I]; |
| } |
| |
| Value *StoredVal = HeadStore->getValueOperand(); |
| Value *StorePtr = HeadStore->getPointerOperand(); |
| const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| APInt Stride = getStoreStride(StoreEv); |
| |
| // Check to see if the stride matches the size of the stores. If so, then |
| // we know that every byte is touched in the loop. |
| if (StoreSize != Stride && StoreSize != -Stride) |
| continue; |
| |
| bool IsNegStride = StoreSize == -Stride; |
| |
| Type *IntIdxTy = DL->getIndexType(StorePtr->getType()); |
| const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize); |
| if (processLoopStridedStore(StorePtr, StoreSizeSCEV, |
| MaybeAlign(HeadStore->getAlign()), StoredVal, |
| HeadStore, AdjacentStores, StoreEv, BECount, |
| IsNegStride)) { |
| TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// processLoopMemIntrinsic - Template function for calling different processor |
| /// functions based on mem instrinsic type. |
| template <typename MemInst> |
| bool LoopIdiomRecognize::processLoopMemIntrinsic( |
| BasicBlock *BB, |
| bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), |
| const SCEV *BECount) { |
| bool MadeChange = false; |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { |
| Instruction *Inst = &*I++; |
| // Look for memory instructions, which may be optimized to a larger one. |
| if (MemInst *MI = dyn_cast<MemInst>(Inst)) { |
| WeakTrackingVH InstPtr(&*I); |
| if (!(this->*Processor)(MI, BECount)) |
| continue; |
| MadeChange = true; |
| |
| // If processing the instruction invalidated our iterator, start over from |
| // the top of the block. |
| if (!InstPtr) |
| I = BB->begin(); |
| } |
| } |
| return MadeChange; |
| } |
| |
| /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy |
| bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, |
| const SCEV *BECount) { |
| // We can only handle non-volatile memcpys with a constant size. |
| if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) |
| return false; |
| |
| // If we're not allowed to hack on memcpy, we fail. |
| if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) |
| return false; |
| |
| Value *Dest = MCI->getDest(); |
| Value *Source = MCI->getSource(); |
| if (!Dest || !Source) |
| return false; |
| |
| // See if the load and store pointer expressions are AddRec like {base,+,1} on |
| // the current loop, which indicates a strided load and store. If we have |
| // something else, it's a random load or store we can't handle. |
| const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); |
| if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) |
| return false; |
| const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); |
| if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) |
| return false; |
| |
| // Reject memcpys that are so large that they overflow an unsigned. |
| uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); |
| if ((SizeInBytes >> 32) != 0) |
| return false; |
| |
| // Check if the stride matches the size of the memcpy. If so, then we know |
| // that every byte is touched in the loop. |
| const SCEVConstant *ConstStoreStride = |
| dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); |
| const SCEVConstant *ConstLoadStride = |
| dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); |
| if (!ConstStoreStride || !ConstLoadStride) |
| return false; |
| |
| APInt StoreStrideValue = ConstStoreStride->getAPInt(); |
| APInt LoadStrideValue = ConstLoadStride->getAPInt(); |
| // Huge stride value - give up |
| if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) |
| return false; |
| |
| if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI) |
| << ore::NV("Inst", "memcpy") << " in " |
| << ore::NV("Function", MCI->getFunction()) |
| << " function will not be hoisted: " |
| << ore::NV("Reason", "memcpy size is not equal to stride"); |
| }); |
| return false; |
| } |
| |
| int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); |
| int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); |
| // Check if the load stride matches the store stride. |
| if (StoreStrideInt != LoadStrideInt) |
| return false; |
| |
| return processLoopStoreOfLoopLoad( |
| Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes), |
| MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv, |
| BECount); |
| } |
| |
| /// processLoopMemSet - See if this memset can be promoted to a large memset. |
| bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, |
| const SCEV *BECount) { |
| // We can only handle non-volatile memsets. |
| if (MSI->isVolatile()) |
| return false; |
| |
| // If we're not allowed to hack on memset, we fail. |
| if (!HasMemset || DisableLIRP::Memset) |
| return false; |
| |
| Value *Pointer = MSI->getDest(); |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided store. If we have something else, it's a |
| // random store we can't handle. |
| const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); |
| if (!Ev || Ev->getLoop() != CurLoop) |
| return false; |
| if (!Ev->isAffine()) { |
| LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n"); |
| return false; |
| } |
| |
| const SCEV *PointerStrideSCEV = Ev->getOperand(1); |
| const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength()); |
| if (!PointerStrideSCEV || !MemsetSizeSCEV) |
| return false; |
| |
| bool IsNegStride = false; |
| const bool IsConstantSize = isa<ConstantInt>(MSI->getLength()); |
| |
| if (IsConstantSize) { |
| // Memset size is constant. |
| // Check if the pointer stride matches the memset size. If so, then |
| // we know that every byte is touched in the loop. |
| LLVM_DEBUG(dbgs() << " memset size is constant\n"); |
| uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); |
| const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); |
| if (!ConstStride) |
| return false; |
| |
| APInt Stride = ConstStride->getAPInt(); |
| if (SizeInBytes != Stride && SizeInBytes != -Stride) |
| return false; |
| |
| IsNegStride = SizeInBytes == -Stride; |
| } else { |
| // Memset size is non-constant. |
| // Check if the pointer stride matches the memset size. |
| // To be conservative, the pass would not promote pointers that aren't in |
| // address space zero. Also, the pass only handles memset length and stride |
| // that are invariant for the top level loop. |
| LLVM_DEBUG(dbgs() << " memset size is non-constant\n"); |
| if (Pointer->getType()->getPointerAddressSpace() != 0) { |
| LLVM_DEBUG(dbgs() << " pointer is not in address space zero, " |
| << "abort\n"); |
| return false; |
| } |
| if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) { |
| LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, " |
| << "abort\n"); |
| return false; |
| } |
| |
| // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV |
| IsNegStride = PointerStrideSCEV->isNonConstantNegative(); |
| const SCEV *PositiveStrideSCEV = |
| IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV) |
| : PointerStrideSCEV; |
| LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" |
| << " PositiveStrideSCEV: " << *PositiveStrideSCEV |
| << "\n"); |
| |
| if (PositiveStrideSCEV != MemsetSizeSCEV) { |
| // If an expression is covered by the loop guard, compare again and |
| // proceed with optimization if equal. |
| const SCEV *FoldedPositiveStride = |
| SE->applyLoopGuards(PositiveStrideSCEV, CurLoop); |
| const SCEV *FoldedMemsetSize = |
| SE->applyLoopGuards(MemsetSizeSCEV, CurLoop); |
| |
| LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n" |
| << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" |
| << " FoldedPositiveStride: " << *FoldedPositiveStride |
| << "\n"); |
| |
| if (FoldedPositiveStride != FoldedMemsetSize) { |
| LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n"); |
| return false; |
| } |
| } |
| } |
| |
| // Verify that the memset value is loop invariant. If not, we can't promote |
| // the memset. |
| Value *SplatValue = MSI->getValue(); |
| if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) |
| return false; |
| |
| SmallPtrSet<Instruction *, 1> MSIs; |
| MSIs.insert(MSI); |
| return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()), |
| MaybeAlign(MSI->getDestAlignment()), |
| SplatValue, MSI, MSIs, Ev, BECount, |
| IsNegStride, /*IsLoopMemset=*/true); |
| } |
| |
| /// mayLoopAccessLocation - Return true if the specified loop might access the |
| /// specified pointer location, which is a loop-strided access. The 'Access' |
| /// argument specifies what the verboten forms of access are (read or write). |
| static bool |
| mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, |
| const SCEV *BECount, const SCEV *StoreSizeSCEV, |
| AliasAnalysis &AA, |
| SmallPtrSetImpl<Instruction *> &IgnoredInsts) { |
| // Get the location that may be stored across the loop. Since the access is |
| // strided positively through memory, we say that the modified location starts |
| // at the pointer and has infinite size. |
| LocationSize AccessSize = LocationSize::afterPointer(); |
| |
| // If the loop iterates a fixed number of times, we can refine the access size |
| // to be exactly the size of the memset, which is (BECount+1)*StoreSize |
| const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount); |
| const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); |
| if (BECst && ConstSize) |
| AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * |
| ConstSize->getValue()->getZExtValue()); |
| |
| // TODO: For this to be really effective, we have to dive into the pointer |
| // operand in the store. Store to &A[i] of 100 will always return may alias |
| // with store of &A[100], we need to StoreLoc to be "A" with size of 100, |
| // which will then no-alias a store to &A[100]. |
| MemoryLocation StoreLoc(Ptr, AccessSize); |
| |
| for (BasicBlock *B : L->blocks()) |
| for (Instruction &I : *B) |
| if (!IgnoredInsts.contains(&I) && |
| isModOrRefSet( |
| intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) |
| return true; |
| return false; |
| } |
| |
| // If we have a negative stride, Start refers to the end of the memory location |
| // we're trying to memset. Therefore, we need to recompute the base pointer, |
| // which is just Start - BECount*Size. |
| static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, |
| Type *IntPtr, const SCEV *StoreSizeSCEV, |
| ScalarEvolution *SE) { |
| const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); |
| if (!StoreSizeSCEV->isOne()) { |
| // index = back edge count * store size |
| Index = SE->getMulExpr(Index, |
| SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), |
| SCEV::FlagNUW); |
| } |
| // base pointer = start - index * store size |
| return SE->getMinusSCEV(Start, Index); |
| } |
| |
| /// Compute trip count from the backedge taken count. |
| static const SCEV *getTripCount(const SCEV *BECount, Type *IntPtr, |
| Loop *CurLoop, const DataLayout *DL, |
| ScalarEvolution *SE) { |
| const SCEV *TripCountS = nullptr; |
| // The # stored bytes is (BECount+1). Expand the trip count out to |
| // pointer size if it isn't already. |
| // |
| // If we're going to need to zero extend the BE count, check if we can add |
| // one to it prior to zero extending without overflow. Provided this is safe, |
| // it allows better simplification of the +1. |
| if (DL->getTypeSizeInBits(BECount->getType()) < |
| DL->getTypeSizeInBits(IntPtr) && |
| SE->isLoopEntryGuardedByCond( |
| CurLoop, ICmpInst::ICMP_NE, BECount, |
| SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { |
| TripCountS = SE->getZeroExtendExpr( |
| SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), |
| IntPtr); |
| } else { |
| TripCountS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), |
| SE->getOne(IntPtr), SCEV::FlagNUW); |
| } |
| |
| return TripCountS; |
| } |
| |
| /// Compute the number of bytes as a SCEV from the backedge taken count. |
| /// |
| /// This also maps the SCEV into the provided type and tries to handle the |
| /// computation in a way that will fold cleanly. |
| static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, |
| const SCEV *StoreSizeSCEV, Loop *CurLoop, |
| const DataLayout *DL, ScalarEvolution *SE) { |
| const SCEV *TripCountSCEV = getTripCount(BECount, IntPtr, CurLoop, DL, SE); |
| |
| return SE->getMulExpr(TripCountSCEV, |
| SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), |
| SCEV::FlagNUW); |
| } |
| |
| /// processLoopStridedStore - We see a strided store of some value. If we can |
| /// transform this into a memset or memset_pattern in the loop preheader, do so. |
| bool LoopIdiomRecognize::processLoopStridedStore( |
| Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, |
| Value *StoredVal, Instruction *TheStore, |
| SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, |
| const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { |
| Value *SplatValue = isBytewiseValue(StoredVal, *DL); |
| Constant *PatternValue = nullptr; |
| |
| if (!SplatValue) |
| PatternValue = getMemSetPatternValue(StoredVal, DL); |
| |
| assert((SplatValue || PatternValue) && |
| "Expected either splat value or pattern value."); |
| |
| // The trip count of the loop and the base pointer of the addrec SCEV is |
| // guaranteed to be loop invariant, which means that it should dominate the |
| // header. This allows us to insert code for it in the preheader. |
| unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); |
| BasicBlock *Preheader = CurLoop->getLoopPreheader(); |
| IRBuilder<> Builder(Preheader->getTerminator()); |
| SCEVExpander Expander(*SE, *DL, "loop-idiom"); |
| SCEVExpanderCleaner ExpCleaner(Expander); |
| |
| Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); |
| Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); |
| |
| bool Changed = false; |
| const SCEV *Start = Ev->getStart(); |
| // Handle negative strided loops. |
| if (IsNegStride) |
| Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE); |
| |
| // TODO: ideally we should still be able to generate memset if SCEV expander |
| // is taught to generate the dependencies at the latest point. |
| if (!isSafeToExpand(Start, *SE)) |
| return Changed; |
| |
| // Okay, we have a strided store "p[i]" of a splattable value. We can turn |
| // this into a memset in the loop preheader now if we want. However, this |
| // would be unsafe to do if there is anything else in the loop that may read |
| // or write to the aliased location. Check for any overlap by generating the |
| // base pointer and checking the region. |
| Value *BasePtr = |
| Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); |
| |
| // From here on out, conservatively report to the pass manager that we've |
| // changed the IR, even if we later clean up these added instructions. There |
| // may be structural differences e.g. in the order of use lists not accounted |
| // for in just a textual dump of the IR. This is written as a variable, even |
| // though statically all the places this dominates could be replaced with |
| // 'true', with the hope that anyone trying to be clever / "more precise" with |
| // the return value will read this comment, and leave them alone. |
| Changed = true; |
| |
| if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, |
| StoreSizeSCEV, *AA, Stores)) |
| return Changed; |
| |
| if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) |
| return Changed; |
| |
| // Okay, everything looks good, insert the memset. |
| |
| const SCEV *NumBytesS = |
| getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); |
| |
| // TODO: ideally we should still be able to generate memset if SCEV expander |
| // is taught to generate the dependencies at the latest point. |
| if (!isSafeToExpand(NumBytesS, *SE)) |
| return Changed; |
| |
| Value *NumBytes = |
| Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); |
| |
| CallInst *NewCall; |
| if (SplatValue) { |
| AAMDNodes AATags = TheStore->getAAMetadata(); |
| for (Instruction *Store : Stores) |
| AATags = AATags.merge(Store->getAAMetadata()); |
| if (auto CI = dyn_cast<ConstantInt>(NumBytes)) |
| AATags = AATags.extendTo(CI->getZExtValue()); |
| else |
| AATags = AATags.extendTo(-1); |
| |
| NewCall = Builder.CreateMemSet( |
| BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment), |
| /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); |
| } else { |
| // Everything is emitted in default address space |
| Type *Int8PtrTy = DestInt8PtrTy; |
| |
| Module *M = TheStore->getModule(); |
| StringRef FuncName = "memset_pattern16"; |
| FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), |
| Int8PtrTy, Int8PtrTy, IntIdxTy); |
| inferLibFuncAttributes(M, FuncName, *TLI); |
| |
| // Otherwise we should form a memset_pattern16. PatternValue is known to be |
| // an constant array of 16-bytes. Plop the value into a mergable global. |
| GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, |
| GlobalValue::PrivateLinkage, |
| PatternValue, ".memset_pattern"); |
| GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. |
| GV->setAlignment(Align(16)); |
| Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); |
| NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); |
| } |
| NewCall->setDebugLoc(TheStore->getDebugLoc()); |
| |
| if (MSSAU) { |
| MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( |
| NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); |
| MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); |
| } |
| |
| LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" |
| << " from store to: " << *Ev << " at: " << *TheStore |
| << "\n"); |
| |
| ORE.emit([&]() { |
| OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore", |
| NewCall->getDebugLoc(), Preheader); |
| R << "Transformed loop-strided store in " |
| << ore::NV("Function", TheStore->getFunction()) |
| << " function into a call to " |
| << ore::NV("NewFunction", NewCall->getCalledFunction()) |
| << "() intrinsic"; |
| if (!Stores.empty()) |
| R << ore::setExtraArgs(); |
| for (auto *I : Stores) { |
| R << ore::NV("FromBlock", I->getParent()->getName()) |
| << ore::NV("ToBlock", Preheader->getName()); |
| } |
| return R; |
| }); |
| |
| // Okay, the memset has been formed. Zap the original store and anything that |
| // feeds into it. |
| for (auto *I : Stores) { |
| if (MSSAU) |
| MSSAU->removeMemoryAccess(I, true); |
| deleteDeadInstruction(I); |
| } |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| ++NumMemSet; |
| ExpCleaner.markResultUsed(); |
| return true; |
| } |
| |
| /// If the stored value is a strided load in the same loop with the same stride |
| /// this may be transformable into a memcpy. This kicks in for stuff like |
| /// for (i) A[i] = B[i]; |
| bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, |
| const SCEV *BECount) { |
| assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); |
| |
| Value *StorePtr = SI->getPointerOperand(); |
| const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); |
| |
| // The store must be feeding a non-volatile load. |
| LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); |
| assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided load. If we have something else, it's a |
| // random load we can't handle. |
| Value *LoadPtr = LI->getPointerOperand(); |
| const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); |
| |
| const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize); |
| return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV, |
| SI->getAlign(), LI->getAlign(), SI, LI, |
| StoreEv, LoadEv, BECount); |
| } |
| |
| class MemmoveVerifier { |
| public: |
| explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, |
| const DataLayout &DL) |
| : DL(DL), LoadOff(0), StoreOff(0), |
| BP1(llvm::GetPointerBaseWithConstantOffset( |
| LoadBasePtr.stripPointerCasts(), LoadOff, DL)), |
| BP2(llvm::GetPointerBaseWithConstantOffset( |
| StoreBasePtr.stripPointerCasts(), StoreOff, DL)), |
| IsSameObject(BP1 == BP2) {} |
| |
| bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, |
| const Instruction &TheLoad, |
| bool IsMemCpy) const { |
| if (IsMemCpy) { |
| // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr |
| // for negative stride. |
| if ((!IsNegStride && LoadOff <= StoreOff) || |
| (IsNegStride && LoadOff >= StoreOff)) |
| return false; |
| } else { |
| // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr |
| // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. |
| int64_t LoadSize = |
| DL.getTypeSizeInBits(TheLoad.getType()).getFixedSize() / 8; |
| if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) |
| return false; |
| if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || |
| (IsNegStride && LoadOff + LoadSize > StoreOff)) |
| return false; |
| } |
| return true; |
| } |
| |
| private: |
| const DataLayout &DL; |
| int64_t LoadOff; |
| int64_t StoreOff; |
| const Value *BP1; |
| const Value *BP2; |
| |
| public: |
| const bool IsSameObject; |
| }; |
| |
| bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( |
| Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, |
| MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, |
| Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, |
| const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { |
| |
| // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to |
| // conservatively bail here, since otherwise we may have to transform |
| // llvm.memcpy.inline into llvm.memcpy which is illegal. |
| if (isa<MemCpyInlineInst>(TheStore)) |
| return false; |
| |
| // The trip count of the loop and the base pointer of the addrec SCEV is |
| // guaranteed to be loop invariant, which means that it should dominate the |
| // header. This allows us to insert code for it in the preheader. |
| BasicBlock *Preheader = CurLoop->getLoopPreheader(); |
| IRBuilder<> Builder(Preheader->getTerminator()); |
| SCEVExpander Expander(*SE, *DL, "loop-idiom"); |
| |
| SCEVExpanderCleaner ExpCleaner(Expander); |
| |
| bool Changed = false; |
| const SCEV *StrStart = StoreEv->getStart(); |
| unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); |
| Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); |
| |
| APInt Stride = getStoreStride(StoreEv); |
| const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); |
| |
| // TODO: Deal with non-constant size; Currently expect constant store size |
| assert(ConstStoreSize && "store size is expected to be a constant"); |
| |
| int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); |
| bool IsNegStride = StoreSize == -Stride; |
| |
| // Handle negative strided loops. |
| if (IsNegStride) |
| StrStart = |
| getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE); |
| |
| // Okay, we have a strided store "p[i]" of a loaded value. We can turn |
| // this into a memcpy in the loop preheader now if we want. However, this |
| // would be unsafe to do if there is anything else in the loop that may read |
| // or write the memory region we're storing to. This includes the load that |
| // feeds the stores. Check for an alias by generating the base address and |
| // checking everything. |
| Value *StoreBasePtr = Expander.expandCodeFor( |
| StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); |
| |
| // From here on out, conservatively report to the pass manager that we've |
| // changed the IR, even if we later clean up these added instructions. There |
| // may be structural differences e.g. in the order of use lists not accounted |
| // for in just a textual dump of the IR. This is written as a variable, even |
| // though statically all the places this dominates could be replaced with |
| // 'true', with the hope that anyone trying to be clever / "more precise" with |
| // the return value will read this comment, and leave them alone. |
| Changed = true; |
| |
| SmallPtrSet<Instruction *, 2> IgnoredInsts; |
| IgnoredInsts.insert(TheStore); |
| |
| bool IsMemCpy = isa<MemCpyInst>(TheStore); |
| const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; |
| |
| bool LoopAccessStore = |
| mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, |
| StoreSizeSCEV, *AA, IgnoredInsts); |
| if (LoopAccessStore) { |
| // For memmove case it's not enough to guarantee that loop doesn't access |
| // TheStore and TheLoad. Additionally we need to make sure that TheStore is |
| // the only user of TheLoad. |
| if (!TheLoad->hasOneUse()) |
| return Changed; |
| IgnoredInsts.insert(TheLoad); |
| if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, |
| BECount, StoreSizeSCEV, *AA, IgnoredInsts)) { |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore", |
| TheStore) |
| << ore::NV("Inst", InstRemark) << " in " |
| << ore::NV("Function", TheStore->getFunction()) |
| << " function will not be hoisted: " |
| << ore::NV("Reason", "The loop may access store location"); |
| }); |
| return Changed; |
| } |
| IgnoredInsts.erase(TheLoad); |
| } |
| |
| const SCEV *LdStart = LoadEv->getStart(); |
| unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); |
| |
| // Handle negative strided loops. |
| if (IsNegStride) |
| LdStart = |
| getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE); |
| |
| // For a memcpy, we have to make sure that the input array is not being |
| // mutated by the loop. |
| Value *LoadBasePtr = Expander.expandCodeFor( |
| LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); |
| |
| // If the store is a memcpy instruction, we must check if it will write to |
| // the load memory locations. So remove it from the ignored stores. |
| MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); |
| if (IsMemCpy && !Verifier.IsSameObject) |
| IgnoredInsts.erase(TheStore); |
| if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, |
| StoreSizeSCEV, *AA, IgnoredInsts)) { |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad) |
| << ore::NV("Inst", InstRemark) << " in " |
| << ore::NV("Function", TheStore->getFunction()) |
| << " function will not be hoisted: " |
| << ore::NV("Reason", "The loop may access load location"); |
| }); |
| return Changed; |
| } |
| |
| bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; |
| if (UseMemMove) |
| if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad, |
| IsMemCpy)) |
| return Changed; |
| |
| if (avoidLIRForMultiBlockLoop()) |
| return Changed; |
| |
| // Okay, everything is safe, we can transform this! |
| |
| const SCEV *NumBytesS = |
| getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); |
| |
| Value *NumBytes = |
| Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); |
| |
| AAMDNodes AATags = TheLoad->getAAMetadata(); |
| AAMDNodes StoreAATags = TheStore->getAAMetadata(); |
| AATags = AATags.merge(StoreAATags); |
| if (auto CI = dyn_cast<ConstantInt>(NumBytes)) |
| AATags = AATags.extendTo(CI->getZExtValue()); |
| else |
| AATags = AATags.extendTo(-1); |
| |
| CallInst *NewCall = nullptr; |
| // Check whether to generate an unordered atomic memcpy: |
| // If the load or store are atomic, then they must necessarily be unordered |
| // by previous checks. |
| if (!TheStore->isAtomic() && !TheLoad->isAtomic()) { |
| if (UseMemMove) |
| NewCall = Builder.CreateMemMove( |
| StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, |
| /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); |
| else |
| NewCall = |
| Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, |
| NumBytes, /*isVolatile=*/false, AATags.TBAA, |
| AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); |
| } else { |
| // For now don't support unordered atomic memmove. |
| if (UseMemMove) |
| return Changed; |
| // We cannot allow unaligned ops for unordered load/store, so reject |
| // anything where the alignment isn't at least the element size. |
| assert((StoreAlign.hasValue() && LoadAlign.hasValue()) && |
| "Expect unordered load/store to have align."); |
| if (StoreAlign.getValue() < StoreSize || LoadAlign.getValue() < StoreSize) |
| return Changed; |
| |
| // If the element.atomic memcpy is not lowered into explicit |
| // loads/stores later, then it will be lowered into an element-size |
| // specific lib call. If the lib call doesn't exist for our store size, then |
| // we shouldn't generate the memcpy. |
| if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) |
| return Changed; |
| |
| // Create the call. |
| // Note that unordered atomic loads/stores are *required* by the spec to |
| // have an alignment but non-atomic loads/stores may not. |
| NewCall = Builder.CreateElementUnorderedAtomicMemCpy( |
| StoreBasePtr, StoreAlign.getValue(), LoadBasePtr, LoadAlign.getValue(), |
| NumBytes, StoreSize, AATags.TBAA, AATags.TBAAStruct, AATags.Scope, |
| AATags.NoAlias); |
| } |
| NewCall->setDebugLoc(TheStore->getDebugLoc()); |
| |
| if (MSSAU) { |
| MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( |
| NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); |
| MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); |
| } |
| |
| LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n" |
| << " from load ptr=" << *LoadEv << " at: " << *TheLoad |
| << "\n" |
| << " from store ptr=" << *StoreEv << " at: " << *TheStore |
| << "\n"); |
| |
| ORE.emit([&]() { |
| return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", |
| NewCall->getDebugLoc(), Preheader) |
| << "Formed a call to " |
| << ore::NV("NewFunction", NewCall->getCalledFunction()) |
| << "() intrinsic from " << ore::NV("Inst", InstRemark) |
| << " instruction in " << ore::NV("Function", TheStore->getFunction()) |
| << " function" |
| << ore::setExtraArgs() |
| << ore::NV("FromBlock", TheStore->getParent()->getName()) |
| << ore::NV("ToBlock", Preheader->getName()); |
| }); |
| |
| // Okay, a new call to memcpy/memmove has been formed. Zap the original store |
| // and anything that feeds into it. |
| if (MSSAU) |
| MSSAU->removeMemoryAccess(TheStore, true); |
| deleteDeadInstruction(TheStore); |
| if (MSSAU && VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| if (UseMemMove) |
| ++NumMemMove; |
| else |
| ++NumMemCpy; |
| ExpCleaner.markResultUsed(); |
| return true; |
| } |
| |
| // When compiling for codesize we avoid idiom recognition for a multi-block loop |
| // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. |
| // |
| bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, |
| bool IsLoopMemset) { |
| if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { |
| if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { |
| LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() |
| << " : LIR " << (IsMemset ? "Memset" : "Memcpy") |
| << " avoided: multi-block top-level loop\n"); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool LoopIdiomRecognize::runOnNoncountableLoop() { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" |
| << CurLoop->getHeader()->getParent()->getName() |
| << "] Noncountable Loop %" |
| << CurLoop->getHeader()->getName() << "\n"); |
| |
| return recognizePopcount() || recognizeAndInsertFFS() || |
| recognizeShiftUntilBitTest() || recognizeShiftUntilZero(); |
| } |
| |
| /// Check if the given conditional branch is based on the comparison between |
| /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is |
| /// true), the control yields to the loop entry. If the branch matches the |
| /// behavior, the variable involved in the comparison is returned. This function |
| /// will be called to see if the precondition and postcondition of the loop are |
| /// in desirable form. |
| static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, |
| bool JmpOnZero = false) { |
| if (!BI || !BI->isConditional()) |
| return nullptr; |
| |
| ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); |
| if (!Cond) |
| return nullptr; |
| |
| ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); |
| if (!CmpZero || !CmpZero->isZero()) |
| return nullptr; |
| |
| BasicBlock *TrueSucc = BI->getSuccessor(0); |
| BasicBlock *FalseSucc = BI->getSuccessor(1); |
| if (JmpOnZero) |
| std::swap(TrueSucc, FalseSucc); |
| |
| ICmpInst::Predicate Pred = Cond->getPredicate(); |
| if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || |
| (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) |
| return Cond->getOperand(0); |
| |
| return nullptr; |
| } |
| |
| // Check if the recurrence variable `VarX` is in the right form to create |
| // the idiom. Returns the value coerced to a PHINode if so. |
| static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, |
| BasicBlock *LoopEntry) { |
| auto *PhiX = dyn_cast<PHINode>(VarX); |
| if (PhiX && PhiX->getParent() == LoopEntry && |
| (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) |
| return PhiX; |
| return nullptr; |
| } |
| |
| /// Return true iff the idiom is detected in the loop. |
| /// |
| /// Additionally: |
| /// 1) \p CntInst is set to the instruction counting the population bit. |
| /// 2) \p CntPhi is set to the corresponding phi node. |
| /// 3) \p Var is set to the value whose population bits are being counted. |
| /// |
| /// The core idiom we are trying to detect is: |
| /// \code |
| /// if (x0 != 0) |
| /// goto loop-exit // the precondition of the loop |
| /// cnt0 = init-val; |
| /// do { |
| /// x1 = phi (x0, x2); |
| /// cnt1 = phi(cnt0, cnt2); |
| /// |
| /// cnt2 = cnt1 + 1; |
| /// ... |
| /// x2 = x1 & (x1 - 1); |
| /// ... |
| /// } while(x != 0); |
| /// |
| /// loop-exit: |
| /// \endcode |
| static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, |
| Instruction *&CntInst, PHINode *&CntPhi, |
| Value *&Var) { |
| // step 1: Check to see if the look-back branch match this pattern: |
| // "if (a!=0) goto loop-entry". |
| BasicBlock *LoopEntry; |
| Instruction *DefX2, *CountInst; |
| Value *VarX1, *VarX0; |
| PHINode *PhiX, *CountPhi; |
| |
| DefX2 = CountInst = nullptr; |
| VarX1 = VarX0 = nullptr; |
| PhiX = CountPhi = nullptr; |
| LoopEntry = *(CurLoop->block_begin()); |
| |
| // step 1: Check if the loop-back branch is in desirable form. |
| { |
| if (Value *T = matchCondition( |
| dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) |
| DefX2 = dyn_cast<Instruction>(T); |
| else |
| return false; |
| } |
| |
| // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" |
| { |
| if (!DefX2 || DefX2->getOpcode() != Instruction::And) |
| return false; |
| |
| BinaryOperator *SubOneOp; |
| |
| if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) |
| VarX1 = DefX2->getOperand(1); |
| else { |
| VarX1 = DefX2->getOperand(0); |
| SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); |
| } |
| if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) |
| return false; |
| |
| ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); |
| if (!Dec || |
| !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || |
| (SubOneOp->getOpcode() == Instruction::Add && |
| Dec->isMinusOne()))) { |
| return false; |
| } |
| } |
| |
| // step 3: Check the recurrence of variable X |
| PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); |
| if (!PhiX) |
| return false; |
| |
| // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 |
| { |
| CountInst = nullptr; |
| for (Instruction &Inst : llvm::make_range( |
| LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { |
| if (Inst.getOpcode() != Instruction::Add) |
| continue; |
| |
| ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); |
| if (!Inc || !Inc->isOne()) |
| continue; |
| |
| PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); |
| if (!Phi) |
| continue; |
| |
| // Check if the result of the instruction is live of the loop. |
| bool LiveOutLoop = false; |
| for (User *U : Inst.users()) { |
| if ((cast<Instruction>(U))->getParent() != LoopEntry) { |
| LiveOutLoop = true; |
| break; |
| } |
| } |
| |
| if (LiveOutLoop) { |
| CountInst = &Inst; |
| CountPhi = Phi; |
| break; |
| } |
| } |
| |
| if (!CountInst) |
| return false; |
| } |
| |
| // step 5: check if the precondition is in this form: |
| // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" |
| { |
| auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); |
| Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); |
| if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) |
| return false; |
| |
| CntInst = CountInst; |
| CntPhi = CountPhi; |
| Var = T; |
| } |
| |
| return true; |
| } |
| |
| /// Return true if the idiom is detected in the loop. |
| /// |
| /// Additionally: |
| /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) |
| /// or nullptr if there is no such. |
| /// 2) \p CntPhi is set to the corresponding phi node |
| /// or nullptr if there is no such. |
| /// 3) \p Var is set to the value whose CTLZ could be used. |
| /// 4) \p DefX is set to the instruction calculating Loop exit condition. |
| /// |
| /// The core idiom we are trying to detect is: |
| /// \code |
| /// if (x0 == 0) |
| /// goto loop-exit // the precondition of the loop |
| /// cnt0 = init-val; |
| /// do { |
| /// x = phi (x0, x.next); //PhiX |
| /// cnt = phi(cnt0, cnt.next); |
| /// |
| /// cnt.next = cnt + 1; |
| /// ... |
| /// x.next = x >> 1; // DefX |
| /// ... |
| /// } while(x.next != 0); |
| /// |
| /// loop-exit: |
| /// \endcode |
| static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, |
| Intrinsic::ID &IntrinID, Value *&InitX, |
| Instruction *&CntInst, PHINode *&CntPhi, |
| Instruction *&DefX) { |
| BasicBlock *LoopEntry; |
| Value *VarX = nullptr; |
| |
| DefX = nullptr; |
| CntInst = nullptr; |
| CntPhi = nullptr; |
| LoopEntry = *(CurLoop->block_begin()); |
| |
| // step 1: Check if the loop-back branch is in desirable form. |
| if (Value *T = matchCondition( |
| dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) |
| DefX = dyn_cast<Instruction>(T); |
| else |
| return false; |
| |
| // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" |
| if (!DefX || !DefX->isShift()) |
| return false; |
| IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : |
| Intrinsic::ctlz; |
| ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); |
| if (!Shft || !Shft->isOne()) |
| return false; |
| VarX = DefX->getOperand(0); |
| |
| // step 3: Check the recurrence of variable X |
| PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); |
| if (!PhiX) |
| return false; |
| |
| InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); |
| |
| // Make sure the initial value can't be negative otherwise the ashr in the |
| // loop might never reach zero which would make the loop infinite. |
| if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) |
| return false; |
| |
| // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 |
| // or cnt.next = cnt + -1. |
| // TODO: We can skip the step. If loop trip count is known (CTLZ), |
| // then all uses of "cnt.next" could be optimized to the trip count |
| // plus "cnt0". Currently it is not optimized. |
| // This step could be used to detect POPCNT instruction: |
| // cnt.next = cnt + (x.next & 1) |
| for (Instruction &Inst : llvm::make_range( |
| LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { |
| if (Inst.getOpcode() != Instruction::Add) |
| continue; |
| |
| ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); |
| if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) |
| continue; |
| |
| PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); |
| if (!Phi) |
| continue; |
| |
| CntInst = &Inst; |
| CntPhi = Phi; |
| break; |
| } |
| if (!CntInst) |
| return false; |
| |
| return true; |
| } |
| |
| /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop |
| /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new |
| /// trip count returns true; otherwise, returns false. |
| bool LoopIdiomRecognize::recognizeAndInsertFFS() { |
| // Give up if the loop has multiple blocks or multiple backedges. |
| if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) |
| return false; |
| |
| Intrinsic::ID IntrinID; |
| Value *InitX; |
| Instruction *DefX = nullptr; |
| PHINode *CntPhi = nullptr; |
| Instruction *CntInst = nullptr; |
| // Help decide if transformation is profitable. For ShiftUntilZero idiom, |
| // this is always 6. |
| size_t IdiomCanonicalSize = 6; |
| |
| if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, |
| CntInst, CntPhi, DefX)) |
| return false; |
| |
| bool IsCntPhiUsedOutsideLoop = false; |
| for (User *U : CntPhi->users()) |
| if (!CurLoop->contains(cast<Instruction>(U))) { |
| IsCntPhiUsedOutsideLoop = true; |
| break; |
| } |
| bool IsCntInstUsedOutsideLoop = false; |
| for (User *U : CntInst->users()) |
| if (!CurLoop->contains(cast<Instruction>(U))) { |
| IsCntInstUsedOutsideLoop = true; |
| break; |
| } |
| // If both CntInst and CntPhi are used outside the loop the profitability |
| // is questionable. |
| if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) |
| return false; |
| |
| // For some CPUs result of CTLZ(X) intrinsic is undefined |
| // when X is 0. If we can not guarantee X != 0, we need to check this |
| // when expand. |
| bool ZeroCheck = false; |
| // It is safe to assume Preheader exist as it was checked in |
| // parent function RunOnLoop. |
| BasicBlock *PH = CurLoop->getLoopPreheader(); |
| |
| // If we are using the count instruction outside the loop, make sure we |
| // have a zero check as a precondition. Without the check the loop would run |
| // one iteration for before any check of the input value. This means 0 and 1 |
| // would have identical behavior in the original loop and thus |
| if (!IsCntPhiUsedOutsideLoop) { |
| auto *PreCondBB = PH->getSinglePredecessor(); |
| if (!PreCondBB) |
| return false; |
| auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); |
| if (!PreCondBI) |
| return false; |
| if (matchCondition(PreCondBI, PH) != InitX) |
| return false; |
| ZeroCheck = true; |
| } |
| |
| // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always |
| // profitable if we delete the loop. |
| |
| // the loop has only 6 instructions: |
| // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] |
| // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] |
| // %shr = ashr %n.addr.0, 1 |
| // %tobool = icmp eq %shr, 0 |
| // %inc = add nsw %i.0, 1 |
| // br i1 %tobool |
| |
| const Value *Args[] = {InitX, |
| ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; |
| |
| // @llvm.dbg doesn't count as they have no semantic effect. |
| auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); |
| uint32_t HeaderSize = |
| std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); |
| |
| IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); |
| InstructionCost Cost = |
| TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); |
| if (HeaderSize != IdiomCanonicalSize && |
| Cost > TargetTransformInfo::TCC_Basic) |
| return false; |
| |
| transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, |
| DefX->getDebugLoc(), ZeroCheck, |
| IsCntPhiUsedOutsideLoop); |
| return true; |
| } |
| |
| /// Recognizes a population count idiom in a non-countable loop. |
| /// |
| /// If detected, transforms the relevant code to issue the popcount intrinsic |
| /// function call, and returns true; otherwise, returns false. |
| bool LoopIdiomRecognize::recognizePopcount() { |
| if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) |
| return false; |
| |
| // Counting population are usually conducted by few arithmetic instructions. |
| // Such instructions can be easily "absorbed" by vacant slots in a |
| // non-compact loop. Therefore, recognizing popcount idiom only makes sense |
| // in a compact loop. |
| |
| // Give up if the loop has multiple blocks or multiple backedges. |
| if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) |
| return false; |
| |
| BasicBlock *LoopBody = *(CurLoop->block_begin()); |
| if (LoopBody->size() >= 20) { |
| // The loop is too big, bail out. |
| return false; |
| } |
| |
| // It should have a preheader containing nothing but an unconditional branch. |
| BasicBlock *PH = CurLoop->getLoopPreheader(); |
| if (!PH || &PH->front() != PH->getTerminator()) |
| return false; |
| auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); |
| if (!EntryBI || EntryBI->isConditional()) |
| return false; |
| |
| // It should have a precondition block where the generated popcount intrinsic |
| // function can be inserted. |
| auto *PreCondBB = PH->getSinglePredecessor(); |
| if (!PreCondBB) |
| return false; |
| auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); |
| if (!PreCondBI || PreCondBI->isUnconditional()) |
| return false; |
| |
| Instruction *CntInst; |
| PHINode *CntPhi; |
| Value *Val; |
| if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) |
| return false; |
| |
| transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); |
| return true; |
| } |
| |
| static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, |
| const DebugLoc &DL) { |
| Value *Ops[] = {Val}; |
| Type *Tys[] = {Val->getType()}; |
| |
| Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); |
| Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); |
| CallInst *CI = IRBuilder.CreateCall(Func, Ops); |
| CI->setDebugLoc(DL); |
| |
| return CI; |
| } |
| |
| static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, |
| const DebugLoc &DL, bool ZeroCheck, |
| Intrinsic::ID IID) { |
| Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; |
| Type *Tys[] = {Val->getType()}; |
| |
| Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); |
| Function *Func = Intrinsic::getDeclaration(M, IID, Tys); |
| CallInst *CI = IRBuilder.CreateCall(Func, Ops); |
| CI->setDebugLoc(DL); |
| |
| return CI; |
| } |
| |
| /// Transform the following loop (Using CTLZ, CTTZ is similar): |
| /// loop: |
| /// CntPhi = PHI [Cnt0, CntInst] |
| /// PhiX = PHI [InitX, DefX] |
| /// CntInst = CntPhi + 1 |
| /// DefX = PhiX >> 1 |
| /// LOOP_BODY |
| /// Br: loop if (DefX != 0) |
| /// Use(CntPhi) or Use(CntInst) |
| /// |
| /// Into: |
| /// If CntPhi used outside the loop: |
| /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) |
| /// Count = CountPrev + 1 |
| /// else |
| /// Count = BitWidth(InitX) - CTLZ(InitX) |
| /// loop: |
| /// CntPhi = PHI [Cnt0, CntInst] |
| /// PhiX = PHI [InitX, DefX] |
| /// PhiCount = PHI [Count, Dec] |
| /// CntInst = CntPhi + 1 |
| /// DefX = PhiX >> 1 |
| /// Dec = PhiCount - 1 |
| /// LOOP_BODY |
| /// Br: loop if (Dec != 0) |
| /// Use(CountPrev + Cnt0) // Use(CntPhi) |
| /// or |
| /// Use(Count + Cnt0) // Use(CntInst) |
| /// |
| /// If LOOP_BODY is empty the loop will be deleted. |
| /// If CntInst and DefX are not used in LOOP_BODY they will be removed. |
| void LoopIdiomRecognize::transformLoopToCountable( |
| Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, |
| PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, |
| bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { |
| BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); |
| |
| // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block |
| IRBuilder<> Builder(PreheaderBr); |
| Builder.SetCurrentDebugLocation(DL); |
| |
| // If there are no uses of CntPhi crate: |
| // Count = BitWidth - CTLZ(InitX); |
| // NewCount = Count; |
| // If there are uses of CntPhi create: |
| // NewCount = BitWidth - CTLZ(InitX >> 1); |
| // Count = NewCount + 1; |
| Value *InitXNext; |
| if (IsCntPhiUsedOutsideLoop) { |
| if (DefX->getOpcode() == Instruction::AShr) |
| InitXNext = Builder.CreateAShr(InitX, 1); |
| else if (DefX->getOpcode() == Instruction::LShr) |
| InitXNext = Builder.CreateLShr(InitX, 1); |
| else if (DefX->getOpcode() == Instruction::Shl) // cttz |
| InitXNext = Builder.CreateShl(InitX, 1); |
| else |
| llvm_unreachable("Unexpected opcode!"); |
| } else |
| InitXNext = InitX; |
| Value *Count = |
| createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); |
| Type *CountTy = Count->getType(); |
| Count = Builder.CreateSub( |
| ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); |
| Value *NewCount = Count; |
| if (IsCntPhiUsedOutsideLoop) |
| Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); |
| |
| NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); |
| |
| Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); |
| if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { |
| // If the counter was being incremented in the loop, add NewCount to the |
| // counter's initial value, but only if the initial value is not zero. |
| ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); |
| if (!InitConst || !InitConst->isZero()) |
| NewCount = Builder.CreateAdd(NewCount, CntInitVal); |
| } else { |
| // If the count was being decremented in the loop, subtract NewCount from |
| // the counter's initial value. |
| NewCount = Builder.CreateSub(CntInitVal, NewCount); |
| } |
| |
| // Step 2: Insert new IV and loop condition: |
| // loop: |
| // ... |
| // PhiCount = PHI [Count, Dec] |
| // ... |
| // Dec = PhiCount - 1 |
| // ... |
| // Br: loop if (Dec != 0) |
| BasicBlock *Body = *(CurLoop->block_begin()); |
| auto *LbBr = cast<BranchInst>(Body->getTerminator()); |
| ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); |
| |
| PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front()); |
| |
| Builder.SetInsertPoint(LbCond); |
| Instruction *TcDec = cast<Instruction>(Builder.CreateSub( |
| TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); |
| |
| TcPhi->addIncoming(Count, Preheader); |
| TcPhi->addIncoming(TcDec, Body); |
| |
| CmpInst::Predicate Pred = |
| (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; |
| LbCond->setPredicate(Pred); |
| LbCond->setOperand(0, TcDec); |
| LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); |
| |
| // Step 3: All the references to the original counter outside |
| // the loop are replaced with the NewCount |
| if (IsCntPhiUsedOutsideLoop) |
| CntPhi->replaceUsesOutsideBlock(NewCount, Body); |
| else |
| CntInst->replaceUsesOutsideBlock(NewCount, Body); |
| |
| // step 4: Forget the "non-computable" trip-count SCEV associated with the |
| // loop. The loop would otherwise not be deleted even if it becomes empty. |
| SE->forgetLoop(CurLoop); |
| } |
| |
| void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, |
| Instruction *CntInst, |
| PHINode *CntPhi, Value *Var) { |
| BasicBlock *PreHead = CurLoop->getLoopPreheader(); |
| auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); |
| const DebugLoc &DL = CntInst->getDebugLoc(); |
| |
| // Assuming before transformation, the loop is following: |
| // if (x) // the precondition |
| // do { cnt++; x &= x - 1; } while(x); |
| |
| // Step 1: Insert the ctpop instruction at the end of the precondition block |
| IRBuilder<> Builder(PreCondBr); |
| Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; |
| { |
| PopCnt = createPopcntIntrinsic(Builder, Var, DL); |
| NewCount = PopCntZext = |
| Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); |
| |
| if (NewCount != PopCnt) |
| (cast<Instruction>(NewCount))->setDebugLoc(DL); |
| |
| // TripCnt is exactly the number of iterations the loop has |
| TripCnt = NewCount; |
| |
| // If the population counter's initial value is not zero, insert Add Inst. |
| Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); |
| ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); |
| if (!InitConst || !InitConst->isZero()) { |
| NewCount = Builder.CreateAdd(NewCount, CntInitVal); |
| (cast<Instruction>(NewCount))->setDebugLoc(DL); |
| } |
| } |
| |
| // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to |
| // "if (NewCount == 0) loop-exit". Without this change, the intrinsic |
| // function would be partial dead code, and downstream passes will drag |
| // it back from the precondition block to the preheader. |
| { |
| ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); |
| |
| Value *Opnd0 = PopCntZext; |
| Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); |
| if (PreCond->getOperand(0) != Var) |
| std::swap(Opnd0, Opnd1); |
| |
| ICmpInst *NewPreCond = cast<ICmpInst>( |
| Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); |
| PreCondBr->setCondition(NewPreCond); |
| |
| RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); |
| } |
| |
| // Step 3: Note that the population count is exactly the trip count of the |
| // loop in question, which enable us to convert the loop from noncountable |
| // loop into a countable one. The benefit is twofold: |
| // |
| // - If the loop only counts population, the entire loop becomes dead after |
| // the transformation. It is a lot easier to prove a countable loop dead |
| // than to prove a noncountable one. (In some C dialects, an infinite loop |
| // isn't dead even if it computes nothing useful. In general, DCE needs |
| // to prove a noncountable loop finite before safely delete it.) |
| // |
| // - If the loop also performs something else, it remains alive. |
| // Since it is transformed to countable form, it can be aggressively |
| // optimized by some optimizations which are in general not applicable |
| // to a noncountable loop. |
| // |
| // After this step, this loop (conceptually) would look like following: |
| // newcnt = __builtin_ctpop(x); |
| // t = newcnt; |
| // if (x) |
| // do { cnt++; x &= x-1; t--) } while (t > 0); |
| BasicBlock *Body = *(CurLoop->block_begin()); |
| { |
| auto *LbBr = cast<BranchInst>(Body->getTerminator()); |
| ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); |
| Type *Ty = TripCnt->getType(); |
| |
| PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); |
| |
| Builder.SetInsertPoint(LbCond); |
| Instruction *TcDec = cast<Instruction>( |
| Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), |
| "tcdec", false, true)); |
| |
| TcPhi->addIncoming(TripCnt, PreHead); |
| TcPhi->addIncoming(TcDec, Body); |
| |
| CmpInst::Predicate Pred = |
| (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; |
| LbCond->setPredicate(Pred); |
| LbCond->setOperand(0, TcDec); |
| LbCond->setOperand(1, ConstantInt::get(Ty, 0)); |
| } |
| |
| // Step 4: All the references to the original population counter outside |
| // the loop are replaced with the NewCount -- the value returned from |
| // __builtin_ctpop(). |
| CntInst->replaceUsesOutsideBlock(NewCount, Body); |
| |
| // step 5: Forget the "non-computable" trip-count SCEV associated with the |
| // loop. The loop would otherwise not be deleted even if it becomes empty. |
| SE->forgetLoop(CurLoop); |
| } |
| |
| /// Match loop-invariant value. |
| template <typename SubPattern_t> struct match_LoopInvariant { |
| SubPattern_t SubPattern; |
| const Loop *L; |
| |
| match_LoopInvariant(const SubPattern_t &SP, const Loop *L) |
| : SubPattern(SP), L(L) {} |
| |
| template <typename ITy> bool match(ITy *V) { |
| return L->isLoopInvariant(V) && SubPattern.match(V); |
| } |
| }; |
| |
| /// Matches if the value is loop-invariant. |
| template <typename Ty> |
| inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { |
| return match_LoopInvariant<Ty>(M, L); |
| } |
| |
| /// Return true if the idiom is detected in the loop. |
| /// |
| /// The core idiom we are trying to detect is: |
| /// \code |
| /// entry: |
| /// <...> |
| /// %bitmask = shl i32 1, %bitpos |
| /// br label %loop |
| /// |
| /// loop: |
| /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] |
| /// %x.curr.bitmasked = and i32 %x.curr, %bitmask |
| /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 |
| /// %x.next = shl i32 %x.curr, 1 |
| /// <...> |
| /// br i1 %x.curr.isbitunset, label %loop, label %end |
| /// |
| /// end: |
| /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> |
| /// %x.next.res = phi i32 [ %x.next, %loop ] <...> |
| /// <...> |
| /// \endcode |
| static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, |
| Value *&BitMask, Value *&BitPos, |
| Value *&CurrX, Instruction *&NextX) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| " Performing shift-until-bittest idiom detection.\n"); |
| |
| // Give up if the loop has multiple blocks or multiple backedges. |
| if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); |
| return false; |
| } |
| |
| BasicBlock *LoopHeaderBB = CurLoop->getHeader(); |
| BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); |
| assert(LoopPreheaderBB && "There is always a loop preheader."); |
| |
| using namespace PatternMatch; |
| |
| // Step 1: Check if the loop backedge is in desirable form. |
| |
| ICmpInst::Predicate Pred; |
| Value *CmpLHS, *CmpRHS; |
| BasicBlock *TrueBB, *FalseBB; |
| if (!match(LoopHeaderBB->getTerminator(), |
| m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), |
| m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); |
| return false; |
| } |
| |
| // Step 2: Check if the backedge's condition is in desirable form. |
| |
| auto MatchVariableBitMask = [&]() { |
| return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && |
| match(CmpLHS, |
| m_c_And(m_Value(CurrX), |
| m_CombineAnd( |
| m_Value(BitMask), |
| m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), |
| CurLoop)))); |
| }; |
| auto MatchConstantBitMask = [&]() { |
| return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && |
| match(CmpLHS, m_And(m_Value(CurrX), |
| m_CombineAnd(m_Value(BitMask), m_Power2()))) && |
| (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); |
| }; |
| auto MatchDecomposableConstantBitMask = [&]() { |
| APInt Mask; |
| return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && |
| ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && |
| (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && |
| (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); |
| }; |
| |
| if (!MatchVariableBitMask() && !MatchConstantBitMask() && |
| !MatchDecomposableConstantBitMask()) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); |
| return false; |
| } |
| |
| // Step 3: Check if the recurrence is in desirable form. |
| auto *CurrXPN = dyn_cast<PHINode>(CurrX); |
| if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); |
| return false; |
| } |
| |
| BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); |
| NextX = |
| dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); |
| |
| assert(CurLoop->isLoopInvariant(BaseX) && |
| "Expected BaseX to be avaliable in the preheader!"); |
| |
| if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { |
| // FIXME: support right-shift? |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); |
| return false; |
| } |
| |
| // Step 4: Check if the backedge's destinations are in desirable form. |
| |
| assert(ICmpInst::isEquality(Pred) && |
| "Should only get equality predicates here."); |
| |
| // cmp-br is commutative, so canonicalize to a single variant. |
| if (Pred != ICmpInst::Predicate::ICMP_EQ) { |
| Pred = ICmpInst::getInversePredicate(Pred); |
| std::swap(TrueBB, FalseBB); |
| } |
| |
| // We expect to exit loop when comparison yields false, |
| // so when it yields true we should branch back to loop header. |
| if (TrueBB != LoopHeaderBB) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); |
| return false; |
| } |
| |
| // Okay, idiom checks out. |
| return true; |
| } |
| |
| /// Look for the following loop: |
| /// \code |
| /// entry: |
| /// <...> |
| /// %bitmask = shl i32 1, %bitpos |
| /// br label %loop |
| /// |
| /// loop: |
| /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] |
| /// %x.curr.bitmasked = and i32 %x.curr, %bitmask |
| /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 |
| /// %x.next = shl i32 %x.curr, 1 |
| /// <...> |
| /// br i1 %x.curr.isbitunset, label %loop, label %end |
| /// |
| /// end: |
| /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> |
| /// %x.next.res = phi i32 [ %x.next, %loop ] <...> |
| /// <...> |
| /// \endcode |
| /// |
| /// And transform it into: |
| /// \code |
| /// entry: |
| /// %bitmask = shl i32 1, %bitpos |
| /// %lowbitmask = add i32 %bitmask, -1 |
| /// %mask = or i32 %lowbitmask, %bitmask |
| /// %x.masked = and i32 %x, %mask |
| /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, |
| /// i1 true) |
| /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros |
| /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 |
| /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos |
| /// %tripcount = add i32 %backedgetakencount, 1 |
| /// %x.curr = shl i32 %x, %backedgetakencount |
| /// %x.next = shl i32 %x, %tripcount |
| /// br label %loop |
| /// |
| /// loop: |
| /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] |
| /// %loop.iv.next = add nuw i32 %loop.iv, 1 |
| /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount |
| /// <...> |
| /// br i1 %loop.ivcheck, label %end, label %loop |
| /// |
| /// end: |
| /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> |
| /// %x.next.res = phi i32 [ %x.next, %loop ] <...> |
| /// <...> |
| /// \endcode |
| bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { |
| bool MadeChange = false; |
| |
| Value *X, *BitMask, *BitPos, *XCurr; |
| Instruction *XNext; |
| if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, |
| XNext)) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| " shift-until-bittest idiom detection failed.\n"); |
| return MadeChange; |
| } |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); |
| |
| // Ok, it is the idiom we were looking for, we *could* transform this loop, |
| // but is it profitable to transform? |
| |
| BasicBlock *LoopHeaderBB = CurLoop->getHeader(); |
| BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); |
| assert(LoopPreheaderBB && "There is always a loop preheader."); |
| |
| BasicBlock *SuccessorBB = CurLoop->getExitBlock(); |
| assert(SuccessorBB && "There is only a single successor."); |
| |
| IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); |
| Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); |
| |
| Intrinsic::ID IntrID = Intrinsic::ctlz; |
| Type *Ty = X->getType(); |
| unsigned Bitwidth = Ty->getScalarSizeInBits(); |
| |
| TargetTransformInfo::TargetCostKind CostKind = |
| TargetTransformInfo::TCK_SizeAndLatency; |
| |
| // The rewrite is considered to be unprofitable iff and only iff the |
| // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* |
| // making the loop countable, even if nothing else changes. |
| IntrinsicCostAttributes Attrs( |
| IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()}); |
| InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); |
| if (Cost > TargetTransformInfo::TCC_Basic) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| " Intrinsic is too costly, not beneficial\n"); |
| return MadeChange; |
| } |
| if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > |
| TargetTransformInfo::TCC_Basic) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); |
| return MadeChange; |
| } |
| |
| // Ok, transform appears worthwhile. |
| MadeChange = true; |
| |
| // Step 1: Compute the loop trip count. |
| |
| Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), |
| BitPos->getName() + ".lowbitmask"); |
| Value *Mask = |
| Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); |
| Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); |
| CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( |
| IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()}, |
| /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); |
| Value *XMaskedNumActiveBits = Builder.CreateSub( |
| ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, |
| XMasked->getName() + ".numactivebits", /*HasNUW=*/true, |
| /*HasNSW=*/Bitwidth != 2); |
| Value *XMaskedLeadingOnePos = |
| Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), |
| XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, |
| /*HasNSW=*/Bitwidth > 2); |
| |
| Value *LoopBackedgeTakenCount = Builder.CreateSub( |
| BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", |
| /*HasNUW=*/true, /*HasNSW=*/true); |
| // We know loop's backedge-taken count, but what's loop's trip count? |
| // Note that while NUW is always safe, while NSW is only for bitwidths != 2. |
| Value *LoopTripCount = |
| Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), |
| CurLoop->getName() + ".tripcount", /*HasNUW=*/true, |
| /*HasNSW=*/Bitwidth != 2); |
| |
| // Step 2: Compute the recurrence's final value without a loop. |
| |
| // NewX is always safe to compute, because `LoopBackedgeTakenCount` |
| // will always be smaller than `bitwidth(X)`, i.e. we never get poison. |
| Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); |
| NewX->takeName(XCurr); |
| if (auto *I = dyn_cast<Instruction>(NewX)) |
| I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); |
| |
| Value *NewXNext; |
| // Rewriting XNext is more complicated, however, because `X << LoopTripCount` |
| // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen |
| // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know |
| // that isn't the case, we'll need to emit an alternative, safe IR. |
| if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || |
| PatternMatch::match( |
| BitPos, PatternMatch::m_SpecificInt_ICMP( |
| ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), |
| Ty->getScalarSizeInBits() - 1)))) |
| NewXNext = Builder.CreateShl(X, LoopTripCount); |
| else { |
| // Otherwise, just additionally shift by one. It's the smallest solution, |
| // alternatively, we could check that NewX is INT_MIN (or BitPos is ) |
| // and select 0 instead. |
| NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); |
| } |
| |
| NewXNext->takeName(XNext); |
| if (auto *I = dyn_cast<Instruction>(NewXNext)) |
| I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); |
| |
| // Step 3: Adjust the successor basic block to recieve the computed |
| // recurrence's final value instead of the recurrence itself. |
| |
| XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); |
| XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); |
| |
| // Step 4: Rewrite the loop into a countable form, with canonical IV. |
| |
| // The new canonical induction variable. |
| Builder.SetInsertPoint(&LoopHeaderBB->front()); |
| auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); |
| |
| // The induction itself. |
| // Note that while NUW is always safe, while NSW is only for bitwidths != 2. |
| Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); |
| auto *IVNext = |
| Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", |
| /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); |
| |
| // The loop trip count check. |
| auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, |
| CurLoop->getName() + ".ivcheck"); |
| Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); |
| LoopHeaderBB->getTerminator()->eraseFromParent(); |
| |
| // Populate the IV PHI. |
| IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); |
| IV->addIncoming(IVNext, LoopHeaderBB); |
| |
| // Step 5: Forget the "non-computable" trip-count SCEV associated with the |
| // loop. The loop would otherwise not be deleted even if it becomes empty. |
| |
| SE->forgetLoop(CurLoop); |
| |
| // Other passes will take care of actually deleting the loop if possible. |
| |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); |
| |
| ++NumShiftUntilBitTest; |
| return MadeChange; |
| } |
| |
| /// Return true if the idiom is detected in the loop. |
| /// |
| /// The core idiom we are trying to detect is: |
| /// \code |
| /// entry: |
| /// <...> |
| /// %start = <...> |
| /// %extraoffset = <...> |
| /// <...> |
| /// br label %for.cond |
| /// |
| /// loop: |
| /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] |
| /// %nbits = add nsw i8 %iv, %extraoffset |
| /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits |
| /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 |
| /// %iv.next = add i8 %iv, 1 |
| /// <...> |
| /// br i1 %val.shifted.iszero, label %end, label %loop |
| /// |
| /// end: |
| /// %iv.res = phi i8 [ %iv, %loop ] <...> |
| /// %nbits.res = phi i8 [ %nbits, %loop ] <...> |
| /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> |
| /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> |
| /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> |
| /// <...> |
| /// \endcode |
| static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, |
| Instruction *&ValShiftedIsZero, |
| Intrinsic::ID &IntrinID, Instruction *&IV, |
| Value *&Start, Value *&Val, |
| const SCEV *&ExtraOffsetExpr, |
| bool &InvertedCond) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| " Performing shift-until-zero idiom detection.\n"); |
| |
| // Give up if the loop has multiple blocks or multiple backedges. |
| if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); |
| return false; |
| } |
| |
| Instruction *ValShifted, *NBits, *IVNext; |
| Value *ExtraOffset; |
| |
| BasicBlock *LoopHeaderBB = CurLoop->getHeader(); |
| BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); |
| assert(LoopPreheaderBB && "There is always a loop preheader."); |
| |
| using namespace PatternMatch; |
| |
| // Step 1: Check if the loop backedge, condition is in desirable form. |
| |
| ICmpInst::Predicate Pred; |
| BasicBlock *TrueBB, *FalseBB; |
| if (!match(LoopHeaderBB->getTerminator(), |
| m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), |
| m_BasicBlock(FalseBB))) || |
| !match(ValShiftedIsZero, |
| m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || |
| !ICmpInst::isEquality(Pred)) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); |
| return false; |
| } |
| |
| // Step 2: Check if the comparison's operand is in desirable form. |
| // FIXME: Val could be a one-input PHI node, which we should look past. |
| if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), |
| m_Instruction(NBits)))) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n"); |
| return false; |
| } |
| IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz |
| : Intrinsic::ctlz; |
| |
| // Step 3: Check if the shift amount is in desirable form. |
| |
| if (match(NBits, m_c_Add(m_Instruction(IV), |
| m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && |
| (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) |
| ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); |
| else if (match(NBits, |
| m_Sub(m_Instruction(IV), |
| m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && |
| NBits->hasNoSignedWrap()) |
| ExtraOffsetExpr = SE->getSCEV(ExtraOffset); |
| else { |
| IV = NBits; |
| ExtraOffsetExpr = SE->getZero(NBits->getType()); |
| } |
| |
| // Step 4: Check if the recurrence is in desirable form. |
| auto *IVPN = dyn_cast<PHINode>(IV); |
| if (!IVPN || IVPN->getParent() != LoopHeaderBB) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); |
| return false; |
| } |
| |
| Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); |
| IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); |
| |
| if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); |
| return false; |
| } |
| |
| // Step 4: Check if the backedge's destinations are in desirable form. |
| |
| assert(ICmpInst::isEquality(Pred) && |
| "Should only get equality predicates here."); |
| |
| // cmp-br is commutative, so canonicalize to a single variant. |
| InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; |
| if (InvertedCond) { |
| Pred = ICmpInst::getInversePredicate(Pred); |
| std::swap(TrueBB, FalseBB); |
| } |
| |
| // We expect to exit loop when comparison yields true, |
| // so when it yields false we should branch back to loop header. |
| if (FalseBB != LoopHeaderBB) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); |
| return false; |
| } |
| |
| // The new, countable, loop will certainly only run a known number of |
| // iterations, It won't be infinite. But the old loop might be infinite |
| // under certain conditions. For logical shifts, the value will become zero |
| // after at most bitwidth(%Val) loop iterations. However, for arithmetic |
| // right-shift, iff the sign bit was set, the value will never become zero, |
| // and the loop may never finish. |
| if (ValShifted->getOpcode() == Instruction::AShr && |
| !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n"); |
| return false; |
| } |
| |
| // Okay, idiom checks out. |
| return true; |
| } |
| |
| /// Look for the following loop: |
| /// \code |
| /// entry: |
| /// <...> |
| /// %start = <...> |
| /// %extraoffset = <...> |
| /// <...> |
| /// br label %for.cond |
| /// |
| /// loop: |
| /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] |
| /// %nbits = add nsw i8 %iv, %extraoffset |
| /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits |
| /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 |
| /// %iv.next = add i8 %iv, 1 |
| /// <...> |
| /// br i1 %val.shifted.iszero, label %end, label %loop |
| /// |
| /// end: |
| /// %iv.res = phi i8 [ %iv, %loop ] <...> |
| /// %nbits.res = phi i8 [ %nbits, %loop ] <...> |
| /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> |
| /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> |
| /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> |
| /// <...> |
| /// \endcode |
| /// |
| /// And transform it into: |
| /// \code |
| /// entry: |
| /// <...> |
| /// %start = <...> |
| /// %extraoffset = <...> |
| /// <...> |
| /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) |
| /// %val.numactivebits = sub i8 8, %val.numleadingzeros |
| /// %extraoffset.neg = sub i8 0, %extraoffset |
| /// %tmp = add i8 %val.numactivebits, %extraoffset.neg |
| /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) |
| /// %loop.tripcount = sub i8 %iv.final, %start |
| /// br label %loop |
| /// |
| /// loop: |
| /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] |
| /// %loop.iv.next = add i8 %loop.iv, 1 |
| /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount |
| /// %iv = add i8 %loop.iv, %start |
| /// <...> |
| /// br i1 %loop.ivcheck, label %end, label %loop |
| /// |
| /// end: |
| /// %iv.res = phi i8 [ %iv.final, %loop ] <...> |
| /// <...> |
| /// \endcode |
| bool LoopIdiomRecognize::recognizeShiftUntilZero() { |
| bool MadeChange = false; |
| |
| Instruction *ValShiftedIsZero; |
| Intrinsic::ID IntrID; |
| Instruction *IV; |
| Value *Start, *Val; |
| const SCEV *ExtraOffsetExpr; |
| bool InvertedCond; |
| if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, |
| Start, Val, ExtraOffsetExpr, InvertedCond)) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| " shift-until-zero idiom detection failed.\n"); |
| return MadeChange; |
| } |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n"); |
| |
| // Ok, it is the idiom we were looking for, we *could* transform this loop, |
| // but is it profitable to transform? |
| |
| BasicBlock *LoopHeaderBB = CurLoop->getHeader(); |
| BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); |
| assert(LoopPreheaderBB && "There is always a loop preheader."); |
| |
| BasicBlock *SuccessorBB = CurLoop->getExitBlock(); |
| assert(SuccessorBB && "There is only a single successor."); |
| |
| IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); |
| Builder.SetCurrentDebugLocation(IV->getDebugLoc()); |
| |
| Type *Ty = Val->getType(); |
| unsigned Bitwidth = Ty->getScalarSizeInBits(); |
| |
| TargetTransformInfo::TargetCostKind CostKind = |
| TargetTransformInfo::TCK_SizeAndLatency; |
| |
| // The rewrite is considered to be unprofitable iff and only iff the |
| // intrinsic we'll use are not cheap. Note that we are okay with *just* |
| // making the loop countable, even if nothing else changes. |
| IntrinsicCostAttributes Attrs( |
| IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()}); |
| InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); |
| if (Cost > TargetTransformInfo::TCC_Basic) { |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE |
| " Intrinsic is too costly, not beneficial\n"); |
| return MadeChange; |
| } |
| |
| // Ok, transform appears worthwhile. |
| MadeChange = true; |
| |
| bool OffsetIsZero = false; |
| if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) |
| OffsetIsZero = ExtraOffsetExprC->isZero(); |
| |
| // Step 1: Compute the loop's final IV value / trip count. |
| |
| CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( |
| IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()}, |
| /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); |
| Value *ValNumActiveBits = Builder.CreateSub( |
| ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, |
| Val->getName() + ".numactivebits", /*HasNUW=*/true, |
| /*HasNSW=*/Bitwidth != 2); |
| |
| SCEVExpander Expander(*SE, *DL, "loop-idiom"); |
| Expander.setInsertPoint(&*Builder.GetInsertPoint()); |
| Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); |
| |
| Value *ValNumActiveBitsOffset = Builder.CreateAdd( |
| ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", |
| /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); |
| Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, |
| {ValNumActiveBitsOffset, Start}, |
| /*FMFSource=*/nullptr, "iv.final"); |
| |
| auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( |
| IVFinal, Start, CurLoop->getName() + ".backedgetakencount", |
| /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); |
| // FIXME: or when the offset was `add nuw` |
| |
| // We know loop's backedge-taken count, but what's loop's trip count? |
| Value *LoopTripCount = |
| Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), |
| CurLoop->getName() + ".tripcount", /*HasNUW=*/true, |
| /*HasNSW=*/Bitwidth != 2); |
| |
| // Step 2: Adjust the successor basic block to recieve the original |
| // induction variable's final value instead of the orig. IV itself. |
| |
| IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); |
| |
| // Step 3: Rewrite the loop into a countable form, with canonical IV. |
| |
| // The new canonical induction variable. |
| Builder.SetInsertPoint(&LoopHeaderBB->front()); |
| auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); |
| |
| // The induction itself. |
| Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI()); |
| auto *CIVNext = |
| Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", |
| /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); |
| |
| // The loop trip count check. |
| auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, |
| CurLoop->getName() + ".ivcheck"); |
| auto *NewIVCheck = CIVCheck; |
| if (InvertedCond) { |
| NewIVCheck = Builder.CreateNot(CIVCheck); |
| NewIVCheck->takeName(ValShiftedIsZero); |
| } |
| |
| // The original IV, but rebased to be an offset to the CIV. |
| auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, |
| /*HasNSW=*/true); // FIXME: what about NUW? |
| IVDePHId->takeName(IV); |
| |
| // The loop terminator. |
| Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); |
| Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); |
| LoopHeaderBB->getTerminator()->eraseFromParent(); |
| |
| // Populate the IV PHI. |
| CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); |
| CIV->addIncoming(CIVNext, LoopHeaderBB); |
| |
| // Step 4: Forget the "non-computable" trip-count SCEV associated with the |
| // loop. The loop would otherwise not be deleted even if it becomes empty. |
| |
| SE->forgetLoop(CurLoop); |
| |
| // Step 5: Try to cleanup the loop's body somewhat. |
| IV->replaceAllUsesWith(IVDePHId); |
| IV->eraseFromParent(); |
| |
| ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); |
| ValShiftedIsZero->eraseFromParent(); |
| |
| // Other passes will take care of actually deleting the loop if possible. |
| |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n"); |
| |
| ++NumShiftUntilZero; |
| return MadeChange; |
| } |