| use crate::abi::{Abi, FnAbi, FnAbiLlvmExt, LlvmType, PassMode}; |
| use crate::builder::Builder; |
| use crate::context::CodegenCx; |
| use crate::llvm; |
| use crate::type_::Type; |
| use crate::type_of::LayoutLlvmExt; |
| use crate::va_arg::emit_va_arg; |
| use crate::value::Value; |
| |
| use rustc_ast as ast; |
| use rustc_codegen_ssa::base::{compare_simd_types, wants_msvc_seh}; |
| use rustc_codegen_ssa::common::span_invalid_monomorphization_error; |
| use rustc_codegen_ssa::common::{IntPredicate, TypeKind}; |
| use rustc_codegen_ssa::mir::operand::OperandRef; |
| use rustc_codegen_ssa::mir::place::PlaceRef; |
| use rustc_codegen_ssa::traits::*; |
| use rustc_hir as hir; |
| use rustc_middle::ty::layout::{FnAbiExt, HasTyCtxt}; |
| use rustc_middle::ty::{self, Ty}; |
| use rustc_middle::{bug, span_bug}; |
| use rustc_span::{sym, symbol::kw, Span, Symbol}; |
| use rustc_target::abi::{self, HasDataLayout, LayoutOf, Primitive}; |
| use rustc_target::spec::PanicStrategy; |
| |
| use std::cmp::Ordering; |
| use std::iter; |
| |
| fn get_simple_intrinsic(cx: &CodegenCx<'ll, '_>, name: Symbol) -> Option<(&'ll Type, &'ll Value)> { |
| let llvm_name = match name { |
| sym::sqrtf32 => "llvm.sqrt.f32", |
| sym::sqrtf64 => "llvm.sqrt.f64", |
| sym::powif32 => "llvm.powi.f32", |
| sym::powif64 => "llvm.powi.f64", |
| sym::sinf32 => "llvm.sin.f32", |
| sym::sinf64 => "llvm.sin.f64", |
| sym::cosf32 => "llvm.cos.f32", |
| sym::cosf64 => "llvm.cos.f64", |
| sym::powf32 => "llvm.pow.f32", |
| sym::powf64 => "llvm.pow.f64", |
| sym::expf32 => "llvm.exp.f32", |
| sym::expf64 => "llvm.exp.f64", |
| sym::exp2f32 => "llvm.exp2.f32", |
| sym::exp2f64 => "llvm.exp2.f64", |
| sym::logf32 => "llvm.log.f32", |
| sym::logf64 => "llvm.log.f64", |
| sym::log10f32 => "llvm.log10.f32", |
| sym::log10f64 => "llvm.log10.f64", |
| sym::log2f32 => "llvm.log2.f32", |
| sym::log2f64 => "llvm.log2.f64", |
| sym::fmaf32 => "llvm.fma.f32", |
| sym::fmaf64 => "llvm.fma.f64", |
| sym::fabsf32 => "llvm.fabs.f32", |
| sym::fabsf64 => "llvm.fabs.f64", |
| sym::minnumf32 => "llvm.minnum.f32", |
| sym::minnumf64 => "llvm.minnum.f64", |
| sym::maxnumf32 => "llvm.maxnum.f32", |
| sym::maxnumf64 => "llvm.maxnum.f64", |
| sym::copysignf32 => "llvm.copysign.f32", |
| sym::copysignf64 => "llvm.copysign.f64", |
| sym::floorf32 => "llvm.floor.f32", |
| sym::floorf64 => "llvm.floor.f64", |
| sym::ceilf32 => "llvm.ceil.f32", |
| sym::ceilf64 => "llvm.ceil.f64", |
| sym::truncf32 => "llvm.trunc.f32", |
| sym::truncf64 => "llvm.trunc.f64", |
| sym::rintf32 => "llvm.rint.f32", |
| sym::rintf64 => "llvm.rint.f64", |
| sym::nearbyintf32 => "llvm.nearbyint.f32", |
| sym::nearbyintf64 => "llvm.nearbyint.f64", |
| sym::roundf32 => "llvm.round.f32", |
| sym::roundf64 => "llvm.round.f64", |
| _ => return None, |
| }; |
| Some(cx.get_intrinsic(&llvm_name)) |
| } |
| |
| impl IntrinsicCallMethods<'tcx> for Builder<'a, 'll, 'tcx> { |
| fn codegen_intrinsic_call( |
| &mut self, |
| instance: ty::Instance<'tcx>, |
| fn_abi: &FnAbi<'tcx, Ty<'tcx>>, |
| args: &[OperandRef<'tcx, &'ll Value>], |
| llresult: &'ll Value, |
| span: Span, |
| ) { |
| let tcx = self.tcx; |
| let callee_ty = instance.ty(tcx, ty::ParamEnv::reveal_all()); |
| |
| let (def_id, substs) = match *callee_ty.kind() { |
| ty::FnDef(def_id, substs) => (def_id, substs), |
| _ => bug!("expected fn item type, found {}", callee_ty), |
| }; |
| |
| let sig = callee_ty.fn_sig(tcx); |
| let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), sig); |
| let arg_tys = sig.inputs(); |
| let ret_ty = sig.output(); |
| let name = tcx.item_name(def_id); |
| let name_str = &*name.as_str(); |
| |
| let llret_ty = self.layout_of(ret_ty).llvm_type(self); |
| let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout); |
| |
| let simple = get_simple_intrinsic(self, name); |
| let llval = match name { |
| _ if simple.is_some() => { |
| let (simple_ty, simple_fn) = simple.unwrap(); |
| self.call( |
| simple_ty, |
| simple_fn, |
| &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), |
| None, |
| ) |
| } |
| sym::likely => { |
| self.call_intrinsic("llvm.expect.i1", &[args[0].immediate(), self.const_bool(true)]) |
| } |
| sym::unlikely => self |
| .call_intrinsic("llvm.expect.i1", &[args[0].immediate(), self.const_bool(false)]), |
| kw::Try => { |
| try_intrinsic( |
| self, |
| args[0].immediate(), |
| args[1].immediate(), |
| args[2].immediate(), |
| llresult, |
| ); |
| return; |
| } |
| sym::breakpoint => self.call_intrinsic("llvm.debugtrap", &[]), |
| sym::va_copy => { |
| self.call_intrinsic("llvm.va_copy", &[args[0].immediate(), args[1].immediate()]) |
| } |
| sym::va_arg => { |
| match fn_abi.ret.layout.abi { |
| abi::Abi::Scalar(ref scalar) => { |
| match scalar.value { |
| Primitive::Int(..) => { |
| if self.cx().size_of(ret_ty).bytes() < 4 { |
| // `va_arg` should not be called on an integer type |
| // less than 4 bytes in length. If it is, promote |
| // the integer to an `i32` and truncate the result |
| // back to the smaller type. |
| let promoted_result = emit_va_arg(self, args[0], tcx.types.i32); |
| self.trunc(promoted_result, llret_ty) |
| } else { |
| emit_va_arg(self, args[0], ret_ty) |
| } |
| } |
| Primitive::F64 | Primitive::Pointer => { |
| emit_va_arg(self, args[0], ret_ty) |
| } |
| // `va_arg` should never be used with the return type f32. |
| Primitive::F32 => bug!("the va_arg intrinsic does not work with `f32`"), |
| } |
| } |
| _ => bug!("the va_arg intrinsic does not work with non-scalar types"), |
| } |
| } |
| |
| sym::volatile_load | sym::unaligned_volatile_load => { |
| let tp_ty = substs.type_at(0); |
| let ptr = args[0].immediate(); |
| let load = if let PassMode::Cast(ty) = fn_abi.ret.mode { |
| let llty = ty.llvm_type(self); |
| let ptr = self.pointercast(ptr, self.type_ptr_to(llty)); |
| self.volatile_load(llty, ptr) |
| } else { |
| self.volatile_load(self.layout_of(tp_ty).llvm_type(self), ptr) |
| }; |
| let align = if name == sym::unaligned_volatile_load { |
| 1 |
| } else { |
| self.align_of(tp_ty).bytes() as u32 |
| }; |
| unsafe { |
| llvm::LLVMSetAlignment(load, align); |
| } |
| self.to_immediate(load, self.layout_of(tp_ty)) |
| } |
| sym::volatile_store => { |
| let dst = args[0].deref(self.cx()); |
| args[1].val.volatile_store(self, dst); |
| return; |
| } |
| sym::unaligned_volatile_store => { |
| let dst = args[0].deref(self.cx()); |
| args[1].val.unaligned_volatile_store(self, dst); |
| return; |
| } |
| sym::prefetch_read_data |
| | sym::prefetch_write_data |
| | sym::prefetch_read_instruction |
| | sym::prefetch_write_instruction => { |
| let (rw, cache_type) = match name { |
| sym::prefetch_read_data => (0, 1), |
| sym::prefetch_write_data => (1, 1), |
| sym::prefetch_read_instruction => (0, 0), |
| sym::prefetch_write_instruction => (1, 0), |
| _ => bug!(), |
| }; |
| self.call_intrinsic( |
| "llvm.prefetch", |
| &[ |
| args[0].immediate(), |
| self.const_i32(rw), |
| args[1].immediate(), |
| self.const_i32(cache_type), |
| ], |
| ) |
| } |
| sym::ctlz |
| | sym::ctlz_nonzero |
| | sym::cttz |
| | sym::cttz_nonzero |
| | sym::ctpop |
| | sym::bswap |
| | sym::bitreverse |
| | sym::rotate_left |
| | sym::rotate_right |
| | sym::saturating_add |
| | sym::saturating_sub => { |
| let ty = arg_tys[0]; |
| match int_type_width_signed(ty, self) { |
| Some((width, signed)) => match name { |
| sym::ctlz | sym::cttz => { |
| let y = self.const_bool(false); |
| self.call_intrinsic( |
| &format!("llvm.{}.i{}", name, width), |
| &[args[0].immediate(), y], |
| ) |
| } |
| sym::ctlz_nonzero | sym::cttz_nonzero => { |
| let y = self.const_bool(true); |
| let llvm_name = &format!("llvm.{}.i{}", &name_str[..4], width); |
| self.call_intrinsic(llvm_name, &[args[0].immediate(), y]) |
| } |
| sym::ctpop => self.call_intrinsic( |
| &format!("llvm.ctpop.i{}", width), |
| &[args[0].immediate()], |
| ), |
| sym::bswap => { |
| if width == 8 { |
| args[0].immediate() // byte swap a u8/i8 is just a no-op |
| } else { |
| self.call_intrinsic( |
| &format!("llvm.bswap.i{}", width), |
| &[args[0].immediate()], |
| ) |
| } |
| } |
| sym::bitreverse => self.call_intrinsic( |
| &format!("llvm.bitreverse.i{}", width), |
| &[args[0].immediate()], |
| ), |
| sym::rotate_left | sym::rotate_right => { |
| let is_left = name == sym::rotate_left; |
| let val = args[0].immediate(); |
| let raw_shift = args[1].immediate(); |
| // rotate = funnel shift with first two args the same |
| let llvm_name = |
| &format!("llvm.fsh{}.i{}", if is_left { 'l' } else { 'r' }, width); |
| self.call_intrinsic(llvm_name, &[val, val, raw_shift]) |
| } |
| sym::saturating_add | sym::saturating_sub => { |
| let is_add = name == sym::saturating_add; |
| let lhs = args[0].immediate(); |
| let rhs = args[1].immediate(); |
| let llvm_name = &format!( |
| "llvm.{}{}.sat.i{}", |
| if signed { 's' } else { 'u' }, |
| if is_add { "add" } else { "sub" }, |
| width |
| ); |
| self.call_intrinsic(llvm_name, &[lhs, rhs]) |
| } |
| _ => bug!(), |
| }, |
| None => { |
| span_invalid_monomorphization_error( |
| tcx.sess, |
| span, |
| &format!( |
| "invalid monomorphization of `{}` intrinsic: \ |
| expected basic integer type, found `{}`", |
| name, ty |
| ), |
| ); |
| return; |
| } |
| } |
| } |
| |
| sym::raw_eq => { |
| use abi::Abi::*; |
| let tp_ty = substs.type_at(0); |
| let layout = self.layout_of(tp_ty).layout; |
| let use_integer_compare = match layout.abi { |
| Scalar(_) | ScalarPair(_, _) => true, |
| Uninhabited | Vector { .. } => false, |
| Aggregate { .. } => { |
| // For rusty ABIs, small aggregates are actually passed |
| // as `RegKind::Integer` (see `FnAbi::adjust_for_abi`), |
| // so we re-use that same threshold here. |
| layout.size <= self.data_layout().pointer_size * 2 |
| } |
| }; |
| |
| let a = args[0].immediate(); |
| let b = args[1].immediate(); |
| if layout.size.bytes() == 0 { |
| self.const_bool(true) |
| } else if use_integer_compare { |
| let integer_ty = self.type_ix(layout.size.bits()); |
| let ptr_ty = self.type_ptr_to(integer_ty); |
| let a_ptr = self.bitcast(a, ptr_ty); |
| let a_val = self.load(integer_ty, a_ptr, layout.align.abi); |
| let b_ptr = self.bitcast(b, ptr_ty); |
| let b_val = self.load(integer_ty, b_ptr, layout.align.abi); |
| self.icmp(IntPredicate::IntEQ, a_val, b_val) |
| } else { |
| let i8p_ty = self.type_i8p(); |
| let a_ptr = self.bitcast(a, i8p_ty); |
| let b_ptr = self.bitcast(b, i8p_ty); |
| let n = self.const_usize(layout.size.bytes()); |
| let cmp = self.call_intrinsic("memcmp", &[a_ptr, b_ptr, n]); |
| self.icmp(IntPredicate::IntEQ, cmp, self.const_i32(0)) |
| } |
| } |
| |
| sym::black_box => { |
| args[0].val.store(self, result); |
| |
| // We need to "use" the argument in some way LLVM can't introspect, and on |
| // targets that support it we can typically leverage inline assembly to do |
| // this. LLVM's interpretation of inline assembly is that it's, well, a black |
| // box. This isn't the greatest implementation since it probably deoptimizes |
| // more than we want, but it's so far good enough. |
| crate::asm::inline_asm_call( |
| self, |
| "", |
| "r,~{memory}", |
| &[result.llval], |
| self.type_void(), |
| true, |
| false, |
| ast::LlvmAsmDialect::Att, |
| &[span], |
| ) |
| .unwrap_or_else(|| bug!("failed to generate inline asm call for `black_box`")); |
| |
| // We have copied the value to `result` already. |
| return; |
| } |
| |
| _ if name_str.starts_with("simd_") => { |
| match generic_simd_intrinsic(self, name, callee_ty, args, ret_ty, llret_ty, span) { |
| Ok(llval) => llval, |
| Err(()) => return, |
| } |
| } |
| |
| _ => bug!("unknown intrinsic '{}'", name), |
| }; |
| |
| if !fn_abi.ret.is_ignore() { |
| if let PassMode::Cast(ty) = fn_abi.ret.mode { |
| let ptr_llty = self.type_ptr_to(ty.llvm_type(self)); |
| let ptr = self.pointercast(result.llval, ptr_llty); |
| self.store(llval, ptr, result.align); |
| } else { |
| OperandRef::from_immediate_or_packed_pair(self, llval, result.layout) |
| .val |
| .store(self, result); |
| } |
| } |
| } |
| |
| fn abort(&mut self) { |
| self.call_intrinsic("llvm.trap", &[]); |
| } |
| |
| fn assume(&mut self, val: Self::Value) { |
| self.call_intrinsic("llvm.assume", &[val]); |
| } |
| |
| fn expect(&mut self, cond: Self::Value, expected: bool) -> Self::Value { |
| self.call_intrinsic("llvm.expect.i1", &[cond, self.const_bool(expected)]) |
| } |
| |
| fn sideeffect(&mut self) { |
| // This kind of check would make a ton of sense in the caller, but currently the only |
| // caller of this function is in `rustc_codegen_ssa`, which is agnostic to whether LLVM |
| // codegen backend being used, and so is unable to check the LLVM version. |
| if unsafe { llvm::LLVMRustVersionMajor() } < 12 { |
| self.call_intrinsic("llvm.sideeffect", &[]); |
| } |
| } |
| |
| fn va_start(&mut self, va_list: &'ll Value) -> &'ll Value { |
| self.call_intrinsic("llvm.va_start", &[va_list]) |
| } |
| |
| fn va_end(&mut self, va_list: &'ll Value) -> &'ll Value { |
| self.call_intrinsic("llvm.va_end", &[va_list]) |
| } |
| } |
| |
| fn try_intrinsic( |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| try_func: &'ll Value, |
| data: &'ll Value, |
| catch_func: &'ll Value, |
| dest: &'ll Value, |
| ) { |
| if bx.sess().panic_strategy() == PanicStrategy::Abort { |
| let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void()); |
| bx.call(try_func_ty, try_func, &[data], None); |
| // Return 0 unconditionally from the intrinsic call; |
| // we can never unwind. |
| let ret_align = bx.tcx().data_layout.i32_align.abi; |
| bx.store(bx.const_i32(0), dest, ret_align); |
| } else if wants_msvc_seh(bx.sess()) { |
| codegen_msvc_try(bx, try_func, data, catch_func, dest); |
| } else if bx.sess().target.is_like_emscripten { |
| codegen_emcc_try(bx, try_func, data, catch_func, dest); |
| } else { |
| codegen_gnu_try(bx, try_func, data, catch_func, dest); |
| } |
| } |
| |
| // MSVC's definition of the `rust_try` function. |
| // |
| // This implementation uses the new exception handling instructions in LLVM |
| // which have support in LLVM for SEH on MSVC targets. Although these |
| // instructions are meant to work for all targets, as of the time of this |
| // writing, however, LLVM does not recommend the usage of these new instructions |
| // as the old ones are still more optimized. |
| fn codegen_msvc_try( |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| try_func: &'ll Value, |
| data: &'ll Value, |
| catch_func: &'ll Value, |
| dest: &'ll Value, |
| ) { |
| let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| { |
| bx.set_personality_fn(bx.eh_personality()); |
| |
| let mut normal = bx.build_sibling_block("normal"); |
| let mut catchswitch = bx.build_sibling_block("catchswitch"); |
| let mut catchpad_rust = bx.build_sibling_block("catchpad_rust"); |
| let mut catchpad_foreign = bx.build_sibling_block("catchpad_foreign"); |
| let mut caught = bx.build_sibling_block("caught"); |
| |
| let try_func = llvm::get_param(bx.llfn(), 0); |
| let data = llvm::get_param(bx.llfn(), 1); |
| let catch_func = llvm::get_param(bx.llfn(), 2); |
| |
| // We're generating an IR snippet that looks like: |
| // |
| // declare i32 @rust_try(%try_func, %data, %catch_func) { |
| // %slot = alloca i8* |
| // invoke %try_func(%data) to label %normal unwind label %catchswitch |
| // |
| // normal: |
| // ret i32 0 |
| // |
| // catchswitch: |
| // %cs = catchswitch within none [%catchpad_rust, %catchpad_foreign] unwind to caller |
| // |
| // catchpad_rust: |
| // %tok = catchpad within %cs [%type_descriptor, 8, %slot] |
| // %ptr = load %slot |
| // call %catch_func(%data, %ptr) |
| // catchret from %tok to label %caught |
| // |
| // catchpad_foreign: |
| // %tok = catchpad within %cs [null, 64, null] |
| // call %catch_func(%data, null) |
| // catchret from %tok to label %caught |
| // |
| // caught: |
| // ret i32 1 |
| // } |
| // |
| // This structure follows the basic usage of throw/try/catch in LLVM. |
| // For example, compile this C++ snippet to see what LLVM generates: |
| // |
| // struct rust_panic { |
| // rust_panic(const rust_panic&); |
| // ~rust_panic(); |
| // |
| // void* x[2]; |
| // }; |
| // |
| // int __rust_try( |
| // void (*try_func)(void*), |
| // void *data, |
| // void (*catch_func)(void*, void*) noexcept |
| // ) { |
| // try { |
| // try_func(data); |
| // return 0; |
| // } catch(rust_panic& a) { |
| // catch_func(data, &a); |
| // return 1; |
| // } catch(...) { |
| // catch_func(data, NULL); |
| // return 1; |
| // } |
| // } |
| // |
| // More information can be found in libstd's seh.rs implementation. |
| let ptr_align = bx.tcx().data_layout.pointer_align.abi; |
| let slot = bx.alloca(bx.type_i8p(), ptr_align); |
| let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void()); |
| bx.invoke(try_func_ty, try_func, &[data], normal.llbb(), catchswitch.llbb(), None); |
| |
| normal.ret(bx.const_i32(0)); |
| |
| let cs = catchswitch.catch_switch(None, None, 2); |
| catchswitch.add_handler(cs, catchpad_rust.llbb()); |
| catchswitch.add_handler(cs, catchpad_foreign.llbb()); |
| |
| // We can't use the TypeDescriptor defined in libpanic_unwind because it |
| // might be in another DLL and the SEH encoding only supports specifying |
| // a TypeDescriptor from the current module. |
| // |
| // However this isn't an issue since the MSVC runtime uses string |
| // comparison on the type name to match TypeDescriptors rather than |
| // pointer equality. |
| // |
| // So instead we generate a new TypeDescriptor in each module that uses |
| // `try` and let the linker merge duplicate definitions in the same |
| // module. |
| // |
| // When modifying, make sure that the type_name string exactly matches |
| // the one used in src/libpanic_unwind/seh.rs. |
| let type_info_vtable = bx.declare_global("??_7type_info@@6B@", bx.type_i8p()); |
| let type_name = bx.const_bytes(b"rust_panic\0"); |
| let type_info = |
| bx.const_struct(&[type_info_vtable, bx.const_null(bx.type_i8p()), type_name], false); |
| let tydesc = bx.declare_global("__rust_panic_type_info", bx.val_ty(type_info)); |
| unsafe { |
| llvm::LLVMRustSetLinkage(tydesc, llvm::Linkage::LinkOnceODRLinkage); |
| llvm::SetUniqueComdat(bx.llmod, tydesc); |
| llvm::LLVMSetInitializer(tydesc, type_info); |
| } |
| |
| // The flag value of 8 indicates that we are catching the exception by |
| // reference instead of by value. We can't use catch by value because |
| // that requires copying the exception object, which we don't support |
| // since our exception object effectively contains a Box. |
| // |
| // Source: MicrosoftCXXABI::getAddrOfCXXCatchHandlerType in clang |
| let flags = bx.const_i32(8); |
| let funclet = catchpad_rust.catch_pad(cs, &[tydesc, flags, slot]); |
| let ptr = catchpad_rust.load(bx.type_i8p(), slot, ptr_align); |
| let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void()); |
| catchpad_rust.call(catch_ty, catch_func, &[data, ptr], Some(&funclet)); |
| catchpad_rust.catch_ret(&funclet, caught.llbb()); |
| |
| // The flag value of 64 indicates a "catch-all". |
| let flags = bx.const_i32(64); |
| let null = bx.const_null(bx.type_i8p()); |
| let funclet = catchpad_foreign.catch_pad(cs, &[null, flags, null]); |
| catchpad_foreign.call(catch_ty, catch_func, &[data, null], Some(&funclet)); |
| catchpad_foreign.catch_ret(&funclet, caught.llbb()); |
| |
| caught.ret(bx.const_i32(1)); |
| }); |
| |
| // Note that no invoke is used here because by definition this function |
| // can't panic (that's what it's catching). |
| let ret = bx.call(llty, llfn, &[try_func, data, catch_func], None); |
| let i32_align = bx.tcx().data_layout.i32_align.abi; |
| bx.store(ret, dest, i32_align); |
| } |
| |
| // Definition of the standard `try` function for Rust using the GNU-like model |
| // of exceptions (e.g., the normal semantics of LLVM's `landingpad` and `invoke` |
| // instructions). |
| // |
| // This codegen is a little surprising because we always call a shim |
| // function instead of inlining the call to `invoke` manually here. This is done |
| // because in LLVM we're only allowed to have one personality per function |
| // definition. The call to the `try` intrinsic is being inlined into the |
| // function calling it, and that function may already have other personality |
| // functions in play. By calling a shim we're guaranteed that our shim will have |
| // the right personality function. |
| fn codegen_gnu_try( |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| try_func: &'ll Value, |
| data: &'ll Value, |
| catch_func: &'ll Value, |
| dest: &'ll Value, |
| ) { |
| let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| { |
| // Codegens the shims described above: |
| // |
| // bx: |
| // invoke %try_func(%data) normal %normal unwind %catch |
| // |
| // normal: |
| // ret 0 |
| // |
| // catch: |
| // (%ptr, _) = landingpad |
| // call %catch_func(%data, %ptr) |
| // ret 1 |
| let mut then = bx.build_sibling_block("then"); |
| let mut catch = bx.build_sibling_block("catch"); |
| |
| let try_func = llvm::get_param(bx.llfn(), 0); |
| let data = llvm::get_param(bx.llfn(), 1); |
| let catch_func = llvm::get_param(bx.llfn(), 2); |
| let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void()); |
| bx.invoke(try_func_ty, try_func, &[data], then.llbb(), catch.llbb(), None); |
| then.ret(bx.const_i32(0)); |
| |
| // Type indicator for the exception being thrown. |
| // |
| // The first value in this tuple is a pointer to the exception object |
| // being thrown. The second value is a "selector" indicating which of |
| // the landing pad clauses the exception's type had been matched to. |
| // rust_try ignores the selector. |
| let lpad_ty = bx.type_struct(&[bx.type_i8p(), bx.type_i32()], false); |
| let vals = catch.landing_pad(lpad_ty, bx.eh_personality(), 1); |
| let tydesc = bx.const_null(bx.type_i8p()); |
| catch.add_clause(vals, tydesc); |
| let ptr = catch.extract_value(vals, 0); |
| let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void()); |
| catch.call(catch_ty, catch_func, &[data, ptr], None); |
| catch.ret(bx.const_i32(1)); |
| }); |
| |
| // Note that no invoke is used here because by definition this function |
| // can't panic (that's what it's catching). |
| let ret = bx.call(llty, llfn, &[try_func, data, catch_func], None); |
| let i32_align = bx.tcx().data_layout.i32_align.abi; |
| bx.store(ret, dest, i32_align); |
| } |
| |
| // Variant of codegen_gnu_try used for emscripten where Rust panics are |
| // implemented using C++ exceptions. Here we use exceptions of a specific type |
| // (`struct rust_panic`) to represent Rust panics. |
| fn codegen_emcc_try( |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| try_func: &'ll Value, |
| data: &'ll Value, |
| catch_func: &'ll Value, |
| dest: &'ll Value, |
| ) { |
| let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| { |
| // Codegens the shims described above: |
| // |
| // bx: |
| // invoke %try_func(%data) normal %normal unwind %catch |
| // |
| // normal: |
| // ret 0 |
| // |
| // catch: |
| // (%ptr, %selector) = landingpad |
| // %rust_typeid = @llvm.eh.typeid.for(@_ZTI10rust_panic) |
| // %is_rust_panic = %selector == %rust_typeid |
| // %catch_data = alloca { i8*, i8 } |
| // %catch_data[0] = %ptr |
| // %catch_data[1] = %is_rust_panic |
| // call %catch_func(%data, %catch_data) |
| // ret 1 |
| let mut then = bx.build_sibling_block("then"); |
| let mut catch = bx.build_sibling_block("catch"); |
| |
| let try_func = llvm::get_param(bx.llfn(), 0); |
| let data = llvm::get_param(bx.llfn(), 1); |
| let catch_func = llvm::get_param(bx.llfn(), 2); |
| let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void()); |
| bx.invoke(try_func_ty, try_func, &[data], then.llbb(), catch.llbb(), None); |
| then.ret(bx.const_i32(0)); |
| |
| // Type indicator for the exception being thrown. |
| // |
| // The first value in this tuple is a pointer to the exception object |
| // being thrown. The second value is a "selector" indicating which of |
| // the landing pad clauses the exception's type had been matched to. |
| let tydesc = bx.eh_catch_typeinfo(); |
| let lpad_ty = bx.type_struct(&[bx.type_i8p(), bx.type_i32()], false); |
| let vals = catch.landing_pad(lpad_ty, bx.eh_personality(), 2); |
| catch.add_clause(vals, tydesc); |
| catch.add_clause(vals, bx.const_null(bx.type_i8p())); |
| let ptr = catch.extract_value(vals, 0); |
| let selector = catch.extract_value(vals, 1); |
| |
| // Check if the typeid we got is the one for a Rust panic. |
| let rust_typeid = catch.call_intrinsic("llvm.eh.typeid.for", &[tydesc]); |
| let is_rust_panic = catch.icmp(IntPredicate::IntEQ, selector, rust_typeid); |
| let is_rust_panic = catch.zext(is_rust_panic, bx.type_bool()); |
| |
| // We need to pass two values to catch_func (ptr and is_rust_panic), so |
| // create an alloca and pass a pointer to that. |
| let ptr_align = bx.tcx().data_layout.pointer_align.abi; |
| let i8_align = bx.tcx().data_layout.i8_align.abi; |
| let catch_data_type = bx.type_struct(&[bx.type_i8p(), bx.type_bool()], false); |
| let catch_data = catch.alloca(catch_data_type, ptr_align); |
| let catch_data_0 = catch.inbounds_gep( |
| catch_data_type, |
| catch_data, |
| &[bx.const_usize(0), bx.const_usize(0)], |
| ); |
| catch.store(ptr, catch_data_0, ptr_align); |
| let catch_data_1 = catch.inbounds_gep( |
| catch_data_type, |
| catch_data, |
| &[bx.const_usize(0), bx.const_usize(1)], |
| ); |
| catch.store(is_rust_panic, catch_data_1, i8_align); |
| let catch_data = catch.bitcast(catch_data, bx.type_i8p()); |
| |
| let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void()); |
| catch.call(catch_ty, catch_func, &[data, catch_data], None); |
| catch.ret(bx.const_i32(1)); |
| }); |
| |
| // Note that no invoke is used here because by definition this function |
| // can't panic (that's what it's catching). |
| let ret = bx.call(llty, llfn, &[try_func, data, catch_func], None); |
| let i32_align = bx.tcx().data_layout.i32_align.abi; |
| bx.store(ret, dest, i32_align); |
| } |
| |
| // Helper function to give a Block to a closure to codegen a shim function. |
| // This is currently primarily used for the `try` intrinsic functions above. |
| fn gen_fn<'ll, 'tcx>( |
| cx: &CodegenCx<'ll, 'tcx>, |
| name: &str, |
| rust_fn_sig: ty::PolyFnSig<'tcx>, |
| codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>), |
| ) -> (&'ll Type, &'ll Value) { |
| let fn_abi = FnAbi::of_fn_ptr(cx, rust_fn_sig, &[]); |
| let llty = fn_abi.llvm_type(cx); |
| let llfn = cx.declare_fn(name, &fn_abi); |
| cx.set_frame_pointer_type(llfn); |
| cx.apply_target_cpu_attr(llfn); |
| // FIXME(eddyb) find a nicer way to do this. |
| unsafe { llvm::LLVMRustSetLinkage(llfn, llvm::Linkage::InternalLinkage) }; |
| let llbb = Builder::append_block(cx, llfn, "entry-block"); |
| let bx = Builder::build(cx, llbb); |
| codegen(bx); |
| (llty, llfn) |
| } |
| |
| // Helper function used to get a handle to the `__rust_try` function used to |
| // catch exceptions. |
| // |
| // This function is only generated once and is then cached. |
| fn get_rust_try_fn<'ll, 'tcx>( |
| cx: &CodegenCx<'ll, 'tcx>, |
| codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>), |
| ) -> (&'ll Type, &'ll Value) { |
| if let Some(llfn) = cx.rust_try_fn.get() { |
| return llfn; |
| } |
| |
| // Define the type up front for the signature of the rust_try function. |
| let tcx = cx.tcx; |
| let i8p = tcx.mk_mut_ptr(tcx.types.i8); |
| // `unsafe fn(*mut i8) -> ()` |
| let try_fn_ty = tcx.mk_fn_ptr(ty::Binder::dummy(tcx.mk_fn_sig( |
| iter::once(i8p), |
| tcx.mk_unit(), |
| false, |
| hir::Unsafety::Unsafe, |
| Abi::Rust, |
| ))); |
| // `unsafe fn(*mut i8, *mut i8) -> ()` |
| let catch_fn_ty = tcx.mk_fn_ptr(ty::Binder::dummy(tcx.mk_fn_sig( |
| [i8p, i8p].iter().cloned(), |
| tcx.mk_unit(), |
| false, |
| hir::Unsafety::Unsafe, |
| Abi::Rust, |
| ))); |
| // `unsafe fn(unsafe fn(*mut i8) -> (), *mut i8, unsafe fn(*mut i8, *mut i8) -> ()) -> i32` |
| let rust_fn_sig = ty::Binder::dummy(cx.tcx.mk_fn_sig( |
| vec![try_fn_ty, i8p, catch_fn_ty].into_iter(), |
| tcx.types.i32, |
| false, |
| hir::Unsafety::Unsafe, |
| Abi::Rust, |
| )); |
| let rust_try = gen_fn(cx, "__rust_try", rust_fn_sig, codegen); |
| cx.rust_try_fn.set(Some(rust_try)); |
| rust_try |
| } |
| |
| fn generic_simd_intrinsic( |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| name: Symbol, |
| callee_ty: Ty<'tcx>, |
| args: &[OperandRef<'tcx, &'ll Value>], |
| ret_ty: Ty<'tcx>, |
| llret_ty: &'ll Type, |
| span: Span, |
| ) -> Result<&'ll Value, ()> { |
| // macros for error handling: |
| macro_rules! emit_error { |
| ($msg: tt) => { |
| emit_error!($msg, ) |
| }; |
| ($msg: tt, $($fmt: tt)*) => { |
| span_invalid_monomorphization_error( |
| bx.sess(), span, |
| &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg), |
| name, $($fmt)*)); |
| } |
| } |
| |
| macro_rules! return_error { |
| ($($fmt: tt)*) => { |
| { |
| emit_error!($($fmt)*); |
| return Err(()); |
| } |
| } |
| } |
| |
| macro_rules! require { |
| ($cond: expr, $($fmt: tt)*) => { |
| if !$cond { |
| return_error!($($fmt)*); |
| } |
| }; |
| } |
| |
| macro_rules! require_simd { |
| ($ty: expr, $position: expr) => { |
| require!($ty.is_simd(), "expected SIMD {} type, found non-SIMD `{}`", $position, $ty) |
| }; |
| } |
| |
| let tcx = bx.tcx(); |
| let sig = |
| tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), callee_ty.fn_sig(tcx)); |
| let arg_tys = sig.inputs(); |
| let name_str = &*name.as_str(); |
| |
| if name == sym::simd_select_bitmask { |
| let in_ty = arg_tys[0]; |
| let m_len = match in_ty.kind() { |
| // Note that this `.unwrap()` crashes for isize/usize, that's sort |
| // of intentional as there's not currently a use case for that. |
| ty::Int(i) => i.bit_width().unwrap(), |
| ty::Uint(i) => i.bit_width().unwrap(), |
| _ => return_error!("`{}` is not an integral type", in_ty), |
| }; |
| require_simd!(arg_tys[1], "argument"); |
| let (v_len, _) = arg_tys[1].simd_size_and_type(bx.tcx()); |
| require!( |
| // Allow masks for vectors with fewer than 8 elements to be |
| // represented with a u8 or i8. |
| m_len == v_len || (m_len == 8 && v_len < 8), |
| "mismatched lengths: mask length `{}` != other vector length `{}`", |
| m_len, |
| v_len |
| ); |
| let i1 = bx.type_i1(); |
| let im = bx.type_ix(v_len); |
| let i1xn = bx.type_vector(i1, v_len); |
| let m_im = bx.trunc(args[0].immediate(), im); |
| let m_i1s = bx.bitcast(m_im, i1xn); |
| return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate())); |
| } |
| |
| // every intrinsic below takes a SIMD vector as its first argument |
| require_simd!(arg_tys[0], "input"); |
| let in_ty = arg_tys[0]; |
| |
| let comparison = match name { |
| sym::simd_eq => Some(hir::BinOpKind::Eq), |
| sym::simd_ne => Some(hir::BinOpKind::Ne), |
| sym::simd_lt => Some(hir::BinOpKind::Lt), |
| sym::simd_le => Some(hir::BinOpKind::Le), |
| sym::simd_gt => Some(hir::BinOpKind::Gt), |
| sym::simd_ge => Some(hir::BinOpKind::Ge), |
| _ => None, |
| }; |
| |
| let (in_len, in_elem) = arg_tys[0].simd_size_and_type(bx.tcx()); |
| if let Some(cmp_op) = comparison { |
| require_simd!(ret_ty, "return"); |
| |
| let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx()); |
| require!( |
| in_len == out_len, |
| "expected return type with length {} (same as input type `{}`), \ |
| found `{}` with length {}", |
| in_len, |
| in_ty, |
| ret_ty, |
| out_len |
| ); |
| require!( |
| bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer, |
| "expected return type with integer elements, found `{}` with non-integer `{}`", |
| ret_ty, |
| out_ty |
| ); |
| |
| return Ok(compare_simd_types( |
| bx, |
| args[0].immediate(), |
| args[1].immediate(), |
| in_elem, |
| llret_ty, |
| cmp_op, |
| )); |
| } |
| |
| if let Some(stripped) = name_str.strip_prefix("simd_shuffle") { |
| let n: u64 = stripped.parse().unwrap_or_else(|_| { |
| span_bug!(span, "bad `simd_shuffle` instruction only caught in codegen?") |
| }); |
| |
| require_simd!(ret_ty, "return"); |
| |
| let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx()); |
| require!( |
| out_len == n, |
| "expected return type of length {}, found `{}` with length {}", |
| n, |
| ret_ty, |
| out_len |
| ); |
| require!( |
| in_elem == out_ty, |
| "expected return element type `{}` (element of input `{}`), \ |
| found `{}` with element type `{}`", |
| in_elem, |
| in_ty, |
| ret_ty, |
| out_ty |
| ); |
| |
| let total_len = u128::from(in_len) * 2; |
| |
| let vector = args[2].immediate(); |
| |
| let indices: Option<Vec<_>> = (0..n) |
| .map(|i| { |
| let arg_idx = i; |
| let val = bx.const_get_elt(vector, i as u64); |
| match bx.const_to_opt_u128(val, true) { |
| None => { |
| emit_error!("shuffle index #{} is not a constant", arg_idx); |
| None |
| } |
| Some(idx) if idx >= total_len => { |
| emit_error!( |
| "shuffle index #{} is out of bounds (limit {})", |
| arg_idx, |
| total_len |
| ); |
| None |
| } |
| Some(idx) => Some(bx.const_i32(idx as i32)), |
| } |
| }) |
| .collect(); |
| let indices = match indices { |
| Some(i) => i, |
| None => return Ok(bx.const_null(llret_ty)), |
| }; |
| |
| return Ok(bx.shuffle_vector( |
| args[0].immediate(), |
| args[1].immediate(), |
| bx.const_vector(&indices), |
| )); |
| } |
| |
| if name == sym::simd_insert { |
| require!( |
| in_elem == arg_tys[2], |
| "expected inserted type `{}` (element of input `{}`), found `{}`", |
| in_elem, |
| in_ty, |
| arg_tys[2] |
| ); |
| return Ok(bx.insert_element( |
| args[0].immediate(), |
| args[2].immediate(), |
| args[1].immediate(), |
| )); |
| } |
| if name == sym::simd_extract { |
| require!( |
| ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, |
| in_ty, |
| ret_ty |
| ); |
| return Ok(bx.extract_element(args[0].immediate(), args[1].immediate())); |
| } |
| |
| if name == sym::simd_select { |
| let m_elem_ty = in_elem; |
| let m_len = in_len; |
| require_simd!(arg_tys[1], "argument"); |
| let (v_len, _) = arg_tys[1].simd_size_and_type(bx.tcx()); |
| require!( |
| m_len == v_len, |
| "mismatched lengths: mask length `{}` != other vector length `{}`", |
| m_len, |
| v_len |
| ); |
| match m_elem_ty.kind() { |
| ty::Int(_) => {} |
| _ => return_error!("mask element type is `{}`, expected `i_`", m_elem_ty), |
| } |
| // truncate the mask to a vector of i1s |
| let i1 = bx.type_i1(); |
| let i1xn = bx.type_vector(i1, m_len as u64); |
| let m_i1s = bx.trunc(args[0].immediate(), i1xn); |
| return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate())); |
| } |
| |
| if name == sym::simd_bitmask { |
| // The `fn simd_bitmask(vector) -> unsigned integer` intrinsic takes a |
| // vector mask and returns an unsigned integer containing the most |
| // significant bit (MSB) of each lane. |
| |
| // If the vector has less than 8 lanes, a u8 is returned with zeroed |
| // trailing bits. |
| let expected_int_bits = in_len.max(8); |
| match ret_ty.kind() { |
| ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => (), |
| _ => return_error!("bitmask `{}`, expected `u{}`", ret_ty, expected_int_bits), |
| } |
| |
| // Integer vector <i{in_bitwidth} x in_len>: |
| let (i_xn, in_elem_bitwidth) = match in_elem.kind() { |
| ty::Int(i) => ( |
| args[0].immediate(), |
| i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()), |
| ), |
| ty::Uint(i) => ( |
| args[0].immediate(), |
| i.bit_width().unwrap_or_else(|| bx.data_layout().pointer_size.bits()), |
| ), |
| _ => return_error!( |
| "vector argument `{}`'s element type `{}`, expected integer element type", |
| in_ty, |
| in_elem |
| ), |
| }; |
| |
| // Shift the MSB to the right by "in_elem_bitwidth - 1" into the first bit position. |
| let shift_indices = |
| vec![ |
| bx.cx.const_int(bx.type_ix(in_elem_bitwidth), (in_elem_bitwidth - 1) as _); |
| in_len as _ |
| ]; |
| let i_xn_msb = bx.lshr(i_xn, bx.const_vector(shift_indices.as_slice())); |
| // Truncate vector to an <i1 x N> |
| let i1xn = bx.trunc(i_xn_msb, bx.type_vector(bx.type_i1(), in_len)); |
| // Bitcast <i1 x N> to iN: |
| let i_ = bx.bitcast(i1xn, bx.type_ix(in_len)); |
| // Zero-extend iN to the bitmask type: |
| return Ok(bx.zext(i_, bx.type_ix(expected_int_bits))); |
| } |
| |
| fn simd_simple_float_intrinsic( |
| name: Symbol, |
| in_elem: &::rustc_middle::ty::TyS<'_>, |
| in_ty: &::rustc_middle::ty::TyS<'_>, |
| in_len: u64, |
| bx: &mut Builder<'a, 'll, 'tcx>, |
| span: Span, |
| args: &[OperandRef<'tcx, &'ll Value>], |
| ) -> Result<&'ll Value, ()> { |
| macro_rules! emit_error { |
| ($msg: tt) => { |
| emit_error!($msg, ) |
| }; |
| ($msg: tt, $($fmt: tt)*) => { |
| span_invalid_monomorphization_error( |
| bx.sess(), span, |
| &format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg), |
| name, $($fmt)*)); |
| } |
| } |
| macro_rules! return_error { |
| ($($fmt: tt)*) => { |
| { |
| emit_error!($($fmt)*); |
| return Err(()); |
| } |
| } |
| } |
| |
| let (elem_ty_str, elem_ty) = if let ty::Float(f) = in_elem.kind() { |
| let elem_ty = bx.cx.type_float_from_ty(*f); |
| match f.bit_width() { |
| 32 => ("f32", elem_ty), |
| 64 => ("f64", elem_ty), |
| _ => { |
| return_error!( |
| "unsupported element type `{}` of floating-point vector `{}`", |
| f.name_str(), |
| in_ty |
| ); |
| } |
| } |
| } else { |
| return_error!("`{}` is not a floating-point type", in_ty); |
| }; |
| |
| let vec_ty = bx.type_vector(elem_ty, in_len); |
| |
| let (intr_name, fn_ty) = match name { |
| sym::simd_ceil => ("ceil", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_fabs => ("fabs", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_fcos => ("cos", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_fexp2 => ("exp2", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_fexp => ("exp", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_flog10 => ("log10", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_flog2 => ("log2", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_flog => ("log", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_floor => ("floor", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_fma => ("fma", bx.type_func(&[vec_ty, vec_ty, vec_ty], vec_ty)), |
| sym::simd_fpowi => ("powi", bx.type_func(&[vec_ty, bx.type_i32()], vec_ty)), |
| sym::simd_fpow => ("pow", bx.type_func(&[vec_ty, vec_ty], vec_ty)), |
| sym::simd_fsin => ("sin", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_fsqrt => ("sqrt", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_round => ("round", bx.type_func(&[vec_ty], vec_ty)), |
| sym::simd_trunc => ("trunc", bx.type_func(&[vec_ty], vec_ty)), |
| _ => return_error!("unrecognized intrinsic `{}`", name), |
| }; |
| let llvm_name = &format!("llvm.{0}.v{1}{2}", intr_name, in_len, elem_ty_str); |
| let f = bx.declare_cfn(&llvm_name, llvm::UnnamedAddr::No, fn_ty); |
| let c = |
| bx.call(fn_ty, f, &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), None); |
| Ok(c) |
| } |
| |
| if std::matches!( |
| name, |
| sym::simd_ceil |
| | sym::simd_fabs |
| | sym::simd_fcos |
| | sym::simd_fexp2 |
| | sym::simd_fexp |
| | sym::simd_flog10 |
| | sym::simd_flog2 |
| | sym::simd_flog |
| | sym::simd_floor |
| | sym::simd_fma |
| | sym::simd_fpow |
| | sym::simd_fpowi |
| | sym::simd_fsin |
| | sym::simd_fsqrt |
| | sym::simd_round |
| | sym::simd_trunc |
| ) { |
| return simd_simple_float_intrinsic(name, in_elem, in_ty, in_len, bx, span, args); |
| } |
| |
| // FIXME: use: |
| // https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Function.h#L182 |
| // https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Intrinsics.h#L81 |
| fn llvm_vector_str(elem_ty: Ty<'_>, vec_len: u64, no_pointers: usize) -> String { |
| let p0s: String = "p0".repeat(no_pointers); |
| match *elem_ty.kind() { |
| ty::Int(v) => format!("v{}{}i{}", vec_len, p0s, v.bit_width().unwrap()), |
| ty::Uint(v) => format!("v{}{}i{}", vec_len, p0s, v.bit_width().unwrap()), |
| ty::Float(v) => format!("v{}{}f{}", vec_len, p0s, v.bit_width()), |
| _ => unreachable!(), |
| } |
| } |
| |
| fn llvm_vector_ty( |
| cx: &CodegenCx<'ll, '_>, |
| elem_ty: Ty<'_>, |
| vec_len: u64, |
| mut no_pointers: usize, |
| ) -> &'ll Type { |
| // FIXME: use cx.layout_of(ty).llvm_type() ? |
| let mut elem_ty = match *elem_ty.kind() { |
| ty::Int(v) => cx.type_int_from_ty(v), |
| ty::Uint(v) => cx.type_uint_from_ty(v), |
| ty::Float(v) => cx.type_float_from_ty(v), |
| _ => unreachable!(), |
| }; |
| while no_pointers > 0 { |
| elem_ty = cx.type_ptr_to(elem_ty); |
| no_pointers -= 1; |
| } |
| cx.type_vector(elem_ty, vec_len) |
| } |
| |
| if name == sym::simd_gather { |
| // simd_gather(values: <N x T>, pointers: <N x *_ T>, |
| // mask: <N x i{M}>) -> <N x T> |
| // * N: number of elements in the input vectors |
| // * T: type of the element to load |
| // * M: any integer width is supported, will be truncated to i1 |
| |
| // All types must be simd vector types |
| require_simd!(in_ty, "first"); |
| require_simd!(arg_tys[1], "second"); |
| require_simd!(arg_tys[2], "third"); |
| require_simd!(ret_ty, "return"); |
| |
| // Of the same length: |
| let (out_len, _) = arg_tys[1].simd_size_and_type(bx.tcx()); |
| let (out_len2, _) = arg_tys[2].simd_size_and_type(bx.tcx()); |
| require!( |
| in_len == out_len, |
| "expected {} argument with length {} (same as input type `{}`), \ |
| found `{}` with length {}", |
| "second", |
| in_len, |
| in_ty, |
| arg_tys[1], |
| out_len |
| ); |
| require!( |
| in_len == out_len2, |
| "expected {} argument with length {} (same as input type `{}`), \ |
| found `{}` with length {}", |
| "third", |
| in_len, |
| in_ty, |
| arg_tys[2], |
| out_len2 |
| ); |
| |
| // The return type must match the first argument type |
| require!(ret_ty == in_ty, "expected return type `{}`, found `{}`", in_ty, ret_ty); |
| |
| // This counts how many pointers |
| fn ptr_count(t: Ty<'_>) -> usize { |
| match t.kind() { |
| ty::RawPtr(p) => 1 + ptr_count(p.ty), |
| _ => 0, |
| } |
| } |
| |
| // Non-ptr type |
| fn non_ptr(t: Ty<'_>) -> Ty<'_> { |
| match t.kind() { |
| ty::RawPtr(p) => non_ptr(p.ty), |
| _ => t, |
| } |
| } |
| |
| // The second argument must be a simd vector with an element type that's a pointer |
| // to the element type of the first argument |
| let (_, element_ty0) = arg_tys[0].simd_size_and_type(bx.tcx()); |
| let (_, element_ty1) = arg_tys[1].simd_size_and_type(bx.tcx()); |
| let (pointer_count, underlying_ty) = match element_ty1.kind() { |
| ty::RawPtr(p) if p.ty == in_elem => (ptr_count(element_ty1), non_ptr(element_ty1)), |
| _ => { |
| require!( |
| false, |
| "expected element type `{}` of second argument `{}` \ |
| to be a pointer to the element type `{}` of the first \ |
| argument `{}`, found `{}` != `*_ {}`", |
| element_ty1, |
| arg_tys[1], |
| in_elem, |
| in_ty, |
| element_ty1, |
| in_elem |
| ); |
| unreachable!(); |
| } |
| }; |
| assert!(pointer_count > 0); |
| assert_eq!(pointer_count - 1, ptr_count(element_ty0)); |
| assert_eq!(underlying_ty, non_ptr(element_ty0)); |
| |
| // The element type of the third argument must be a signed integer type of any width: |
| let (_, element_ty2) = arg_tys[2].simd_size_and_type(bx.tcx()); |
| match element_ty2.kind() { |
| ty::Int(_) => (), |
| _ => { |
| require!( |
| false, |
| "expected element type `{}` of third argument `{}` \ |
| to be a signed integer type", |
| element_ty2, |
| arg_tys[2] |
| ); |
| } |
| } |
| |
| // Alignment of T, must be a constant integer value: |
| let alignment_ty = bx.type_i32(); |
| let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32); |
| |
| // Truncate the mask vector to a vector of i1s: |
| let (mask, mask_ty) = { |
| let i1 = bx.type_i1(); |
| let i1xn = bx.type_vector(i1, in_len); |
| (bx.trunc(args[2].immediate(), i1xn), i1xn) |
| }; |
| |
| // Type of the vector of pointers: |
| let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count); |
| let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count); |
| |
| // Type of the vector of elements: |
| let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1); |
| let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1); |
| |
| let llvm_intrinsic = |
| format!("llvm.masked.gather.{}.{}", llvm_elem_vec_str, llvm_pointer_vec_str); |
| let fn_ty = bx.type_func( |
| &[llvm_pointer_vec_ty, alignment_ty, mask_ty, llvm_elem_vec_ty], |
| llvm_elem_vec_ty, |
| ); |
| let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty); |
| let v = |
| bx.call(fn_ty, f, &[args[1].immediate(), alignment, mask, args[0].immediate()], None); |
| return Ok(v); |
| } |
| |
| if name == sym::simd_scatter { |
| // simd_scatter(values: <N x T>, pointers: <N x *mut T>, |
| // mask: <N x i{M}>) -> () |
| // * N: number of elements in the input vectors |
| // * T: type of the element to load |
| // * M: any integer width is supported, will be truncated to i1 |
| |
| // All types must be simd vector types |
| require_simd!(in_ty, "first"); |
| require_simd!(arg_tys[1], "second"); |
| require_simd!(arg_tys[2], "third"); |
| |
| // Of the same length: |
| let (element_len1, _) = arg_tys[1].simd_size_and_type(bx.tcx()); |
| let (element_len2, _) = arg_tys[2].simd_size_and_type(bx.tcx()); |
| require!( |
| in_len == element_len1, |
| "expected {} argument with length {} (same as input type `{}`), \ |
| found `{}` with length {}", |
| "second", |
| in_len, |
| in_ty, |
| arg_tys[1], |
| element_len1 |
| ); |
| require!( |
| in_len == element_len2, |
| "expected {} argument with length {} (same as input type `{}`), \ |
| found `{}` with length {}", |
| "third", |
| in_len, |
| in_ty, |
| arg_tys[2], |
| element_len2 |
| ); |
| |
| // This counts how many pointers |
| fn ptr_count(t: Ty<'_>) -> usize { |
| match t.kind() { |
| ty::RawPtr(p) => 1 + ptr_count(p.ty), |
| _ => 0, |
| } |
| } |
| |
| // Non-ptr type |
| fn non_ptr(t: Ty<'_>) -> Ty<'_> { |
| match t.kind() { |
| ty::RawPtr(p) => non_ptr(p.ty), |
| _ => t, |
| } |
| } |
| |
| // The second argument must be a simd vector with an element type that's a pointer |
| // to the element type of the first argument |
| let (_, element_ty0) = arg_tys[0].simd_size_and_type(bx.tcx()); |
| let (_, element_ty1) = arg_tys[1].simd_size_and_type(bx.tcx()); |
| let (_, element_ty2) = arg_tys[2].simd_size_and_type(bx.tcx()); |
| let (pointer_count, underlying_ty) = match element_ty1.kind() { |
| ty::RawPtr(p) if p.ty == in_elem && p.mutbl == hir::Mutability::Mut => { |
| (ptr_count(element_ty1), non_ptr(element_ty1)) |
| } |
| _ => { |
| require!( |
| false, |
| "expected element type `{}` of second argument `{}` \ |
| to be a pointer to the element type `{}` of the first \ |
| argument `{}`, found `{}` != `*mut {}`", |
| element_ty1, |
| arg_tys[1], |
| in_elem, |
| in_ty, |
| element_ty1, |
| in_elem |
| ); |
| unreachable!(); |
| } |
| }; |
| assert!(pointer_count > 0); |
| assert_eq!(pointer_count - 1, ptr_count(element_ty0)); |
| assert_eq!(underlying_ty, non_ptr(element_ty0)); |
| |
| // The element type of the third argument must be a signed integer type of any width: |
| match element_ty2.kind() { |
| ty::Int(_) => (), |
| _ => { |
| require!( |
| false, |
| "expected element type `{}` of third argument `{}` \ |
| be a signed integer type", |
| element_ty2, |
| arg_tys[2] |
| ); |
| } |
| } |
| |
| // Alignment of T, must be a constant integer value: |
| let alignment_ty = bx.type_i32(); |
| let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32); |
| |
| // Truncate the mask vector to a vector of i1s: |
| let (mask, mask_ty) = { |
| let i1 = bx.type_i1(); |
| let i1xn = bx.type_vector(i1, in_len); |
| (bx.trunc(args[2].immediate(), i1xn), i1xn) |
| }; |
| |
| let ret_t = bx.type_void(); |
| |
| // Type of the vector of pointers: |
| let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count); |
| let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count); |
| |
| // Type of the vector of elements: |
| let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1); |
| let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1); |
| |
| let llvm_intrinsic = |
| format!("llvm.masked.scatter.{}.{}", llvm_elem_vec_str, llvm_pointer_vec_str); |
| let fn_ty = |
| bx.type_func(&[llvm_elem_vec_ty, llvm_pointer_vec_ty, alignment_ty, mask_ty], ret_t); |
| let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty); |
| let v = |
| bx.call(fn_ty, f, &[args[0].immediate(), args[1].immediate(), alignment, mask], None); |
| return Ok(v); |
| } |
| |
| macro_rules! arith_red { |
| ($name:ident : $integer_reduce:ident, $float_reduce:ident, $ordered:expr, $op:ident, |
| $identity:expr) => { |
| if name == sym::$name { |
| require!( |
| ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, |
| in_ty, |
| ret_ty |
| ); |
| return match in_elem.kind() { |
| ty::Int(_) | ty::Uint(_) => { |
| let r = bx.$integer_reduce(args[0].immediate()); |
| if $ordered { |
| // if overflow occurs, the result is the |
| // mathematical result modulo 2^n: |
| Ok(bx.$op(args[1].immediate(), r)) |
| } else { |
| Ok(bx.$integer_reduce(args[0].immediate())) |
| } |
| } |
| ty::Float(f) => { |
| let acc = if $ordered { |
| // ordered arithmetic reductions take an accumulator |
| args[1].immediate() |
| } else { |
| // unordered arithmetic reductions use the identity accumulator |
| match f.bit_width() { |
| 32 => bx.const_real(bx.type_f32(), $identity), |
| 64 => bx.const_real(bx.type_f64(), $identity), |
| v => return_error!( |
| r#" |
| unsupported {} from `{}` with element `{}` of size `{}` to `{}`"#, |
| sym::$name, |
| in_ty, |
| in_elem, |
| v, |
| ret_ty |
| ), |
| } |
| }; |
| Ok(bx.$float_reduce(acc, args[0].immediate())) |
| } |
| _ => return_error!( |
| "unsupported {} from `{}` with element `{}` to `{}`", |
| sym::$name, |
| in_ty, |
| in_elem, |
| ret_ty |
| ), |
| }; |
| } |
| }; |
| } |
| |
| arith_red!(simd_reduce_add_ordered: vector_reduce_add, vector_reduce_fadd, true, add, 0.0); |
| arith_red!(simd_reduce_mul_ordered: vector_reduce_mul, vector_reduce_fmul, true, mul, 1.0); |
| arith_red!( |
| simd_reduce_add_unordered: vector_reduce_add, |
| vector_reduce_fadd_fast, |
| false, |
| add, |
| 0.0 |
| ); |
| arith_red!( |
| simd_reduce_mul_unordered: vector_reduce_mul, |
| vector_reduce_fmul_fast, |
| false, |
| mul, |
| 1.0 |
| ); |
| |
| macro_rules! minmax_red { |
| ($name:ident: $int_red:ident, $float_red:ident) => { |
| if name == sym::$name { |
| require!( |
| ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, |
| in_ty, |
| ret_ty |
| ); |
| return match in_elem.kind() { |
| ty::Int(_i) => Ok(bx.$int_red(args[0].immediate(), true)), |
| ty::Uint(_u) => Ok(bx.$int_red(args[0].immediate(), false)), |
| ty::Float(_f) => Ok(bx.$float_red(args[0].immediate())), |
| _ => return_error!( |
| "unsupported {} from `{}` with element `{}` to `{}`", |
| sym::$name, |
| in_ty, |
| in_elem, |
| ret_ty |
| ), |
| }; |
| } |
| }; |
| } |
| |
| minmax_red!(simd_reduce_min: vector_reduce_min, vector_reduce_fmin); |
| minmax_red!(simd_reduce_max: vector_reduce_max, vector_reduce_fmax); |
| |
| minmax_red!(simd_reduce_min_nanless: vector_reduce_min, vector_reduce_fmin_fast); |
| minmax_red!(simd_reduce_max_nanless: vector_reduce_max, vector_reduce_fmax_fast); |
| |
| macro_rules! bitwise_red { |
| ($name:ident : $red:ident, $boolean:expr) => { |
| if name == sym::$name { |
| let input = if !$boolean { |
| require!( |
| ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, |
| in_ty, |
| ret_ty |
| ); |
| args[0].immediate() |
| } else { |
| match in_elem.kind() { |
| ty::Int(_) | ty::Uint(_) => {} |
| _ => return_error!( |
| "unsupported {} from `{}` with element `{}` to `{}`", |
| sym::$name, |
| in_ty, |
| in_elem, |
| ret_ty |
| ), |
| } |
| |
| // boolean reductions operate on vectors of i1s: |
| let i1 = bx.type_i1(); |
| let i1xn = bx.type_vector(i1, in_len as u64); |
| bx.trunc(args[0].immediate(), i1xn) |
| }; |
| return match in_elem.kind() { |
| ty::Int(_) | ty::Uint(_) => { |
| let r = bx.$red(input); |
| Ok(if !$boolean { r } else { bx.zext(r, bx.type_bool()) }) |
| } |
| _ => return_error!( |
| "unsupported {} from `{}` with element `{}` to `{}`", |
| sym::$name, |
| in_ty, |
| in_elem, |
| ret_ty |
| ), |
| }; |
| } |
| }; |
| } |
| |
| bitwise_red!(simd_reduce_and: vector_reduce_and, false); |
| bitwise_red!(simd_reduce_or: vector_reduce_or, false); |
| bitwise_red!(simd_reduce_xor: vector_reduce_xor, false); |
| bitwise_red!(simd_reduce_all: vector_reduce_and, true); |
| bitwise_red!(simd_reduce_any: vector_reduce_or, true); |
| |
| if name == sym::simd_cast { |
| require_simd!(ret_ty, "return"); |
| let (out_len, out_elem) = ret_ty.simd_size_and_type(bx.tcx()); |
| require!( |
| in_len == out_len, |
| "expected return type with length {} (same as input type `{}`), \ |
| found `{}` with length {}", |
| in_len, |
| in_ty, |
| ret_ty, |
| out_len |
| ); |
| // casting cares about nominal type, not just structural type |
| if in_elem == out_elem { |
| return Ok(args[0].immediate()); |
| } |
| |
| enum Style { |
| Float, |
| Int(/* is signed? */ bool), |
| Unsupported, |
| } |
| |
| let (in_style, in_width) = match in_elem.kind() { |
| // vectors of pointer-sized integers should've been |
| // disallowed before here, so this unwrap is safe. |
| ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()), |
| ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()), |
| ty::Float(f) => (Style::Float, f.bit_width()), |
| _ => (Style::Unsupported, 0), |
| }; |
| let (out_style, out_width) = match out_elem.kind() { |
| ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()), |
| ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()), |
| ty::Float(f) => (Style::Float, f.bit_width()), |
| _ => (Style::Unsupported, 0), |
| }; |
| |
| match (in_style, out_style) { |
| (Style::Int(in_is_signed), Style::Int(_)) => { |
| return Ok(match in_width.cmp(&out_width) { |
| Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty), |
| Ordering::Equal => args[0].immediate(), |
| Ordering::Less => { |
| if in_is_signed { |
| bx.sext(args[0].immediate(), llret_ty) |
| } else { |
| bx.zext(args[0].immediate(), llret_ty) |
| } |
| } |
| }); |
| } |
| (Style::Int(in_is_signed), Style::Float) => { |
| return Ok(if in_is_signed { |
| bx.sitofp(args[0].immediate(), llret_ty) |
| } else { |
| bx.uitofp(args[0].immediate(), llret_ty) |
| }); |
| } |
| (Style::Float, Style::Int(out_is_signed)) => { |
| return Ok(if out_is_signed { |
| bx.fptosi(args[0].immediate(), llret_ty) |
| } else { |
| bx.fptoui(args[0].immediate(), llret_ty) |
| }); |
| } |
| (Style::Float, Style::Float) => { |
| return Ok(match in_width.cmp(&out_width) { |
| Ordering::Greater => bx.fptrunc(args[0].immediate(), llret_ty), |
| Ordering::Equal => args[0].immediate(), |
| Ordering::Less => bx.fpext(args[0].immediate(), llret_ty), |
| }); |
| } |
| _ => { /* Unsupported. Fallthrough. */ } |
| } |
| require!( |
| false, |
| "unsupported cast from `{}` with element `{}` to `{}` with element `{}`", |
| in_ty, |
| in_elem, |
| ret_ty, |
| out_elem |
| ); |
| } |
| macro_rules! arith_binary { |
| ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => { |
| $(if name == sym::$name { |
| match in_elem.kind() { |
| $($(ty::$p(_))|* => { |
| return Ok(bx.$call(args[0].immediate(), args[1].immediate())) |
| })* |
| _ => {}, |
| } |
| require!(false, |
| "unsupported operation on `{}` with element `{}`", |
| in_ty, |
| in_elem) |
| })* |
| } |
| } |
| arith_binary! { |
| simd_add: Uint, Int => add, Float => fadd; |
| simd_sub: Uint, Int => sub, Float => fsub; |
| simd_mul: Uint, Int => mul, Float => fmul; |
| simd_div: Uint => udiv, Int => sdiv, Float => fdiv; |
| simd_rem: Uint => urem, Int => srem, Float => frem; |
| simd_shl: Uint, Int => shl; |
| simd_shr: Uint => lshr, Int => ashr; |
| simd_and: Uint, Int => and; |
| simd_or: Uint, Int => or; |
| simd_xor: Uint, Int => xor; |
| simd_fmax: Float => maxnum; |
| simd_fmin: Float => minnum; |
| |
| } |
| macro_rules! arith_unary { |
| ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => { |
| $(if name == sym::$name { |
| match in_elem.kind() { |
| $($(ty::$p(_))|* => { |
| return Ok(bx.$call(args[0].immediate())) |
| })* |
| _ => {}, |
| } |
| require!(false, |
| "unsupported operation on `{}` with element `{}`", |
| in_ty, |
| in_elem) |
| })* |
| } |
| } |
| arith_unary! { |
| simd_neg: Int => neg, Float => fneg; |
| } |
| |
| if name == sym::simd_saturating_add || name == sym::simd_saturating_sub { |
| let lhs = args[0].immediate(); |
| let rhs = args[1].immediate(); |
| let is_add = name == sym::simd_saturating_add; |
| let ptr_bits = bx.tcx().data_layout.pointer_size.bits() as _; |
| let (signed, elem_width, elem_ty) = match *in_elem.kind() { |
| ty::Int(i) => (true, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_int_from_ty(i)), |
| ty::Uint(i) => (false, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_uint_from_ty(i)), |
| _ => { |
| return_error!( |
| "expected element type `{}` of vector type `{}` \ |
| to be a signed or unsigned integer type", |
| arg_tys[0].simd_size_and_type(bx.tcx()).1, |
| arg_tys[0] |
| ); |
| } |
| }; |
| let llvm_intrinsic = &format!( |
| "llvm.{}{}.sat.v{}i{}", |
| if signed { 's' } else { 'u' }, |
| if is_add { "add" } else { "sub" }, |
| in_len, |
| elem_width |
| ); |
| let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64); |
| |
| let fn_ty = bx.type_func(&[vec_ty, vec_ty], vec_ty); |
| let f = bx.declare_cfn(&llvm_intrinsic, llvm::UnnamedAddr::No, fn_ty); |
| let v = bx.call(fn_ty, f, &[lhs, rhs], None); |
| return Ok(v); |
| } |
| |
| span_bug!(span, "unknown SIMD intrinsic"); |
| } |
| |
| // Returns the width of an int Ty, and if it's signed or not |
| // Returns None if the type is not an integer |
| // FIXME: there’s multiple of this functions, investigate using some of the already existing |
| // stuffs. |
| fn int_type_width_signed(ty: Ty<'_>, cx: &CodegenCx<'_, '_>) -> Option<(u64, bool)> { |
| match ty.kind() { |
| ty::Int(t) => { |
| Some((t.bit_width().unwrap_or(u64::from(cx.tcx.sess.target.pointer_width)), true)) |
| } |
| ty::Uint(t) => { |
| Some((t.bit_width().unwrap_or(u64::from(cx.tcx.sess.target.pointer_width)), false)) |
| } |
| _ => None, |
| } |
| } |